Citation:
GUO Hong-Li, LIN Qing-Yu, WANG Shuai, XU Tao, GUO Guang-Meng, TIAN Di, DUAN Yi-Xiang. Analysis of Carbonaceous Shale by Laser-induced Breakdown Spectroscopy[J]. Chinese Journal of Analytical Chemistry,
;2016, 44(11): 1639-1645.
doi:
10.11895/j.issn.0253-3820.160509
-
Gas shale is one of the important unconventional hydrocarbon source rocks, whose composition, such as mineral components and trace elements, has been proven as important geochemical proxies playing essential roles in indicating the gas potential and gas productivity in recent geological researches. Fast and accurate measurements of the shale composition will reveal rich information for understanding and evaluation of gas shale reservoirs. In this paper, we demonstrated the potentiality as well as feasibility of laser-induced breakdown spectroscopy (LIBS) as an effective technique to perform spectrochemical analysis for shale samples. For this experiment, a Nd:YAG laser at the fundamental wavelength of 1064 nm provided pulses for the shale materials. An echelle spectrometer equipped with an ICCD camera was employed to disperse and record the spectra. Meanwhile, five shale samples were collected at different depth from 2396 m to 3428 m. The LIBS device was used to obtain the spectrum, and combined with the principal component score of each spectrum to draw a two-dimensional diagram. The obtained results revealed that more than 350 lines emitted by 22 different elements were found. Among these species, major elements like Si, Al, Fe, Ca, Mg, K and Na, and redox sensitive trace elements such as Cu, Cr, Ni, Sr, and Ni were detected with high signal-to-noise ratio. In principal component scores diagram, different types of carbonaceous shale were obviously separated, and the results were consistent with the spectra classification. The observed results also show that laser-induced breakdown spectroscopy combined with principal component analysis (PCA) method can be used for carbonaceous shale discriminant field in the future, providing scientific data and means to improve classification performance and enhance the exploitation and evaluation of gas shale reservoirs.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[1]
-
-
-
[1]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[2]
Yuan Zhuang , Wenhui Li , Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070
-
[3]
Junjian Wang , Qingquan Yu , Shunyao Liu , Yuke Chen , Xiaoyu Liu , Guodong Li , Xiaoyan Liu , Hong Liu , Weijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024
-
[4]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[5]
Shengwen XU , Longlong YANG , Houji CAO , Deshuang TU , Xing WEI , Changsheng LU , Hong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192
-
[6]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[7]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[8]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[9]
Xin Hua , Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043
-
[10]
Cuiping HE , Zhuxuan LI , Yuqing SUN , Jie LIU , Shicheng XU , Zhanchao WU . Ca2+ doping induced crystal phase transition and spectral regulation of Ba3P4O13: Eu2+ phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2299-2306. doi: 10.11862/CJIC.20250074
-
[11]
Yanan Fan , Jingjing Huang . Interactive Electronic Courseware Facilitates the Development of Integrated Undergraduate-Graduate Instrumental Analysis Laboratory Courses: A Case Study of UV-Vis Spectroscopy Analysis Experiment. University Chemistry, 2025, 40(10): 282-287. doi: 10.12461/PKU.DXHX202411009
-
[12]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[13]
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
-
[14]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[15]
Zelin Wang , Gang Liu , Mengran Wang , Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077
-
[16]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[17]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[18]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[19]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[20]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(677)
- HTML views(88)
Login In
DownLoad: