Citation:
FAN Yi-Qiang, WANG Mei, ZHANG Ya-Jun. Recent Progress of 3D Printed Microfluidics Technologies[J]. Chinese Journal of Analytical Chemistry,
;2016, 44(4): 551-561.
doi:
10.11895/j.issn.0253-3820.160119
-
In recent years, microfluidics technology has been widely used in biological and medical diagnosis, which demonstrated great advantages compared with other traditional methods. However, there are financial and technology barriers for users to benefit from microfluidics technology when using the standard microfabrication technologies inherited from IC industry. With the booming of three dimensional(3D) printing technologies in recent years, more and more researchers are trying to apply 3D printing technology to fabricate the microfluidic chips for biological and medical applications. Compared with traditional microfabrication method, 3D printing technology shows great advantages in rapid fabrication, flexibility on material selection and low cost. This paper reviewed the most recent research progresses for 3D printed microfluidic technology, especially for the application of 3D printed microfluidic devices respectively fabricated by micro-stereolithography, fused deposition modelling and inkjet printing method in analytical chemistry, biological and medical diagnosis. The outlook of the research trend in 3D printed microfluidic technology was also discussed.
-
Keywords:
- Microfluidics,
- 3D printing,
- Cell biology,
- Review
-
-
-
[1]
1 Squires T. Rev. Mod. Phys., 2005, 77(3):977-1026
-
[2]
2 Evgenia Yu B, Frantisek F. Analyst, 2014, 140(1):22-38
-
[3]
3 Weibel D B, Whitesides G M. Curr. Opin. Chem. Biol., 2006, 10(6):584-591
-
[4]
4 Pagaduan J V, Sahore V, Woolley A T. Anal. Bioanal. Chem., 2015, 407:1-12
-
[5]
5 Rivet C, Lee H, Hirsch A, Hamilton S, Lu H. Chem. Eng. Sci., 2011, 66(7):1490-1507
-
[6]
6 Jabart E, Rangarajan S, Lieu C, Hack J, Conboy I. Sohn L L. Microfluid. Nanofluid., 2015, 18:1-12
-
[7]
7 Barbulovicnad I, Yang H, Park P S, Wheeler A R. Lab Chip, 2008, 8(4):519-526
-
[8]
8 Thompson A M, Paguirigan A L, Kreutz J E, Radich J P, Chiu D T. Lab Chip, 2014, 14(17):3135-3142
-
[9]
9 Benedetto A, Accetta G, Fujita Y, Charras G. Lab Chip, 2014, 14(7):1336-1347
-
[10]
10 Sewell W F, Borenstein J T, Chen Z, Fiering J, Handzel O, Holmboe M, Kim E S, Kujawa S G, Mckenna M J, Mescher M M. Audiol. Neurotol., 2009, 14(6):411-422
-
[11]
11 Zhao C X. Adv. Drug Delivery Rev., 2013, 65(11-12):1420-1446
-
[12]
12 Chen W, Lam R H, Fu J. Lab Chip, 2012, 12(2):391-395
-
[13]
13 Nargang T M, Lara B, Pavel Mitkov N, Dieter S, Dorothea H, Nico K, Kai S, Elisabeth W, Leonardo P, Marian D. Lab Chip, 2014, 14(15):2698-2708
-
[14]
14 Yeo L P, Ng S H, Wang Z F, Xia H M, Wang Z P, Thang V S, Zhong Z W, de Rooij N F. J. Micromech. Microeng., 2010, 20(1):837-854
-
[15]
15 Attia U M, Marson S, Alcock J R. Microfluid. Nanofluid., 2009, 7(1):1-28
-
[16]
