Citation: LI Yue-Sheng, SONG Zhi-Yong, QIN Jiang-Tao, HUANG Hai-Tao, HAN Yan. Study on Photocatalytic Degradation of Core/Shell CdSe/ZnS Quantum Dots with Nano-TiO2 by Fluorescent Spectrometric Methods[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(1): 61-67. doi: 10.11895/j.issn.0253-3820.150450 shu

Study on Photocatalytic Degradation of Core/Shell CdSe/ZnS Quantum Dots with Nano-TiO2 by Fluorescent Spectrometric Methods

  • Received Date: 29 May 2015
    Available Online: 1 September 2015

  • The experiment of photocatalytic degradation on fluorescent substance core/shell CdSe/ZnS quantum dots by Nano-TiO2 (P25) under visible light-induced was investigated. The degradation rate was analyzed and evaluated by determining the absorbance of degradation substance to determine the degree of degradation and efficiency. The results of photocatalytic experiment showed a good linear relationship between fluorescence quenching degree (F/F0) and reaction time (t) on fluorescent substance of CdSe/ZnS quantum dot, according to the photocatalytic degradation kinetics equation of CdSe/ZnS quantum dots. The consistency of experimental results was also confirmed with fluorescence spectroscopy and conventional spectrophotometry. Based on this, a new sensitive method was established for efficient determination of photocatalytic degradation fluorescent substance. The present method was helpful to analyze the photocatalytic degradation mechanism of fluorescent substance and provided a theoretical basis and reference to study the photocatalytic degradation on other fluorescent substances.
  • 加载中
    1. [1]

      1 Zhang Z Z, Wang X X, Long J L, Gu Q, Ding Z X, Fu X Z. J. Catal., 2010,276(2):201

    2. [2]

      2 Joanna R, Tomasz G, Janusz W. Appl. Surf. Sci., 2014,307:333-345

    3. [3]

      3 JIN Min, HUANG Yu-Hua, LUO Ji-Xiang. Spectroscopy and Spectral Analysis, 2015,35(2):420-423 晋 敏, 黄玉华, 罗吉祥.光谱学与光谱分析, 2015,35(2):420-423

    4. [4]

      4 Susann N, Petra P, Christian W, Philipp W, Bastian M. Catal. Today, 2014,230:97-103

    5. [5]

      5 Jiu J T, Isoda S, Wang F M. J. Phys. Chem. B, 2006,110(5):2087-2092

    6. [6]

      6 Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. Science, 2002,298(5602):1759-1762

    7. [7]

      7 Hoshino A, Fujioka K, Oku T, Suga M, Sasaki Y F, Ohta T, Yasuhara M, Suzuki K, Yamamoto K. Nano Lett., 2004,4(11):2163-2169

    8. [8]

      8 Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier A M, Gaub H E, St lzle S, Fertig N, Parak W J. Nano Lett., 2005,5(2):331-338

    9. [9]

      9 Green M, Howman E. Chem. Commun., 2005,1:121-123

    10. [10]

      10 LI Yue-Sheng, DU Ji-Fu, SUN Shao-Fa. Spectro. Spectr. Anal., 2014,34(4):1040-1043 李月生, 杜纪富, 孙绍发.光谱学与光谱分析,2014,34(4):1040-1043

    11. [11]

      11 Li Y S, Zhang Y, Sun S F, Liu Y. J. Photochem. Photobiol. B:Biology, 2013,128:12-19

    12. [12]

      12 Li Y S, Sun S F, Liu Y. Acta Chim. Sinica, 2013,71(12):1656-1662

    13. [13]

      13 Lovrić J, Cho S J, Winnik F M, Maysinger D. Chem. Biolo., 2005,12(11):1227-1234

    14. [14]

      14 Lovrić J, Bazzi H S, Cuie Y, Genevieve R A, Winnik M., Maysinger D. J. Molecu. Model., 2005,83(5):377-385

    15. [15]

      15 YE Mei-Ying, LI Bao-Xing, YE Rong-Min, LIU Jin-Hua. Chinese J. Anal. Chem., 2010,38(5):643-647 叶美英, 李宝兴, 叶荣民, 刘金华.分析化学,2010,38(5):643-647

    16. [16]

      16 Saif M, Aboul-Fotouh S M K, El-Molla S A, Ibrahim M M, Ismail L F M. Molecu. Biomolecu. Spect., 2014,128:153-162

    17. [17]

      17 ZHANG Hong-Man, CHEN Guo-song, DUAN He-Jun, YANG Zhu-Hong, LU Xiao-Hua. Chinese J. Anal. Chem., 2005,33(10):1417-1420 张红漫, 陈国松, 段鹤君, 杨祝红, 陆小华.分析化学,2005,33(10):1417-1420

    18. [18]

      18 JIA Chen-Zhong, WAN Yan-Xin, ZHANG Cai-Xiang. Chinese J. Anal. Chem., 2012,40(11):1710-1746 贾陈忠, 王焰新, 张彩香.分析化学,2012,40(11):1710-1746

    19. [19]

      19 Liu Y, Wang Y T, Li X G. J. Hazard. Mater., 2008,150(2):153-157

    20. [20]

      20 Liu Y, Li Q, Zhang J T, Sun W Z, Gao S A, Shang J K. Chem. Eng. J., 2014,249:63-71

    21. [21]

      21 Qu L H, Peng X G. J. Am. Chem. Soc., 2002,124(9):2049-2055

    22. [22]

      22 Xie H Y, Liang J G, Liu Y, Zhang Z L, Pang D W, He Z K, Lu Z X, Huang W H. J. Nanosci. Nanotechnol., 2005,5(6):880-886

    23. [23]

      23 Chan W C W, Nie S M. Science, 1998,281(5385):2016-2018

    24. [24]

      24 Schmelz O, Mews A, Basché T, Herrmann A, Müllen K. Langmuir, 2001,17(7):2861-2865

  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    6. [6]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    7. [7]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    8. [8]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    9. [9]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    12. [12]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    16. [16]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    17. [17]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    18. [18]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(10)
  • Abstract views(832)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return