Citation: NING Lu-Sheng, XU Ming, GUO Cheng-An, ZHAO Peng, WEN Lu-Hong, ZHANG Xin-Rong. Study of Single Electrode Dielectric Barrier Discharge Ion Source[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(2): 252-257. doi: 10.11895/j.issn.0253-3820.150784 shu

Study of Single Electrode Dielectric Barrier Discharge Ion Source

  • Corresponding author: ZHAO Peng, 
  • Received Date: 9 October 2015
    Available Online: 13 November 2015

    Fund Project: 本文系宁波大学学校人才工程项目(No.ZX2014000824) (No.ZX2014000824)宁波市自然科学基金(No.2014A610158) (No.2014A610158)

  • Dielectric barrier discharge ion source is an ambient ion source. Coupled with its advantages of solvent-free method, extensive application scope and easy miniaturization, it has attracted widespread attention. The conventional dielectric barrier discharge ion source uses surface double electrode or needle-ring electrode designs. The grounded electrode of the former can weaken ionization head energy formed in strong electric field of helium ionization, and shorten the distance of plasma beam. The electric field of the latter mainly concentrates on the peak of the needle electrode, which can weaken the energy of ionization head and make the length of the plasma beam shorter than the surface double electrode. In this work, the influencing factors of discharge were analyzed, and the electric field was adjusted by changing the shape of the electrode and increasing insulation medium components, thus forcing the strong electric field to focus on one side of the electrode, which could avoid the reflux discharge phenomenon and achieve stable and efficient plasma beam. The maximum length of plasma beam could reach more than 8 cm. On the basis, a single electrode dielectric barrier discharge ion source (DBDI), mainly composed of inert carrier gas, high voltage electrode, insulation tube, gas control and temperature control parts, was developed. Using the new type of ion source, the liquid sample of caffeine and the solid tablets of acetaminophen were analyzed by DBDI-MS. The correlation coefficient of the caffeine quantitative curve was 99.66%, and the signal to noise ratio of 100 μg/L was 23. The main component of the acetaminophen was C8H9NO2 that could be rapidly detected in the mass spectrum, and the response intensity was 1.26×106. The results showed that the new type of ion source could realize the quantitative and rapid in situ analysis of the sample.
  • 加载中
    1. [1]

      1 DENG Yu-Jia, LI Cheng-Hui, JIANG Xiao-Ming, HOU Xian-Deng. Chinese J. Anal. Chem., 2015, 43(9): 1278-1284

    2. [2]

      邓宇佳, 李成辉, 蒋小明, 侯贤灯. 分析化学, 2015, 43(9): 1278-1284

    3. [3]

      2 DONG Li-Fang, RAN Jun-Xia, YIN Zeng-Qian, MAO Zhi-Guo. Spectroscopy and Spectral Analysis, 2005, 25(8): 1184-1186 董丽芳, 冉俊霞, 尹增谦, 毛志国. 光谱学与光谱分析, 2005, 25(8): 1184-1186

    4. [4]

      3 Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004, 306(5695): 471-473

    5. [5]

      4 XUE Zhen, QIU Bo, LIN Guang-Xin, LAI Cong-Fang, LUO Hai. Progress In Chemistry, 2008, (4): 594-601 薛 震, 邱 波, 林广欣, 赖丛芳, 罗 海. 化学进展, 2008, (4): 594-601

    6. [6]

      5 Cody R B, Laramee J A, Durst H D. Anal.Chem., 2005, 77(8): 2297-2302

    7. [7]

      6 Chernetsova E S, Morlock G E, Revelsky I A. Russian Chemical Reviews, 2011, 80(3): 235-255

    8. [8]

      7 Na N, Zhao M, Zhang S, Yang C, Zhang X. J. Am. Soc. Mass Spectrom., 2007, 18(10): 1859-1862

    9. [9]

      8 Na N, Zhang C, Zhao M, Zhang S, Yang C, Fang X, Zhang X. J. Mass Spectrom.: JMS, 2007, 42(8): 1079-1085

    10. [10]

      9 Sugiyama M, Kumano S, Nishimura K, Hasegawa H, Hashimoto Y. Rapid Commun. Mass Spectrom., 2013, 27(9): 1005-1010

    11. [11]

      10 Meyer C. Muller S. Gilbert-Lopez B. Franzke J. Anal. Bioanal. Chem., 2013, 405(14): 4729-4735

    12. [12]

      11 Harper J D, Charipar N A, Mulligan C C, Zhang X R, Cooks R G, Ouyang Z. Anal.Chem., 2008, 80(23): 9097-9104

    13. [13]

      12 ZHANG Si-Chun, ZHANG Xi-Rong. Science China: Chemical, 2014(5): 680-686 张四纯, 张新荣. 中国科学: 化学, 2014(5): 680-686

    14. [14]

      13 Hiraoka K, Chen L C, Iwama T, Mandal M K, Ninomiya S, Suzuki H. Ariyada O, Furuya H, Takekawa K. J. Mass Spectrom. Soc. Jpn., 2010, 58(6): 215-220

    15. [15]

      14 Martinez-Jarquin S, Winkler R. Rapid Commun. Mass Spectrom., 2013, 27(5): 629-634

    16. [16]

      15 Kumano S, Sugiyama M, Yamada M, Nishimura K, Hasegawa H, Morokuma H, Inoue H, Hashimoto Y. Anal.Chem., 2013, 85(10): 5033-5039

    17. [17]

      16 ZHANG Guan-Jun, ZHAN Jiang-Yang, SHAO Xian-Jun, PENG Zhao-Yu. High Voltage Engineering, 2011, 37(6): 1432-1438 张冠军, 詹江杨, 邵先军, 彭兆裕. 高电压技术, 2011, 37(6): 1432-1438

    18. [18]

      17 LIU Chong, WU Cheng-Bai, ZHANG Wen-Tao, LIANG Jun-Sheng, WANG Li-Ding. Optics and Precision Engineering, 2008, 16(3): 459-466 刘 冲, 吴成百, 张文涛, 梁军生, 王立鼎. 光学精密工程, 2008, 16(3): 459-466

    19. [19]

      18 Kogelschatz U. Plasma Chem. Plasma Process., 2003, 23(1): 1-46

    20. [20]

      19 Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K. Appl. Phys. Lett., 2009, 95(14): 141502

    21. [21]

      20 Walsh J L, Kong M G. Appl. Phys. Lett., 2008, 93(11): 111501

  • 加载中
    1. [1]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    2. [2]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    4. [4]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    6. [6]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    7. [7]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-0. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Hui ZhangZijian ZhaoYajing WangKai NiYanfei WangLiang ZhuJianyun LiuXiaoyu Zhao . Structurally engineered solvent-free LiFePO4 electrodes via hot-pressing with efficient ion transport pathways for lithium extraction from brine. Acta Physico-Chimica Sinica, 2026, 42(2): 100130-0. doi: 10.1016/j.actphy.2025.100130

    9. [9]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    10. [10]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    11. [11]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    14. [14]

      Limin Zhang Mengmeng Liu Yang Tian . Size Determines Performance: A Novel Experimental Design for Voltammetric Teaching at Microelectrode and Glassy Carbon Electrode. University Chemistry, 2025, 40(11): 281-288. doi: 10.12461/PKU.DXHX202412047

    15. [15]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    16. [16]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    17. [17]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    18. [18]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    19. [19]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    20. [20]

      Dafa Chen Haiping Xia . From Pollutant to Metal-Centred Annulene: The Transformation Journey of a Little Osmium Atom. University Chemistry, 2025, 40(10): 156-160. doi: 10.12461/PKU.DXHX202508094

Metrics
  • PDF Downloads(0)
  • Abstract views(981)
  • HTML views(216)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return