Citation: LIU Bao-Feng, GAO Feng-Zhang, FANG Qiang, WANG Li. Determination of Red Freesia Flower Volatiles with Indirect Headspace Solid Phase Microextraction Coupled to Gas Chromatography and Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 444-450. doi: 10.11895/j.issn.0253-3820.150831 shu

Determination of Red Freesia Flower Volatiles with Indirect Headspace Solid Phase Microextraction Coupled to Gas Chromatography and Mass Spectrometry

  • Corresponding author: WANG Li, 
  • Received Date: 20 October 2015
    Available Online: 17 December 2015

    Fund Project: 本文系国家自然科学基金(Nos.31170276,31300271)资助项目 (Nos.31170276,31300271)

  • A method was established for the analysis of red Freesia flower volatiles by indirect headspace solid phase microextraction (HS-SPME). The gas collecting tube was used to enrich flower volatiles, and adsorbing material was resolved in the extraction solution. Then, the adsorbing material was analyzed by HS-SPME. The experimental conditions for the quantification of major flower volatiles (linalool, terpineol, ionone and dihydrogen-ionone) were optimized. Florisil was used as adsorbent, with water-methanol solution (9:1, V/V) and 0.6 mol/L hydrochloric acid as the extraction solution. The thermal desorption temperature was 70℃ and the extraction time was 25 min. The results showed that the concentration range of linear relationship for linalool and terpineol (R2≥0.981) was 1-100 μg/mL, with detection limits of 0.05 and 0.10 μg, respectively, and 0.5-50 μg/mL for dihydro ionone and ionone (R2≥0.988) with a detection limit of 0.02 μg.
  • 加载中
    1. [1]

      1 Gao C, Gong W C, Ge J, Dunn B L, Sun W B. Biochem. Syst. Ecol., 2012, 44(10): 173-178

    2. [2]

      2 Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E. Plant J., 2005, 42(5): 757-771

    3. [3]

      3 Flamini G, Tebano M, Cioni P L. Anal. Chim. Acta, 2007, 589(1): 120-124

    4. [4]

      4 Georgieva E, Handjieva N, Popov S, Evstatieva L. Biochem. Syst. Ecol., 2005, 33(9): 938-947

    5. [5]

      5 Geoffrey C K, Christine L. Phytochemistry, 1995, 40(4): 1093-1095

    6. [6]

      6 Bikmoradi A, Seifi Z, Poorolajal J, Araghchian M, Safiaryan R, Oshvandi K. Complement Ther. Med., 2015, 23(3): 331-338

    7. [7]

      7 Zeng C L, Liu L, Xu G Q. Sci. Hortic., 2011, 127(3): 424-430

    8. [8]

      8 Pérez-Saad H, Buznego M T. Epilepsy Behav., 2008, 12(3): 366-372

    9. [9]

      9 Fu Y, Gao X, Xue Y Q, Hui Y J, Chen F Q, Su Q P, Wang L. J. Integr. Plant Biol., 2007, 49(12): 1714-1718

    10. [10]

      10 Ao M, Liu B F, Wang L. Nat. Product Res., 2012, 27(1): 1-4

    11. [11]

      11 Wu Q C, Yu L J, Wang D, Xu SD. Inter. Immunopharmacol., 2014, 21(2): 456-463

    12. [12]

      12 Pier L B, Loretta R, Jawahar L S.J. Chromatogr. A, 2002, 975(1): 47-70

    13. [13]

      13 Dötterl S, Wolfe L M, Jürgens A. Phytochemistry, 2005(2), 66: 203-213

    14. [14]

      14 Augusto F, Lopes A, Zini C A. RRAC-Trend. Anal. Chem., 2003, 22(3): 160-169

    15. [15]

      15 Deng X J, Peng J Y, Du J W. Analy. Bioanal. Chem., 2004, 380(7): 950-957

    16. [16]

      16 Bertrand C, Comte G, Piola F. Biochem. Syst. Ecol., 2006, 34(5): 371-375

    17. [17]

      17 Verdonk J C, Ricde Vos C H, Verhoeven H A, Haring M A, Van Tunen A J, Schuurink R C. Phytochemistry, 2003, 62(6): 997-1008

    18. [18]

      18 LIAN Zhong-Yan, YANG Feng-Qing, LI Shao-Ping. Chinese J. Anal. Chem., 2009, 37(2): 283-287连宗衍, 杨丰庆, 李绍平. 分析化学, 2009, 37(2): 283-287

    19. [19]

      19 Lalko J, Lapczynski A, Mcginty D, Bhatia S, Letizia C S, Api A M. Food Chem. Toxicol., 2007, 45(1): 241-247

    20. [20]

      20 Bhatia S P, Mcginty D, Foxenberg R J, Letizia C S, Api A M. Food Chem. Toxicol., 2008, 46(11): 275-279

    21. [21]

      21 Lalko J, Lapczynski A, Mcginty D, Bhatia S, Letizia C S, Api A M. Food Chem. Toxicol., 2007, 45(1): 225-228

    22. [22]

      22 Sharma V, Chaudhary A, Arora S, Saxena A K, Ishar M P S. Eur. J. Med. Chem., 2013, 69(11): 310-315

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    5. [5]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    6. [6]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    7. [7]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    10. [10]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    11. [11]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    12. [12]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    14. [14]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    15. [15]

      Zelin Wang Gang Liu Mengran Wang Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    18. [18]

      Yuan Zhuang Wenhui Li Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070

    19. [19]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    20. [20]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

Metrics
  • PDF Downloads(1)
  • Abstract views(601)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return