石墨烯量子点-银纳米颗粒复合物用于过氧化氢和葡萄糖比色检测

夏畅 海欣 陈帅 陈旭伟 王建华

引用本文: 夏畅, 海欣, 陈帅, 陈旭伟, 王建华. 石墨烯量子点-银纳米颗粒复合物用于过氧化氢和葡萄糖比色检测[J]. 分析化学, 2016, 44(1): 41-48. doi: 10.11895/j.issn.0253-3820.150568 shu
Citation:  XIA Chang, HAI Xin, CHEN Shuai, CHEN Xu-Wei, WANG Jian-Hua. Preparation of Graphene Quantum Dots/Ag Nanoparticles Nanocomposites for Colorimetric Detection of H2O2 and Glucose[J]. Chinese Journal of Analytical Chemistry, 2016, 44(1): 41-48. doi: 10.11895/j.issn.0253-3820.150568 shu

石墨烯量子点-银纳米颗粒复合物用于过氧化氢和葡萄糖比色检测

    通讯作者: 陈旭伟, 王建华; 陈旭伟, 王建华
  • 基金项目:

    本文系国家自然科学基金项目(Nos.21275027,21235001,21475017)资助 (Nos.21275027,21235001,21475017)

摘要: 以石墨烯量子点(GQDs)为还原剂和稳定剂,在其表面原位生长银纳米粒子(AgNPs),制备了具有良好分散性的GQDs/AgNPs纳米复合物,其粒径小于30 nm。GQDs/AgNPs纳米复合物具有类过氧化物酶的催化活性,能有效催化H2O2氧化3,3',5,5'-四甲基联苯胺(TMB)并发生显色反应。稳态动力学分析表明, GQDs/AgNPs催化动力学遵循典型的Michaelis-Menten模型,其催化机理符合乒乓机制。与辣根过氧化物酶(HRP)相比,GQDs/AgNPs纳米复合物具有更强的亲和性。基于GQDs/AgNPs的催化活性和葡萄糖氧化产生H2O2的原理,建立了H2O2和葡萄糖的比色检测方法,检出限分别为0.18和1.6 μmol/L。将本方法应用于血浆中葡萄糖的检测分析,结果与标准方法相符。

English

  • 
    1. [1]

      1 Wang Y, Dai C, Yan X P. Chem. Commun., 2014,50(92):14341-143441 Wang Y, Dai C, Yan X P. Chem. Commun., 2014,50(92):14341-14344

    2. [2]

      2 Jeon E K, Seo E, Lee E, Lee W, Um M K, Kim B S. Chem. Commun., 2013,49(33):3392-33942 Jeon E K, Seo E, Lee E, Lee W, Um M K, Kim B S. Chem. Commun., 2013,49(33):3392-3394

    3. [3]

      3 Zhou Y Z, Cheng X N, Yang J, Zhao N, Ma S B, Li D, Zhong T. RSC Adv., 2013,3(45):23236-232413 Zhou Y Z, Cheng X N, Yang J, Zhao N, Ma S B, Li D, Zhong T. RSC Adv., 2013,3(45):23236-23241

    4. [4]

      4 Wu M L, Lu D B, Zhao Y, Ju T Z. Micro Nano Lett., 2013,8(2):82-854 Wu M L, Lu D B, Zhao Y, Ju T Z. Micro Nano Lett., 2013,8(2):82-85

    5. [5]

      5 Tang X Z, Cao Z W, Zhang H B, Liu J, Yu Z Z. Chem. Commun., 2011, 47(11):3084-30865 Tang X Z, Cao Z W, Zhang H B, Liu J, Yu Z Z. Chem. Commun., 2011, 47(11):3084-3086

    6. [6]

      6 Yang L, Luo W, Cheng G Z. ACS Appl. Mater. Interfaces, 2013,5(16):8231-82406 Yang L, Luo W, Cheng G Z. ACS Appl. Mater. Interfaces, 2013,5(16):8231-8240

    7. [7]

      7 Sun Z Y, Dong N N, Wang K P. K nig D, Nagaiah T C, Sánchez M D, Ludwig A, Cheng X, Schuhmann W G, Wang J, Muhler M. Carbon, 2013,62:182-1927 Sun Z Y, Dong N N, Wang K P. K nig D, Nagaiah T C, Sánchez M D, Ludwig A, Cheng X, Schuhmann W G, Wang J, Muhler M. Carbon, 2013,62:182-192

    8. [8]

      8 WU Ling, CAO Zhong, SONG Tian-Ming, SONG Cheng, XIE Jing-Lei, HE Jing-Lin, XIAO Zhong-Liang. Chinese J. Anal. Chem., 2014,42(11):1656-1660 吴 玲, 曹 忠, 宋天铭, 宋 铖, 谢晶磊, 何婧琳, 肖忠良.分析化学,2014,42(11):1656-16608 WU Ling, CAO Zhong, SONG Tian-Ming, SONG Cheng, XIE Jing-Lei, HE Jing-Lin, XIAO Zhong-Liang. Chinese J. Anal. Chem., 2014,42(11):1656-1660 吴 玲, 曹 忠, 宋天铭, 宋 铖, 谢晶磊, 何婧琳, 肖忠良.分析化学,2014,42(11):1656-1660

    9. [9]

      9 Zhang Y M, Yuan X, Wang Y, Chen Y. J. Mater. Chem., 2012, 22(15):7245-72519 Zhang Y M, Yuan X, Wang Y, Chen Y. J. Mater. Chem., 2012, 22(15):7245-7251

    10. [10]

      10 WANG Lu, ZANG Xiao-Huan, WANG Chun, WANG Zhi. Chinese J. Anal. Chem., 2014,42(1):136-144 王 璐, 臧晓欢, 王 春, 王 志.分析化学,2014,42(1):136-14410 WANG Lu, ZANG Xiao-Huan, WANG Chun, WANG Zhi. Chinese J. Anal. Chem., 2014,42(1):136-144 王 璐, 臧晓欢, 王 春, 王 志.分析化学,2014,42(1):136-144

    11. [11]

      11 Li L L, Wu G H,Yang G H, Peng J, Zhao J W, Zhu J J. Nanoscale, 2013,5(10):4015-403911 Li L L, Wu G H,Yang G H, Peng J, Zhao J W, Zhu J J. Nanoscale, 2013,5(10):4015-4039

    12. [12]

      12 Yan X, Li B, Li L S. Accounts Chem. Res., 2013, 46(10):2254-226212 Yan X, Li B, Li L S. Accounts Chem. Res., 2013, 46(10):2254-2262

    13. [13]

      13 Lin L P, Rong M C, Luo F, Chen D M, Wang Y R, Chen X. TRAC-Trend Anal. Chem., 2014,54:83-10213 Lin L P, Rong M C, Luo F, Chen D M, Wang Y R, Chen X. TRAC-Trend Anal. Chem., 2014,54:83-102

    14. [14]

      14 Hummers Jr W S, Offeman R E. J. Am. Chem. Soc., 1958,80(6):1339-133914 Hummers Jr W S, Offeman R E. J. Am. Chem. Soc., 1958,80(6):1339-1339

    15. [15]

      15 Wei Z Q, Wang D, Kim S, Hu Y, Yakes M K, Laracuente A R, Dai Z, Marder S R, Berger C, King W P, Heer W A, Sheehan P E, Riedo E. Science, 2010,328(5984):1373-137615 Wei Z Q, Wang D, Kim S, Hu Y, Yakes M K, Laracuente A R, Dai Z, Marder S R, Berger C, King W P, Heer W A, Sheehan P E, Riedo E. Science, 2010,328(5984):1373-1376

    16. [16]

      16 YU Mei, LIU Peng-Rui, SUN Yu-Jing, LIU Jian-Hua, AN Jun-Wei, LI Song-Mei. Chinese J. Inorg. Mater., 2012,27(1):89-94 于 美, 刘鹏瑞, 孙玉静, 刘建华, 安军伟, 李松梅.无机材料学报,2012,27(1):89-9416 YU Mei, LIU Peng-Rui, SUN Yu-Jing, LIU Jian-Hua, AN Jun-Wei, LI Song-Mei. Chinese J. Inorg. Mater., 2012,27(1):89-94 于 美, 刘鹏瑞, 孙玉静, 刘建华, 安军伟, 李松梅.无机材料学报,2012,27(1):89-94

    17. [17]

      17 Ran X, Sun H, Pu F, Ren J-S, Qu X-G. Chem. Commun., 2013,49(11):1079-108117 Ran X, Sun H, Pu F, Ren J-S, Qu X-G. Chem. Commun., 2013,49(11):1079-1081

    18. [18]

      18 Liu M, Zhao H M, Chen S, Yu H T, Quan X. ACS Nano, 2012,3(6):3142-315118 Liu M, Zhao H M, Chen S, Yu H T, Quan X. ACS Nano, 2012,3(6):3142-3151

    19. [19]

      19 Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S. Nat. Nanotechnol., 2007,2(9):577-58319 Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S. Nat. Nanotechnol., 2007,2(9):577-583

    20. [20]

      20 XIE Jian-Xin. Chracteristics of Nanomaterials as Peroxidase Mimetics and Their Analytical Applications, Southeast University, Chongqing, 2012 谢建新.纳米材料过氧化物模拟酶特性及其应用研究, 重庆:西南大学,201220 XIE Jian-Xin. Chracteristics of Nanomaterials as Peroxidase Mimetics and Their Analytical Applications, Southeast University, Chongqing, 2012 谢建新.纳米材料过氧化物模拟酶特性及其应用研究, 重庆:西南大学,2012

    21. [21]

      21 Eisenmesser E Z, Bosco D A, Akke M, Kern D. Science, 2002,295(5559):1520-152321 Eisenmesser E Z, Bosco D A, Akke M, Kern D. Science, 2002,295(5559):1520-1523

    22. [22]

      22 Lin L P, Song X H, Chen Y Y, Rong M C, Zhao T T, Wang Y R, Jiang Y Q, Chen X. Anal. Chim. Acta, 2015,869:89-9522 Lin L P, Song X H, Chen Y Y, Rong M C, Zhao T T, Wang Y R, Jiang Y Q, Chen X. Anal. Chim. Acta, 2015,869:89-95

    23. [23]

      23 Xie J X, Cao H Y, Jiang H, Chen Y J, Shi W B, Zheng H Z, Huang Y M. Anal. Chim. Acta, 2013,796:92-10023 Xie J X, Cao H Y, Jiang H, Chen Y J, Shi W B, Zheng H Z, Huang Y M. Anal. Chim. Acta, 2013,796:92-100

    24. [24]

      24 Dong Y L, Zhang H G, Rahman Z U, Su L, Chen X J, Hu J, Chen X G. Nanoscale, 2012,4(13):3969-397624 Dong Y L, Zhang H G, Rahman Z U, Su L, Chen X J, Hu J, Chen X G. Nanoscale, 2012,4(13):3969-3976

    25. [25]

      25 Hao J H, Zhang Z, Yang W S, Lu B P, Ke X, Zhang B L, Tang J L. J. Mater. Chem. A, 2013,1:4352-435725 Hao J H, Zhang Z, Yang W S, Lu B P, Ke X, Zhang B L, Tang J L. J. Mater. Chem. A, 2013,1:4352-4357

  • 加载中
计量
  • PDF下载量:  33
  • 文章访问数:  613
  • HTML全文浏览量:  82
文章相关
  • 收稿日期:  2015-07-16
  • 网络出版日期:  2015-08-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章