亮氨酸-脑啡肽结合H+和Li+的氢氘交换实验与理论研究

陈银娟 熊行创 李振华 江游 方向 戴新华 丁传凡

引用本文: 陈银娟,  熊行创,  李振华,  江游,  方向,  戴新华,  丁传凡. 亮氨酸-脑啡肽结合H+和Li+的氢氘交换实验与理论研究[J]. 分析化学, 2018, 46(4): 556-562. doi: 10.11895/j.issn.0253-3820.171479 shu
Citation:  CHEN Yin-Juan,  XIONG Xing-Chuang,  LI Zhen-Hua,  JIANG You,  FANG Xiang,  DAI Xin-Hua,  DING Chuan-Fan. Investigation of Protonated and Lithiated Leucine-Enkephalin by Hydrogen/Deuterium Exchange and Theoretical Calculations[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 556-562. doi: 10.11895/j.issn.0253-3820.171479 shu

亮氨酸-脑啡肽结合H+和Li+的氢氘交换实验与理论研究

  • 基金项目:

    本文系国家自然科学基金项目(Nos.21773035,21605135)和国家重大仪器设备开发专项(No.2012YQ22011307)资助

摘要: 气相氢氘交换质谱(HDX-MS)实验与量子化学计算结合,比较了亮氨酸-脑啡肽(YGGFL)结合H+和Li+的反应和结构差异性。HDX-MS结果表明,在相同的实验条件下,[YGGFL+Li]+在交换5个氢原子后,氢氘同位素反应趋于停止,而[YGGFL+H]+上的9个可交换氢原子均可发生交换。这表明Li+会降低脑啡肽的氢氘交换率。理论计算发现,两种离子具有不同的最稳定结构:Li+与脑啡肽肽上的4个羰基氧原子结合能量最低,而脑啡肽氨基端发生质子化后产生最稳定的[YGGFL+H]+。基于此稳定结构,实验进一步从离子结构差异性和质子亲和势等方面对HDX实验结果进行了分析。

English

    1. [1]

      Hughes J, Smith T W, Kosterlitz H W, Fothergill L A, Morgan B A, Morris H R. Nature,1975,258(5536):577-579

    2. [2]

      Simantov R, Snyder S H. Proc. Natl. Acad. Sci.,1976,73(7):2515-2519

    3. [3]

      Pert C B, Snyder S H. Mol. Pharmacol.,1974,10(6):868-879

    4. [4]

      Poupaert J H, Portoghese P S, Garsky V. J. Med. Chem.,1976,19(11):1354-13565 Kostyukevich Y I, Kononikhin A S, Indeykina M I, Popov I A, Bocharov K V, Spassky A I, Kozin S A, Makarov A A, Nikolaev E N. Mol. Biol.,2017,51(4):627-632

    5. [5]

      Bonvin G, Bobst C E, Kaltashov I A. Int. J. Mass Spectrom.,2017,420(SI):74-82

    6. [6]

      Chen Y, Yue L, Li Z, Ding X, Wang L, Dai X, Fang X, Pan Y, Ding C.Anal. Methods,2015,7(13):5551-5556

    7. [7]

      Greenblatt D Y, Ndiaye M, Chen H, Kunnimalaiyaan M. Am. J. Transl. Res.,2010,2(3):248-253

    8. [8]

      Bezchlibnyk Y B, Xu L, Wang J, Young L T.Brain Res.,2007,1147:213-217

    9. [9]

      Hansen D K, Walker R C, Grafton T F. Teratology,1990, 41(2):155-160

    10. [10]

      Bowden C L, Calabrese J R, Mcelroy S L, Gyulai L, Wassef A, Petty F, Pope H G, Chou J, Keck P E, Rhodes L J, Swann A C, Hirschfeld R, Wozniak P J. Arch. Gen. Psychiat.,2000,57(5):481-489

    11. [11]

      Hartigan G P. Brit. J. Psychiat.,1963,109(463):810-814

    12. [12]

      Shahzad B, Mughal M N, Tanveer M, Gupta D, Abbas G. Environ. Sci. Pollut. Res.,2017,24(1):103-115

    13. [13]

      Margret A A, Dhayabaran V V, Kumar A G. Prog. Biomater., 2017,6(4):165-173

    14. [14]

      Mezni A, Aoua H, Khazri O, Limam F, Aouani E.Biomed. Pharmacother.,2017,95:1103-1111

    15. [15]

      Kang K S, Meng Y S, Breger J, Grey C P, Ceder G. Science,2006,311(5763):977-980

    16. [16]

      Tanaka J, Yamashita M, Yamashita M, Kajigaya H.Vet. Hum. Toxicol.,1998,40(4):193-196

    17. [17]

      Gronert S.J. Am. Soc. Mass Spectrom.,1998,9(8):845-848

    18. [18]

      O'Boyle N M, Banck M, James C A, Morley C, Vandermeersch T, Hutchison G R.J. Cheminformatics,2011,3:33-46

    19. [19]

      Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J Gaussian 09, Revision A.01, Gaussian, Inc., Walling ford C T,2009

    20. [20]

      Lee C T, Yang W T, Parr R G. Phys. Rev. B,1988,37(2):785-789

    21. [21]

      Becke A D. Phys. Rev. A,1988,38(6):3098-3100

    22. [22]

      Becke A D. J. Chem. Phys.,1993,98:5648-5652

    23. [23]

      Marcsisin S R, Engen J R. Anal. Bioanal. Chem.,2010,397(3):967-972

    24. [24]

      Konermann L, Tong X, Pan Y. J. Mass Spectrom.,2008,43(8):1021-1036

    25. [25]

      Campbell S, Rodgers M T, Marzluff E M, Beauchamp J L. J. Am. Chem. Soc.,1995,117(51):12840-12854

    26. [26]

      Wales T E, Engen J R. Mass Spectrom. Rev.,2006,25(1):158-170

    27. [27]

      Tsutsui Y, Wintrode P L. Curr. Med. Chem.,2007,14(22):2344-2358

    28. [28]

      Wyttenbach T, Bowers M T. J. Am. Soc. Mass Spectrom.,1999,10(1):9-14

    29. [29]

      Olmstead W N, Brauman J I. J. Am. Chem. Soc.,1977,99(13):4219-4228

    30. [30]

      Asubiojo O I, Brauman J I. J. Am. Chem. Soc.,1979,101(14):3715-3724

    31. [31]

      Jaroszewski L, Lesyng B, Tanner J J, Mccammon J A. Chem. Phys. Lett.,1990,175(4):282-288

    32. [32]

      Ausloos P, Lias S G. J. Am. Chem. Soc.,1981,103(13):3641-3647

    33. [33]

      Cheng X H, Fenselau C. Int. J. Mass Spectrom. Ion Processes,1992,122:109-119

    34. [34]

      Harrison A G. Mass Spectrom. Rev.,1997,16(4):201-217

    35. [35]

      Solouki T, Fort R C, Alomary A, Fattahi A.J. Am. Soc. Mass Spectrom.,2001,12(12):1272-1285

    36. [36]

      Menges F, Riehn C, Niedner-Schatteburg G.Z. Phys. Chem.,2011,225(5SI):595-609

    37. [37]

      von Helden G, Wyttenbach T, Bowers M T. Int. J. Mass Spectrom.,1995,146:349-364

    38. [38]

      Grese R P, Cerny R L, Gross M L. J. Am. Chem. Soc.,1989,111(8):2835-2842

    39. [39]

      Teesch L M, Adams J.J. Am. Chem. Soc.,1991,113(3):812-820

    40. [40]

      Wang Q, Chu Y, Zhang K, Dai X, Fang X, Ding C.Acta Phys-Chim. Sin.,2012,28(4):971-977

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  890
  • HTML全文浏览量:  120
文章相关
  • 收稿日期:  2017-12-05
  • 修回日期:  2018-01-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章