16 Hong T F, Ju W J, Wu M C, Tai C H, Tsai C H, Fu L M. Microfluid. Nanofluid., 2010, 9(6):1125-1133
-
[17]
17 Ho C M B, Ng S H, Li K H H, Yoon Y J. Lab Chip, 2015, 15(18):3627-3637
-
[18]
18 Gross B C, Erkal J L, Lockwood S Y, Chen C, Spence D M. Anal. Chem., 2014, 86(7):3240-3253
-
[19]
19 Horn T J, Harrysson O L A. Sci. Prog., 2012, 95(3):255-282
-
[20]
20 Xu Y, Wang X. Biotechnol. Bioeng., 2015, 112:1683-1695
-
[21]
21 Spivey E C, Xhemalce B, Shear J B, Finkelstein I J. Anal. Chem., 2014, 86(15):7406-7412
-
[22]
22 Kamei K I, Mashimo Y, Koyama Y, Fockenberg C, Nakashima M, Nakajima M, Li J, Chen Y. Biomed. Microdevices, 2015, 17(2):1-8
-
[23]
23 Xing J F, Zheng M L, Duan X M. Chem. Soc. Rev., 2015, 44:5031-5039
-
[24]
24 Gowers S A N, Curto V F, Seneci C A, Wang C, Anastasova S, Vadgama P, Yang G Z, Boutelle M G. Anal. Chem., 2015, 87(15):7763-7770
-
[25]
25 Heger Z, Zitka J, Cernei N, Krizkova S, Sztalmachova M, Kopel P, Masarik M, Hodek P, Zitka O, Adam V, Kizek R. Electrophoresis, 2015, 36(11-12):1256-1264
-
[26]
26 Bertsch A, Lorenz H, Renaud P. Sens. Actuator A, 1999, 73(1-2):14-23
-
[27]
27 Au A K, Lee W, Folch A. Lab Chip, 2014, 14(7):1294-1301
-
[28]
28 Shallan A I, Smejkal P, Corban M, Guijt R M, Breadmore M C. Anal. Chem., 2014, 86(6):3124-3130
-
[29]
29 Kim R H, Lee K S. Macromol. Symp., 2010, 298(1):25-33
-
[30]
30 Wu D, Wu S Z, Xu J, Niu L G, Midorikawa K, Sugioka K. Laser Photonics Rev., 2014, 8(3):458-467
-
[31]
31 Chatwin C, Farsari M, Huang S, Heywood M, Birch P, Young R, Richardson J. Appl. Optics, 1998, 37(32):7514-7522
-
[32]
32 Choi J, Kang H W, Lee I, Ko T, Cho D W. Int. J. Adv. Manuf. Tech., 2009, 41(3-4):281-286
-
[33]
33 Llobera A, Juvert J, González-Fernández A, Ibarlucea B, Carregal-Romero E, Büttgenbach S, Fernández-Sánchez C. Light:Science & Applications, 2015, 4(4):e271
-
[34]
34 Zheng X, Deotte J, Alonso M P, Farquar G R, Weisgraber T H, Gemberling S, Lee H, Fang N, Spadaccini C M. Rev. Sci. Instrum., 2013, 83(12):125001-125001-6
-
[35]
35 Lee I, Cho D W. Int. J. Adv. Manuf. Tech., 2003, 22(5-6):410-416
-
[36]
36 Cao Y, Li D C, WU J. Rapid Prototyping J., 2010, 19(2):100-110
-
[37]
37 Stampfl J, Baudis S, Heller C, Liska R, Neumeister A, Kling R, Ostendorf A, Spitzbart M, Heller C, Liska R. J. Micromech. Microeng., 2008, 18(12):125014-125022
-
[38]
38 Lee J W, Lan P X, Kim B, Lim G, Cho D W. Microelectron. Eng., 2007, 84(5-8):1702-1705
-
[39]
39 Rapp B E, Carneiro L, Länge K, Rapp M. Lab Chip, 2009, 9(2):354-356
-
[40]
40 Lorenz H, Despont M, Fahrni N, Bianca N L, Renaud P, Vettiger P. J. Micromech. Microeng., 1997, 7(3):121-124
-
[41]
41 Patrito N, Mclachlan J M, Faria S N, Chan J, Norton P R. Lab Chip, 2007, 7(12):1813-1818
-
[42]
42 Ma K, Rivera J, Hirasaki G J and Biswal S L. J. Colloid Interface Sci., 2011, 363(1):371-378
-
[43]
43 Waldbaur A, Rapp H, Länge K, Rapp B E. Anal. Methods, 2011, 3(12):2681-2716
-
[44]
44 Jung B J, Hong J K, Cho Y H, Lee K S, Park C H, Yang D Y, Lee K S. Opt. Commun., 2013, 286(1):197-203
-
[45]
45 Liu Y J, Yang J Y, Nie Y M, Lu C H, Huang E, Shin C S, Baldeck P, Lin C L. Microfluid. Nanofluid., 2015, 18(3):427-431
-
[46]
46 Spivey E C, Blerta X, Shear J B, Finkelstein I J. Anal. Chem., 2014, 86(15):7406-7412
-
[47]
47 Karania R, Kazmer D. J. Mech. Design., 2005, 129(12):265-274
-
[48]
48 Malinauskas M, Rekštytê S, Lukoševiius L, Butkus S, Baliūnas E, Peiukaityt M, Baltriukien D, Bukelskien V, Butkeviius A, Kuceviius P. Micromachines, 2014, 5(4):839-858
-
[49]
49 Goyanes A, Buanz A B M, Basit A W, Gaisford S. Int. J. Pharm., 2014, 476(1-2):88-92
-
[50]
50 Hutmacher D W, Schantz T, Zein I, Ng K W, Teoh S H, Tan K C. J. Biomed. Mater. Res., 2001, 55(2):203-216
-
[51]
51 Kitson P J, Rosnes M H, Sans V, Dragone V, Cronin L. Lab Chip, 2012, 12(18):3267-3271
-
[52]
52 Kadimisetty K, Mosa I M, Malla S, Satterwhite-Warden J E, Kuhns T M, Faria R C, Lee N H, Rusling J F. Biosens. Bioelectron., 2016, 77:188-193
-
[53]
53 Drummer D, Cifuentes-Cuéllar S and Rietzel D. Rapid Prototyping J., 2012, 18(6):500-507
-
[54]
54 McCullough E J, Yadavalli V K. J. Mater. Process. Technol., 2013, 213(6):947-954
-
[55]
55 He Y, Qiu J, Fu J, Zhang J, Ren Y, Liu A. Microfluid. Nanofluid., 2015, 19(2):447-456
-
[56]
56 Allahverdi M, Danforth S C, Jafari M, Safari A. J. Eur. Ceram. Soc., 2001, 21(10-11):1485-1490
-
[57]
57 Boschetto A, Giordano V, Veniali F. Rapid Prototyping J., 2013, 19(4):240-252
-
[58]
58 Wang H, Masood S, Iovenitti P, Harvey E C. International Symposium on Microelectronics & Mems, 2001, 4590:213-220
-
[59]
59 Wang F, Shor L, Darling A, Khalil S, Sun W, Güçeri S, Lau A. Rapid Prototyping J., 2004, 10(1):42-49
-
[60]
60 Bonyár A, Sántha H, Ring B, Varga M, Gábor Kovács J, Harsányi G. Procedia Eng., 2010, 5:291-294
-
[61]
61 Hoople G D, Rolfe D A, Mckinstry K C, Noble J R, Dornfeld D A, Pisano A P. J. Micro Nano-Manuf., 2014, 2(3):034502
-
[62]
62 Roda A, Guardigli M, Calabria D, Calabretta M M, Cevenini L, Michelini E. Analyst, 2014, 139(24):6494-6501
-
[63]
63 Lee W, Kwon D, Choi W, Jung G Y, Jeon S. Sci. Rep., 2015, 5:7717
-
[64]
64 Choi S, Kim S K, Lee G J, Park H K. Sens. Actuator B, 2015, 219:245-250
-
[65]
65 Whitesides G M. Nature, 2006, 442(7101):368-373
-
[66]
66 McDonald J C, Chabinyc M L, Metallo S J, Anderson J R, Stroock A D, Whitesides G M. Anal. Chem., 2002, 74(7):1537-1545
-
[67]
67 Erkal J L, Selimovic A, Gross B C, Lockwood S Y, Walton E L, McNamara S, Martin R S, Spence D M. Lab Chip, 2014, 14(12):2023-2032
-
[68]
68 Xiao L, Liu X, Zhong R, Zhang K, Zhang X, Zhou X, Lin B, Du Y. Electrophoresis, 2013, 34(20-21):3003-3007
-
[69]
69 Chi A, Curi S, Clayton K, Luciano D, Klauber K, Alexander-Katz A, D'Hers S, Elman N M. Drug Deliv. Trans. Res., 2014, 4(4):320-333
-
[70]
