Citation: YANG Xu, LIU Mei-Jiao, LIN Shen, XU Dan, DONG Xiang-Chao. Determination of Tetracycline Residues in Milk by On-line Coupling of Restricted Access Material Solid Phase Extraction with High Performance Liquid Chromatography[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(1): 146-151. doi: 10.11895/j.issn.0253-3820.150443 shu

Determination of Tetracycline Residues in Milk by On-line Coupling of Restricted Access Material Solid Phase Extraction with High Performance Liquid Chromatography

  • Corresponding author: DONG Xiang-Chao, 
  • Received Date: 27 May 2015
    Available Online: 13 September 2015

  • A new method has been developed for the determination of tetracycline residues in milk by on-line restricted access material solid phase extraction-HPLC analysis. Restricted accessed poly(styrene-co-divinylbenzene) bonded silica, synthesized by atom transfer radical polymerization, was used as solid phase extraction material in the experiment. This material played both functions of tetracylines extraction and biomacromolecule exclusion. Tetracyclines extracted from milk sample were back-flushed into a reversed phase C18 analytical column and oxytetracycline, tetracycline and chlortetracycline were separated and quantified by HPLC analysis. The exclusion ratio of bovine serum albumin from the restricted access material column was 96.0%, which indicated that the restricted access material had the ability to exclude large biological molecules. The recoveries of three tetracylines in milk samples were 88.3%-101.5% with relative standard deviations <8.0%. The detection limits of 50-80 μg/L and the linear ranges from 0.05 μg/mL to 2.0 μg/mL for the analytes were obtained. The results demonstrated that the method could be used in the determination of tetracycline residues in milk samples with good sensitivity and efficiency.
  • 加载中
    1. [1]

      1 Kemper N. Ecol. Indic., 2008,8(1):1-13

    2. [2]

      2 Daghrir R, Drogui P. Environ. Chem. Lett., 2013,11(3):209-227

    3. [3]

      3 P. R. China Bulletin of Ministry of Agriculture, no. 235, Veterinary Drug Maximum Residue Limits in the Food of Animal Origin,2002

    4. [4]

      4 U. S. Code of federal regulations, Title 21, Part 556, Tolerances for Residues of New Animal Drugs in Food,2003

    5. [5]

      5 Council regulation (EEC) 2377/90, Laying Down a Community Procedure for the Establishment of Maximum Residue Limits Veterinary Medicinal Products in Foodstuffs of Animal Origin, 1990[LM]

    6. [6]

      6 Vidal J L M, Aguilera-Luiz M D M, Romero-González R, Frenich A G. J. Agric. Food. Chem., 2009,57(5):1760-1767

    7. [7]

      7 Spisso B F, de Araújo Júnior M G, Monteiro M A, Lima A M B, Pereira M U, Luiz R A, Nóbrega A W D. Anal. Chim. Acta, 2009,656(1-2):72-84

    8. [8]

      8 T lgyesi L, Békési K, Sharma V K, Fekete J. Meat Science, 2014,96(3):1332-1339

    9. [9]

      9 Cinquina A L, Longo F, Anastasi G, Giannetti L, Cozzani R. J. Chromatogr. A, 2003,987(1-2):227-233

    10. [10]

      10 SUN Li-Xin. Food Research And Development, 2012,33(9):167-173 孙立新. 食品研究与开发,2012,33(9):167-173

    11. [11]

      11 Yang X Q, Yang C X, Yan X P. J. Chromatogr. A, 2013,1304:28-33

    12. [12]

      12 Santos S M, Henriques M, Duarte A C, Esteves V I. Talanta, 2007,71(2):731-737

    13. [13]

      13 Pastor N N. Maquieira P R. Anal. Bioanal. Chem., 2009,395(4):907-920

    14. [14]

      14 Hennion M C. J. Chromatogr. A, 1999,856(1-2):3-54

    15. [15]

      15 Mehdinia A, Aziz-Zanjani M O. TrAC, Trends Anal. Chem., 2013,51:13-22

    16. [16]

      16 Cassiano N, Lima V, Oliveira R, De Pietro A, Cass Q. Anal. Bioanal. Chem., 2006,384(7):1462-1469

    17. [17]

      17 Sadílek P, Satínsky D, Solich P. TrAC, Trends Anal. Chem., 2007,26(5):375-384

    18. [18]

      18 Xu W, Su S, Jiang P, Wang H, Dong X, Zhang M. J. Chromatogr. A, 2010,1217(46):7198-7207

    19. [19]

      19 Wang Y, Wang Y, Chen L, Wan Q H. J. Magn. Magn. Mater., 2012,324(4):410-417

    20. [20]

      20 Barbosa A F, Barbosa V M P, Bettini J, Luccas P O, Figueiredo E C. Talanta, 2015,131:213-220

    21. [21]

      21 Beinhauer J, Bian L Q, Fan H, Sebela M, Kukula M, Barrera J A, Schug K A. Anal. Chim. Acta, 2015,858:74-81

    22. [22]

      22 Xu D, Dong X, Zhang H, Wang H, Jiang P, Zhang M. J. Sep. Sci., 2012,35(13):1573-1581

    23. [23]

      23 Oka H, Ito Y, Matsumoto H. J. Chromatogr. A, 2000,882:109-133

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    5. [5]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    7. [7]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Tengyue ZHANGJingjing FENGZili LIANGJia′nan DAIJing MA . Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104

    9. [9]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    10. [10]

      Jiahong WANGZekun XUTianjiao LUJinming HUANG . Performance of N, Mn doped semi-coke activated carbon catalyzed ozone oxidation for the degradation of tetracycline hydrochloride in water. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2549-2560. doi: 10.11862/CJIC.20250120

    11. [11]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    12. [12]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    13. [13]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    16. [16]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    19. [19]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    20. [20]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

Metrics
  • PDF Downloads(0)
  • Abstract views(708)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return