Citation: FAN Yi-Qiang, WANG Mei, ZHANG Ya-Jun. Recent Progress of 3D Printed Microfluidics Technologies[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(4): 551-561. doi: 10.11895/j.issn.0253-3820.160119 shu

Recent Progress of 3D Printed Microfluidics Technologies

  • Corresponding author: FAN Yi-Qiang, 
  • Received Date: 22 February 2016
    Available Online: 4 March 2016

  • In recent years, microfluidics technology has been widely used in biological and medical diagnosis, which demonstrated great advantages compared with other traditional methods. However, there are financial and technology barriers for users to benefit from microfluidics technology when using the standard microfabrication technologies inherited from IC industry. With the booming of three dimensional(3D) printing technologies in recent years, more and more researchers are trying to apply 3D printing technology to fabricate the microfluidic chips for biological and medical applications. Compared with traditional microfabrication method, 3D printing technology shows great advantages in rapid fabrication, flexibility on material selection and low cost. This paper reviewed the most recent research progresses for 3D printed microfluidic technology, especially for the application of 3D printed microfluidic devices respectively fabricated by micro-stereolithography, fused deposition modelling and inkjet printing method in analytical chemistry, biological and medical diagnosis. The outlook of the research trend in 3D printed microfluidic technology was also discussed.
  • 加载中
    1. [1]

      1 Squires T. Rev. Mod. Phys., 2005, 77(3):977-1026

    2. [2]

      2 Evgenia Yu B, Frantisek F. Analyst, 2014, 140(1):22-38

    3. [3]

      3 Weibel D B, Whitesides G M. Curr. Opin. Chem. Biol., 2006, 10(6):584-591

    4. [4]

      4 Pagaduan J V, Sahore V, Woolley A T. Anal. Bioanal. Chem., 2015, 407:1-12

    5. [5]

      5 Rivet C, Lee H, Hirsch A, Hamilton S, Lu H. Chem. Eng. Sci., 2011, 66(7):1490-1507

    6. [6]

      6 Jabart E, Rangarajan S, Lieu C, Hack J, Conboy I. Sohn L L. Microfluid. Nanofluid., 2015, 18:1-12

    7. [7]

      7 Barbulovicnad I, Yang H, Park P S, Wheeler A R. Lab Chip, 2008, 8(4):519-526

    8. [8]

      8 Thompson A M, Paguirigan A L, Kreutz J E, Radich J P, Chiu D T. Lab Chip, 2014, 14(17):3135-3142

    9. [9]

      9 Benedetto A, Accetta G, Fujita Y, Charras G. Lab Chip, 2014, 14(7):1336-1347

    10. [10]

      10 Sewell W F, Borenstein J T, Chen Z, Fiering J, Handzel O, Holmboe M, Kim E S, Kujawa S G, Mckenna M J, Mescher M M. Audiol. Neurotol., 2009, 14(6):411-422

    11. [11]

      11 Zhao C X. Adv. Drug Delivery Rev., 2013, 65(11-12):1420-1446

    12. [12]

      12 Chen W, Lam R H, Fu J. Lab Chip, 2012, 12(2):391-395

    13. [13]

      13 Nargang T M, Lara B, Pavel Mitkov N, Dieter S, Dorothea H, Nico K, Kai S, Elisabeth W, Leonardo P, Marian D. Lab Chip, 2014, 14(15):2698-2708

    14. [14]

      14 Yeo L P, Ng S H, Wang Z F, Xia H M, Wang Z P, Thang V S, Zhong Z W, de Rooij N F. J. Micromech. Microeng., 2010, 20(1):837-854

    15. [15]

      15 Attia U M, Marson S, Alcock J R. Microfluid. Nanofluid., 2009, 7(1):1-28

    16. [16]

      16 Hong T F, Ju W J, Wu M C, Tai C H, Tsai C H, Fu L M. Microfluid. Nanofluid., 2010, 9(6):1125-1133

    17. [17]

      17 Ho C M B, Ng S H, Li K H H, Yoon Y J. Lab Chip, 2015, 15(18):3627-3637

    18. [18]

      18 Gross B C, Erkal J L, Lockwood S Y, Chen C, Spence D M. Anal. Chem., 2014, 86(7):3240-3253

    19. [19]

      19 Horn T J, Harrysson O L A. Sci. Prog., 2012, 95(3):255-282

    20. [20]

      20 Xu Y, Wang X. Biotechnol. Bioeng., 2015, 112:1683-1695

    21. [21]

      21 Spivey E C, Xhemalce B, Shear J B, Finkelstein I J. Anal. Chem., 2014, 86(15):7406-7412

    22. [22]

      22 Kamei K I, Mashimo Y, Koyama Y, Fockenberg C, Nakashima M, Nakajima M, Li J, Chen Y. Biomed. Microdevices, 2015, 17(2):1-8

    23. [23]

      23 Xing J F, Zheng M L, Duan X M. Chem. Soc. Rev., 2015, 44:5031-5039

    24. [24]

      24 Gowers S A N, Curto V F, Seneci C A, Wang C, Anastasova S, Vadgama P, Yang G Z, Boutelle M G. Anal. Chem., 2015, 87(15):7763-7770

    25. [25]

      25 Heger Z, Zitka J, Cernei N, Krizkova S, Sztalmachova M, Kopel P, Masarik M, Hodek P, Zitka O, Adam V, Kizek R. Electrophoresis, 2015, 36(11-12):1256-1264

    26. [26]

      26 Bertsch A, Lorenz H, Renaud P. Sens. Actuator A, 1999, 73(1-2):14-23

    27. [27]

      27 Au A K, Lee W, Folch A. Lab Chip, 2014, 14(7):1294-1301

    28. [28]

      28 Shallan A I, Smejkal P, Corban M, Guijt R M, Breadmore M C. Anal. Chem., 2014, 86(6):3124-3130

    29. [29]

      29 Kim R H, Lee K S. Macromol. Symp., 2010, 298(1):25-33

    30. [30]

      30 Wu D, Wu S Z, Xu J, Niu L G, Midorikawa K, Sugioka K. Laser Photonics Rev., 2014, 8(3):458-467

    31. [31]

      31 Chatwin C, Farsari M, Huang S, Heywood M, Birch P, Young R, Richardson J. Appl. Optics, 1998, 37(32):7514-7522

    32. [32]

      32 Choi J, Kang H W, Lee I, Ko T, Cho D W. Int. J. Adv. Manuf. Tech., 2009, 41(3-4):281-286

    33. [33]

      33 Llobera A, Juvert J, González-Fernández A, Ibarlucea B, Carregal-Romero E, Büttgenbach S, Fernández-Sánchez C. Light:Science & Applications, 2015, 4(4):e271

    34. [34]

      34 Zheng X, Deotte J, Alonso M P, Farquar G R, Weisgraber T H, Gemberling S, Lee H, Fang N, Spadaccini C M. Rev. Sci. Instrum., 2013, 83(12):125001-125001-6

    35. [35]

      35 Lee I, Cho D W. Int. J. Adv. Manuf. Tech., 2003, 22(5-6):410-416

    36. [36]

      36 Cao Y, Li D C, WU J. Rapid Prototyping J., 2010, 19(2):100-110

    37. [37]

      37 Stampfl J, Baudis S, Heller C, Liska R, Neumeister A, Kling R, Ostendorf A, Spitzbart M, Heller C, Liska R. J. Micromech. Microeng., 2008, 18(12):125014-125022

    38. [38]

      38 Lee J W, Lan P X, Kim B, Lim G, Cho D W. Microelectron. Eng., 2007, 84(5-8):1702-1705

    39. [39]

      39 Rapp B E, Carneiro L, Länge K, Rapp M. Lab Chip, 2009, 9(2):354-356

    40. [40]

      40 Lorenz H, Despont M, Fahrni N, Bianca N L, Renaud P, Vettiger P. J. Micromech. Microeng., 1997, 7(3):121-124

    41. [41]

      41 Patrito N, Mclachlan J M, Faria S N, Chan J, Norton P R. Lab Chip, 2007, 7(12):1813-1818

    42. [42]

      42 Ma K, Rivera J, Hirasaki G J and Biswal S L. J. Colloid Interface Sci., 2011, 363(1):371-378

    43. [43]

      43 Waldbaur A, Rapp H, Länge K, Rapp B E. Anal. Methods, 2011, 3(12):2681-2716

    44. [44]

      44 Jung B J, Hong J K, Cho Y H, Lee K S, Park C H, Yang D Y, Lee K S. Opt. Commun., 2013, 286(1):197-203

    45. [45]

      45 Liu Y J, Yang J Y, Nie Y M, Lu C H, Huang E, Shin C S, Baldeck P, Lin C L. Microfluid. Nanofluid., 2015, 18(3):427-431

    46. [46]

      46 Spivey E C, Blerta X, Shear J B, Finkelstein I J. Anal. Chem., 2014, 86(15):7406-7412

    47. [47]

      47 Karania R, Kazmer D. J. Mech. Design., 2005, 129(12):265-274

    48. [48]

      48 Malinauskas M, Rekštytê S, Lukoševiius L, Butkus S, Baliūnas E, Peiukaityt M, Baltriukien D, Bukelskien V, Butkeviius A, Kuceviius P. Micromachines, 2014, 5(4):839-858

    49. [49]

      49 Goyanes A, Buanz A B M, Basit A W, Gaisford S. Int. J. Pharm., 2014, 476(1-2):88-92

    50. [50]

      50 Hutmacher D W, Schantz T, Zein I, Ng K W, Teoh S H, Tan K C. J. Biomed. Mater. Res., 2001, 55(2):203-216

    51. [51]

      51 Kitson P J, Rosnes M H, Sans V, Dragone V, Cronin L. Lab Chip, 2012, 12(18):3267-3271

    52. [52]

      52 Kadimisetty K, Mosa I M, Malla S, Satterwhite-Warden J E, Kuhns T M, Faria R C, Lee N H, Rusling J F. Biosens. Bioelectron., 2016, 77:188-193

    53. [53]

      53 Drummer D, Cifuentes-Cuéllar S and Rietzel D. Rapid Prototyping J., 2012, 18(6):500-507

    54. [54]

      54 McCullough E J, Yadavalli V K. J. Mater. Process. Technol., 2013, 213(6):947-954

    55. [55]

      55 He Y, Qiu J, Fu J, Zhang J, Ren Y, Liu A. Microfluid. Nanofluid., 2015, 19(2):447-456

    56. [56]

      56 Allahverdi M, Danforth S C, Jafari M, Safari A. J. Eur. Ceram. Soc., 2001, 21(10-11):1485-1490

    57. [57]

      57 Boschetto A, Giordano V, Veniali F. Rapid Prototyping J., 2013, 19(4):240-252

    58. [58]

      58 Wang H, Masood S, Iovenitti P, Harvey E C. International Symposium on Microelectronics & Mems, 2001, 4590:213-220

    59. [59]

      59 Wang F, Shor L, Darling A, Khalil S, Sun W, Güçeri S, Lau A. Rapid Prototyping J., 2004, 10(1):42-49

    60. [60]

      60 Bonyár A, Sántha H, Ring B, Varga M, Gábor Kovács J, Harsányi G. Procedia Eng., 2010, 5:291-294

    61. [61]

      61 Hoople G D, Rolfe D A, Mckinstry K C, Noble J R, Dornfeld D A, Pisano A P. J. Micro Nano-Manuf., 2014, 2(3):034502

    62. [62]

      62 Roda A, Guardigli M, Calabria D, Calabretta M M, Cevenini L, Michelini E. Analyst, 2014, 139(24):6494-6501

    63. [63]

      63 Lee W, Kwon D, Choi W, Jung G Y, Jeon S. Sci. Rep., 2015, 5:7717

    64. [64]

      64 Choi S, Kim S K, Lee G J, Park H K. Sens. Actuator B, 2015, 219:245-250

    65. [65]

      65 Whitesides G M. Nature, 2006, 442(7101):368-373

    66. [66]

      66 McDonald J C, Chabinyc M L, Metallo S J, Anderson J R, Stroock A D, Whitesides G M. Anal. Chem., 2002, 74(7):1537-1545

    67. [67]

      67 Erkal J L, Selimovic A, Gross B C, Lockwood S Y, Walton E L, McNamara S, Martin R S, Spence D M. Lab Chip, 2014, 14(12):2023-2032

    68. [68]

      68 Xiao L, Liu X, Zhong R, Zhang K, Zhang X, Zhou X, Lin B, Du Y. Electrophoresis, 2013, 34(20-21):3003-3007

    69. [69]

      69 Chi A, Curi S, Clayton K, Luciano D, Klauber K, Alexander-Katz A, D'Hers S, Elman N M. Drug Deliv. Trans. Res., 2014, 4(4):320-333

    70. [70]

      70 Gowers S A N, Curto V F, Seneci C A, Wang C, Anastasova S, Vadgama P, Yang G Z, Boutelle M G. Anal. Chem., 2015, 87(15):7763-7770

    71. [71]

      71 Spivey E C, Blerta X, Shear J B, Finkelstein I J. Anal. Chem., 2014, 86:7406-7412

    72. [72]

      72 Gelber M K, Bhargava R. Lab Chip, 2015, 15(7):1736-1741

    73. [73]

      73 Jenkins G, Wang Y, Xie Y L, Wu Q, Huang W, Wang L, Yang X. Microfluid Nanofluid, 2015, 19(2):251-261

  • 加载中
    1. [1]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    2. [2]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    3. [3]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    7. [7]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    8. [8]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    9. [9]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    10. [10]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    11. [11]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    12. [12]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    13. [13]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    14. [14]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    15. [15]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    16. [16]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    17. [17]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    18. [18]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    19. [19]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    20. [20]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

Metrics
  • PDF Downloads(10)
  • Abstract views(324)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return