Citation:
ZHAO Huan, HUAN Ke-Wei, SHI Xiao-Guang, ZHENG Feng, LIU Li-Ying, LIU Wei, ZHAO Chun-Ying. A Variable Selection Method of Near Infrared Spectroscopy Based on Automatic Weighting Variable Combination Population Analysis[J]. Chinese Journal of Analytical Chemistry,
;2018, 46(1): 136-142.
doi:
10.11895/j.issn.0253-3820.171158
-
Near-infrared spectroscopy (NIR) is widely used in the area of food quantitative and qualitative analysis. Variable selection technique is a critical step of the spectrum modeling with the development of chemometrics. In this study, a novel variable selection strategy, automatic weighting variable combination population analysis (AWVCPA), was proposed. Firstly, binary matrix sampling (BMS) strategy that gives each variable the same chance to be selected and generates different variable combinations, was used to produce a population of subsets to construct a population of sub-models. Then, the variable frequency (Fre) and partial least squares regression (Reg), which were two kinds of information vector (IVs) were weighted to obtain the value of the contribution of each spectral variables, the influence of two IVs of Rre and Reg was considered to each spectral variable. Finally, it used the exponentially decreasing function (EDF) to remove the low contribution wavelengths so as to select the characteristic variable. In the case of near infrared spectrum of beer and corn, the prediction model based on partial least squares (PLS) was established. Compared with other variable selection methods, the research showed that AWVCPA was the best variable selection strategy in the same situation. It had 72.7% improvement compared AWVCPA-PLS with PLS and the predicted root mean square error (RMSEP) decreased from 0.5348 to 0.1457 on beer dataset. It had 64.7% improvement compared AWVCPA-PLS with PLS and the RMSEP decreased from 0.0702 to 0.0248 on corn dataset.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[21]
-
[22]
-
[1]
-
-
-
[1]
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147
-
[2]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[3]
Haiqiang Lin , Weizheng Weng , Jingdong Lin , Mingshu Chen , Xueming Fang , Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106
-
[4]
Yidan Jing , Xiaomin Zhang , Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146
-
[5]
Weigang Zhu , Jianfeng Wang , Qiang Qi , Jing Li , Zhicheng Zhang , Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002
-
[6]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[7]
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
-
[8]
Weigang Zhu , Xiaofei Ma , Yun Tian , Huaji Liu , Fanli Lu , Yalu Ma . 基于知识图谱的“无机化学与化学分析”课程信息化教学资源构建与应用研究. University Chemistry, 2025, 40(6): 9-15. doi: 10.12461/PKU.DXHX202408113
-
[9]
Xianggui Kong , Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067
-
[10]
Hongda Yu , Hantang Zhang , Changbao Chen , Yanbin Yin , Kun Zhang , Pengpeng Shang , Shuhua Zhu , Lili Zhang . Exploration of Ideological and Political Education in Basic Chemistry Laboratory Courses at Agricultural and Forestry Universities under Educational Informatization Reform. University Chemistry, 2025, 40(10): 33-38. doi: 10.12461/PKU.DXHX202411074
-
[11]
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
-
[12]
Linghua Chen . 基于双联动“三学”模式的食品专业分析化学教学改革. University Chemistry, 2025, 40(8): 78-91. doi: 10.12461/PKU.DXHX202409095
-
[13]
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
-
[14]
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
-
[15]
Liqiang Huang , Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074
-
[16]
Xiangchun Li , Wei Xue , Xu Liu , Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018
-
[17]
Liangjun Chen , Yu Zhang , Zhicheng Zhang , Yongwu Peng . AI-Empowering Reform in University Chemistry Education: Practical Exploration of Cultivating Informationization and Intelligent Literacy. University Chemistry, 2025, 40(9): 220-227. doi: 10.12461/PKU.DXHX202503124
-
[18]
Xin Hua , Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043
-
[19]
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
-
[20]
Yan Su , Xiuyun Wang , Huimin Guo , Yanjuan Zhang , Xinwen Zhang , Yunting Shang , Wenfeng Jiang . To Cultivate Scientific Literacy by Learning, Thinking, Practicing and Understanding, To Utilize the “Smart Eye” Expertise by Integrating of Knowledge and Action: Ideological and Political Construction of Analytical Chemistry Experiment Course. University Chemistry, 2024, 39(2): 196-202. doi: 10.3866/PKU.DXHX202308003
-
[1]
Metrics
- PDF Downloads(8)
- Abstract views(858)
- HTML views(112)
Login In
DownLoad: