Citation: LIU Jing-Jing, LI Xiao-Qing, CUI Meng-Jing, RONG Fei, XU Qian. Research on Adsorption of Pb2+ from Aqueous Solutions Using Polypyrrole/Nylon 6 Nanofibers Mat[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(1): 138-145. doi: 10.11895/j.issn.0253-3820.150785 shu

Research on Adsorption of Pb2+ from Aqueous Solutions Using Polypyrrole/Nylon 6 Nanofibers Mat

  • Corresponding author: XU Qian, 
  • Received Date: 15 July 2015
    Available Online: 4 November 2015

    Fund Project: 本文系国家自然科学基金项目(Nos.81172721,81473019) (Nos.81172721,81473019)苏州市纳米技术专项项目(No.ZXG2013026)资助 (No.ZXG2013026)

  • Polypyrrole/Nylon 6 core-shell Nanofibers mat (PPy/Nylon 6-NFSM), prepared via situ polymerization on nylon6 electrospun nanofibers mat template, was used as an adsorbent to remove Pb2+ from aqueous solutions. To study the adsorption characteristics of PPy/Nylon 6-NFSM on Pb2+, the work focused on two parts, dynamic adsorption and static adsorption. The investigation explored the possibility of PPy/Nylon 6-NFSM as an efficient solid phase extraction (SPE) adsorbent for the separation and enrichment of trace Pb2+ in water samples. The experiment results showed that the maximum static adsorption capacity of PPy/Nylon 6-NFSM for Pb2+ was 542.1 mg/g at 298 K in pH=10 solution. The adsorption process could be well fitted with the pseudo-second-order kinetic model, the adsorption equilibrium data accorded with Freundlich isotherm model. Under the optimum conditions, PPy/Nylon 6-NFSM was used as adsorbent in SPE coupled with Flame atomic spectrophotometer (AA-7000) for the determination of Pb2+ in water samples. The limits of detection of the method were 1.2 μg/L (S/N=3), the recoveries of spiked water samples at concentration of 10 μg/L were 95.3%-100.4% with RSD of 1.6%. The method is accurate and sensitive in detection of trace concentrations of Pb2+ in water sample.
  • 加载中
    1. [1]

      1 Cui Y, Hu Z J, Yang J X,Gao H W. Microchimica Acta. 2011,176(3-4):359-366

    2. [2]

      2 ZHANG Qian, XIA Ke, LIU Li, LIU You-Chang,ZHANG Cui, LIU Xuan, XU Yuan, CHEN Shi-Jin, CHEN Ji-Da. Chem. J. Chinese Universities, 2013,34(11):2667-2673 张 谦, 夏 柯, 刘 丽, 刘又畅, 张 翠, 刘 璇, 徐 缓, 陈世金, 陈际达. 高等学校化学学报,2013,34(11):2667-2673

    3. [3]

      3 Saeed K, Haider S, Oh T J,Park S Y. Journal of Membrane Science, 2008,322(2):400-405

    4. [4]

      4 Tian T, Deng J, Xie Z, Zhao Y, Feng Z, Kang X,Gu Z. Analyst, 2012,137(8):1846-1852

    5. [5]

      5 Wang J Q, Luo C, Qi G G, Pan K,Cao B. Applied Surface Science, 2014,316:245-250

    6. [6]

      6 Teo W E, Ramakrishna S. Nanotechnology, 2006,17(14):R89-R106

    7. [7]

      7 YIN Xue-Yan, XU Qian, WU Shu-Yan, WANG Min, GU Zhong-Ze. Chem. J. Chinese Universities, 2010,31(4):690-695 殷雪琰, 许 茜, 吴淑燕, 王 敏, 顾忠泽. 高等学校化学学报,2010,31(4):690-695

    8. [8]

      8 Xu Q, Zhang N, Yin X, Wang M, Shen Y, Xu S, Zhang L,Gu Z. J. Chromatogr. B, 2010,878(26):2403-2408

    9. [9]

      9 Xu Q, Wu S Y, Wang M, Yin X Y, Wen Z Y, Ge W N,Gu Z Z. Chromatographia, 2009,71(5-6):487-492

    10. [10]

      10 Bhaumik M, McCrindle R,Maity A. Chem. Engineer. J., 2013,228:506-515

    11. [11]

      11 Wu Q J, Liu X H,Berglund L A. Polymer, 2002,43(8):2445-2449

    12. [12]

      12 Nair S, Natarajan S,Kim S H. Macromolecular Rapid Communications, 2005,26(20):1599-1603

    13. [13]

      13 Saoudi B, Jammul N, Chehimi M M, Jaubert A S, Arkam C,Delamar M. Spectroscopy-an International Journal, 2004,18(4):519-535

    14. [14]

      14 FENG Yuan. North Environment, 2013,(3):87-93 冯 源. 北方环境,2013,(3):87-93

    15. [15]

      15 Zhang X,Bai R B. Langmuir, 2003,19(26):10703-10709

    16. [16]

      16 Yang S, Hu J, Chen C, Shao D,Wang X. Environ. Sci. Technol., 2011,45(8):3621-3627

    17. [17]

      17 Wang J, Zheng S, Shao Y, Liu J, Xu Z,Zhu D. J Colloid Interface Sci., 2010,349(1):293-299

    18. [18]

      18 Naiya T K, Bhattacharya A K,Das S K. J Colloid Interface Sci., 2009,333(1):14-26

    19. [19]

      19 Iqbal M, Saeed A, Zafar S I. J. Hazard Mater, 2009,164(1):161-171

    20. [20]

      20 Faghihian H, Kooravand M, Atarodi H. Korean Journal of Chemical Engineering, 2013,30(2):357-363

    21. [21]

      21 Haider S,Park S Y. J. Membrane Sci., 2009,328(1-2):90-96

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    16. [16]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(0)
  • Abstract views(366)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return