70 Gowers S A N, Curto V F, Seneci C A, Wang C, Anastasova S, Vadgama P, Yang G Z, Boutelle M G. Anal. Chem., 2015, 87(15):7763-7770
-
[71]
71 Spivey E C, Blerta X, Shear J B, Finkelstein I J. Anal. Chem., 2014, 86:7406-7412
-
[72]
72 Gelber M K, Bhargava R. Lab Chip, 2015, 15(7):1736-1741
-
[73]
73 Jenkins G, Wang Y, Xie Y L, Wu Q, Huang W, Wang L, Yang X. Microfluid Nanofluid, 2015, 19(2):251-261
-
[1]
-
-
-
[1]
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
-
[2]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[3]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[4]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[5]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[6]
Xiaojun Liu , Lang Qin , Yanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018
-
[7]
Chengcheng Si , Linshan Chai , Huiyuan Liu , Liye Sun , Shijian Cheng , Hailing Li , Wenyun Wang , Fang Liu , Qing Feng , Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069
-
[8]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[9]
Jingwen Wang , Peizhang Zhao , Mengmeng Li , Jun Li , Yunfeng Lin . Remedying infectious bone defects via 3D printing technology. Chinese Chemical Letters, 2025, 36(9): 110686-. doi: 10.1016/j.cclet.2024.110686
-
[10]
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
-
[11]
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
-
[12]
Shangwen Luo , Jianguo Fang , Yanlong Yang , Shihui Dong . 化学生物学课程双语教学实践与探索. University Chemistry, 2025, 40(8): 124-129. doi: 10.12461/PKU.DXHX202410096
-
[13]
Qi Zhang , Bin Han , Yucheng Jin , Mingrun Li , Enhui Zhang , Jianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330
-
[14]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[15]
Fangfang Chen , Haiming Fan , Yan Li , Yuan He . 化学生物学专业多元化人才培养导向的课程体系优化探索. University Chemistry, 2025, 40(8): 92-99. doi: 10.12461/PKU.DXHX202409108
-
[16]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[17]
Chengmin Hu , Pingxuan Liu , Ziyang Song , Yaokang Lv , Hui Duan , Li Xie , Ling Miao , Mingxian Liu , Lihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381
-
[18]
Run Chai , Qiujie Wu , Yongchao Liu , Xiaohui Song , Xuyong Feng , Yi Sun , Hongfa Xiang . A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries. Chinese Chemical Letters, 2025, 36(6): 110007-. doi: 10.1016/j.cclet.2024.110007
-
[19]
Zhen Shen , Yi Wang , Chen Lin , Kin Shing Chan . 南京大学化学生物学专业本科生有机化学英文教学经验. University Chemistry, 2025, 40(6): 43-47. doi: 10.12461/PKU.DXHX202407083
-
[20]
Xinyan Chen , Meng Xiao , Fei Cai , Junxian Guo , Tianfeng Chen , Li Ma . Transformation of Scientific Research Achievements Facilitating the Construction of Experimental Courses in Frontier Interdisciplinary Disciplines: A Case of “Comprehensive Experiments in Chemical Biology”. University Chemistry, 2025, 40(7): 373-379. doi: 10.12461/PKU.DXHX202408105
-
[1]
Metrics
- PDF Downloads(10)
- Abstract views(503)
- HTML views(24)
Login In
DownLoad: