Citation:
NING Lu-Sheng, XU Ming, GUO Cheng-An, ZHAO Peng, WEN Lu-Hong, ZHANG Xin-Rong. Study of Single Electrode Dielectric Barrier Discharge Ion Source[J]. Chinese Journal of Analytical Chemistry,
;2016, 44(2): 252-257.
doi:
10.11895/j.issn.0253-3820.150784
-
Dielectric barrier discharge ion source is an ambient ion source. Coupled with its advantages of solvent-free method, extensive application scope and easy miniaturization, it has attracted widespread attention. The conventional dielectric barrier discharge ion source uses surface double electrode or needle-ring electrode designs. The grounded electrode of the former can weaken ionization head energy formed in strong electric field of helium ionization, and shorten the distance of plasma beam. The electric field of the latter mainly concentrates on the peak of the needle electrode, which can weaken the energy of ionization head and make the length of the plasma beam shorter than the surface double electrode. In this work, the influencing factors of discharge were analyzed, and the electric field was adjusted by changing the shape of the electrode and increasing insulation medium components, thus forcing the strong electric field to focus on one side of the electrode, which could avoid the reflux discharge phenomenon and achieve stable and efficient plasma beam. The maximum length of plasma beam could reach more than 8 cm. On the basis, a single electrode dielectric barrier discharge ion source (DBDI), mainly composed of inert carrier gas, high voltage electrode, insulation tube, gas control and temperature control parts, was developed. Using the new type of ion source, the liquid sample of caffeine and the solid tablets of acetaminophen were analyzed by DBDI-MS. The correlation coefficient of the caffeine quantitative curve was 99.66%, and the signal to noise ratio of 100 μg/L was 23. The main component of the acetaminophen was C8H9NO2 that could be rapidly detected in the mass spectrum, and the response intensity was 1.26×106. The results showed that the new type of ion source could realize the quantitative and rapid in situ analysis of the sample.
-
Keywords:
- Single electrode,
- Dielectric barrier discharge,
- Ion source
-
-
-
[1]
1 DENG Yu-Jia, LI Cheng-Hui, JIANG Xiao-Ming, HOU Xian-Deng. Chinese J. Anal. Chem., 2015, 43(9): 1278-1284
-
[2]
邓宇佳, 李成辉, 蒋小明, 侯贤灯. 分析化学, 2015, 43(9): 1278-1284
-
[3]
2 DONG Li-Fang, RAN Jun-Xia, YIN Zeng-Qian, MAO Zhi-Guo. Spectroscopy and Spectral Analysis, 2005, 25(8): 1184-1186 董丽芳, 冉俊霞, 尹增谦, 毛志国. 光谱学与光谱分析, 2005, 25(8): 1184-1186
-
[4]
3 Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004, 306(5695): 471-473
-
[5]
4 XUE Zhen, QIU Bo, LIN Guang-Xin, LAI Cong-Fang, LUO Hai. Progress In Chemistry, 2008, (4): 594-601 薛 震, 邱 波, 林广欣, 赖丛芳, 罗 海. 化学进展, 2008, (4): 594-601
-
[6]
5 Cody R B, Laramee J A, Durst H D. Anal.Chem., 2005, 77(8): 2297-2302
-
[7]
6 Chernetsova E S, Morlock G E, Revelsky I A. Russian Chemical Reviews, 2011, 80(3): 235-255
-
[8]
7 Na N, Zhao M, Zhang S, Yang C, Zhang X. J. Am. Soc. Mass Spectrom., 2007, 18(10): 1859-1862
-
[9]
8 Na N, Zhang C, Zhao M, Zhang S, Yang C, Fang X, Zhang X. J. Mass Spectrom.: JMS, 2007, 42(8): 1079-1085
-
[10]
9 Sugiyama M, Kumano S, Nishimura K, Hasegawa H, Hashimoto Y. Rapid Commun. Mass Spectrom., 2013, 27(9): 1005-1010
-
[11]
10 Meyer C. Muller S. Gilbert-Lopez B. Franzke J. Anal. Bioanal. Chem., 2013, 405(14): 4729-4735
-
[12]
11 Harper J D, Charipar N A, Mulligan C C, Zhang X R, Cooks R G, Ouyang Z. Anal.Chem., 2008, 80(23): 9097-9104
-
[13]
12 ZHANG Si-Chun, ZHANG Xi-Rong. Science China: Chemical, 2014(5): 680-686 张四纯, 张新荣. 中国科学: 化学, 2014(5): 680-686
-
[14]
13 Hiraoka K, Chen L C, Iwama T, Mandal M K, Ninomiya S, Suzuki H. Ariyada O, Furuya H, Takekawa K. J. Mass Spectrom. Soc. Jpn., 2010, 58(6): 215-220
-
[15]
14 Martinez-Jarquin S, Winkler R. Rapid Commun. Mass Spectrom., 2013, 27(5): 629-634
-
[16]
15 Kumano S, Sugiyama M, Yamada M, Nishimura K, Hasegawa H, Morokuma H, Inoue H, Hashimoto Y. Anal.Chem., 2013, 85(10): 5033-5039
-
[17]
16 ZHANG Guan-Jun, ZHAN Jiang-Yang, SHAO Xian-Jun, PENG Zhao-Yu. High Voltage Engineering, 2011, 37(6): 1432-1438 张冠军, 詹江杨, 邵先军, 彭兆裕. 高电压技术, 2011, 37(6): 1432-1438
-
[18]
17 LIU Chong, WU Cheng-Bai, ZHANG Wen-Tao, LIANG Jun-Sheng, WANG Li-Ding. Optics and Precision Engineering, 2008, 16(3): 459-466 刘 冲, 吴成百, 张文涛, 梁军生, 王立鼎. 光学精密工程, 2008, 16(3): 459-466
-
[19]
18 Kogelschatz U. Plasma Chem. Plasma Process., 2003, 23(1): 1-46
-
[20]
19 Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K. Appl. Phys. Lett., 2009, 95(14): 141502
-
[21]
20 Walsh J L, Kong M G. Appl. Phys. Lett., 2008, 93(11): 111501
-
[1]
-
-
-
[1]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
-
[2]
Zeqiu Chen , Limiao Cai , Jie Guan , Zhanyang Li , Hao Wang , Yaoguang Guo , Xingtao Xu , Likun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089
-
[3]
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
-
[4]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[5]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[6]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
-
[7]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-0. doi: 10.3866/PKU.WHXB202408007
-
[8]
Hui Zhang , Zijian Zhao , Yajing Wang , Kai Ni , Yanfei Wang , Liang Zhu , Jianyun Liu , Xiaoyu Zhao . Structurally engineered solvent-free LiFePO4 electrodes via hot-pressing with efficient ion transport pathways for lithium extraction from brine. Acta Physico-Chimica Sinica, 2026, 42(2): 100130-0. doi: 10.1016/j.actphy.2025.100130
-
[9]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[10]
Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043
-
[11]
Yu'ang Liu , Yuechao Wu , Junyu Huang , Tao Wang , Xiaohong Liu , Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112
-
[12]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[13]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[14]
Limin Zhang , Mengmeng Liu , Yang Tian . Size Determines Performance: A Novel Experimental Design for Voltammetric Teaching at Microelectrode and Glassy Carbon Electrode. University Chemistry, 2025, 40(11): 281-288. doi: 10.12461/PKU.DXHX202412047
-
[15]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[16]
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
-
[17]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[18]
Qiwen Chen , Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136
-
[19]
Ruilan Fan , Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025
-
[20]
Dafa Chen , Haiping Xia . From Pollutant to Metal-Centred Annulene: The Transformation Journey of a Little Osmium Atom. University Chemistry, 2025, 40(10): 156-160. doi: 10.12461/PKU.DXHX202508094
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(981)
- HTML views(216)
Login In
DownLoad: