Citation: Yukai SHEN, Zhaochao YAN, Yangjun ZHOU, Mei HUANG. Nickel foam-supported NiFeP/NiFcDCA heterojunction electrocatalyst for efficient urea oxidation reaction[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 237-246. doi: 10.11862/CJIC.20250257 shu

Nickel foam-supported NiFeP/NiFcDCA heterojunction electrocatalyst for efficient urea oxidation reaction

  • Corresponding author: Mei HUANG, huangm@zju.edu.cn
  • Received Date: 5 August 2025
    Revised Date: 5 November 2025

Figures(8)

  • A NiFeP/NiFcDCA (FcDCA=1,1′-ferrocene dicarboxylic acid) heterojunction catalyst was loaded on the nickel foam (NF) using a hydrothermal method coupled with vapor-phase deposition phosphorization. Benefiting from the layered stacked heterogeneous nanostructure, abundant active sites, and efficient charge transfer rate, NiFeP/NiFcDCA@NF-350 prepared at a phosphorization temperature of 350 ℃ exhibited excellent urea oxidation reaction (UOR) activity in 1 mol·L-1 KOH+0.33 mol·L-1 urea solution. It achieved current densities of 100 and 500 mA·cm-2 at ultra-low voltages of 1.332 and 1.368 V (vs RHE), respectively. After a 50-hour stability test at a current density of 50 mA·cm-2, its performance decay was merely 0.54%, demonstrating excellent catalytic selectivity and good stability.
  • 加载中
    1. [1]

      ABE J O, POPOOLA A P I, AJENIFUJA E, POPOOLA O M. Hydrogen energy, economy and storage: Review and recommendation[J]. Int. J. Hydrog. Energy, 2019, 44(29): 15072-15086  doi: 10.1016/j.ijhydene.2019.04.068

    2. [2]

      ZHAO X Y, LI G T, SUN X T, SONG J, LIANG D X, XU G Z, DENG Z F. Key technology and application progress of hydrogen production by electrolysis under peaking carbon dioxide emissions and carbon neutrality target[J]. Journal of Global Energy Interconnection, 2021, 4(5): 436-446

    3. [3]

      DUNN S. Hydrogen futures: Toward a sustainable energy system[J]. Int. J. Hydrog. Energy, 2002, 27(3): 235-264  doi: 10.1016/S0360-3199(01)00131-8

    4. [4]

      YANG Y J, YU Y H, LI J, CHEN Q R, DU Y L, RAO P, LI R S, JIA C M, KANG Z Y, DENG P L, SHEN Y J, TIAN X. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction[J]. Nano‒Micro Lett., 2021, 13(1): 160

    5. [5]

      SHI Y Y, WU H, CHANG J W, TANG Z Y, LU S Y. Progress on the mechanisms of Ru-based electrocatalysts for the oxygen evolution reaction in acidic media[J]. J. Energy Chem., 2023, 85(10): 220-238

    6. [6]

      WANG L P, ZHU Y J, WEN Y Z, LI S Y, CUI C Y, NI F L, LIU Y X, LIN H P, LI Y Y, PENG H S, ZHANG B. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction[J]. Angew. Chem. ‒Int. Edit., 2021, 60(19): 10577-10582  doi: 10.1002/anie.202100610

    7. [7]

      QIAN G F, CHEN J L, JIANG W J, YU T Q, TAN K X, YIN S B. Strong electronic coupling of CoNi and N-doped-carbon for efficient urea-assisted H2 production at a large current density[J]. Carbon Energy, 2023, 5(12): DOI:10.1002/cey2.368  doi: 10.1002/cey2.368

    8. [8]

      ZHU D D, ZHANG H Y, MIAO J H, HU F X, WANG L, TANG Y J, QIAO M, GUO C X. Strategies for designing more efficient electrocatalysts towards the urea oxidation reaction[J]. J. Mater. Chem. A, 2022, 10(7): 3296-3313  doi: 10.1039/D1TA09989B

    9. [9]

      CHEN H, WANG Y Y, CHEN Z, WU Z Q, CHU X Y, QING S Q, XU L Q, YANG K, MENG Q Y H, CHENG H A, ZHAN W H, WANG Y G, ZHOU H B. Effects of salinity on anoxic-oxic system performance, microbial community dynamics and co-occurrence network during treating wastewater[J]. Chem. Eng. J., 2023, 461: 141969  doi: 10.1016/j.cej.2023.141969

    10. [10]

      YE K, WANG G, CAO D X, WANG G X. Recent advances in the electro-oxidation of urea for direct urea fuel cell and urea electrolysis[J]. Topics Curr. Chem., 2018, 376(6): 42  doi: 10.1007/s41061-018-0219-y

    11. [11]

      ESTIU G, METZ K M JR. The hydrolysis of urea and the proficiency of urease[J]. J. Am. Chem. Soc., 2004, 126(22): 6932-6944  doi: 10.1021/ja049327g

    12. [12]

      BOGGS B K, KING R L, BOTTE G G. Urea electrolysis: Direct hydrogen production from urine[J]. Chem. Commun., 2009, 32: 4859-4861

    13. [13]

      WANG D, YAN W, BOTTE G G. Exfoliated nickel hydroxide nanosheets for urea electrolysis[J]. Electrochem. Commun., 2011, 13(10): 1135-1138  doi: 10.1016/j.elecom.2011.07.016

    14. [14]

      HAMEED R M A, MEDANY S S. Influence of support material on the electrocatalytic activity of nickel oxide nanoparticles for urea electrooxidation reaction[J]. J. Colloid. Interface Sci., 2018, 513: 536-548  doi: 10.1016/j.jcis.2017.11.032

    15. [15]

      CHEN Z J, WEI W, NI B J. Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis[J]. Curr. Opin. Electrochem., 2022, 31: 100888  doi: 10.1016/j.coelec.2021.100888

    16. [16]

      LIU Z, XUE S J, ZHOU S F, LI J, QU K G, CAI W W. Mutual promotion effect of Ni and Mo2C encapsulated in N-doped porous carbon on bifunctional overall urea oxidation catalysis[J]. J. Catal., 2022, 405: 606-613  doi: 10.1016/j.jcat.2021.11.005

    17. [17]

      SAHA R, GUPTA K, GARCÍA C J G. Strategies to improve electrical conductivity in metal-organic frameworks: A comparative study[J]. Cryst. Growth Des., 2024, 24(5): 2235-2265  doi: 10.1021/acs.cgd.3c01162

    18. [18]

      XIAO C, TIAN J D, CHEN Q H, HONG M C. Water-stable metal-organic frameworks (MOFs): Rational construction and carbon dioxide capture[J]. Chem. Sci., 2024, 15(5): 1570-1610  doi: 10.1039/D3SC06076D

    19. [19]

      WU H J, ZHENG W Q, ZHU R, ZHOU M, REN X C, WANG Y H, CHENG C, ZHOU H J, CAO S J. Modulating coordination structures and metal environments of MOFs-engineered electrocatalysts for water electrolysis[J]. Chem. Eng. J., 2023, 452(3): 139475

    20. [20]

      LÜ X L, YUAN S A, XIE L H, DARKE H F, CHEN Y, HE T, DONG C, WANG B, ZHANG Y Z, LI J R, ZHOU H C. Ligand rigidification for enhancing the stability of metal-organic frameworks[J]. J. Am. Chem. Soc., 2019, 141(26): 10283-10293  doi: 10.1021/jacs.9b02947

    21. [21]

      YI J D, SI D H, XIE R K, YIN Q, ZHANG M D, WU Q, CHAI G L, HUANG Y B A, CAO R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2[J]. Angew. Chem. ‒Int. Edit., 2021, 60(31): 17108-17114  doi: 10.1002/anie.202104564

    22. [22]

      DING X, XIANG J, WAN Y Y, SONG F Z. Elemental charge engineering in cobalt and cobalt-phosphide interface for enhanced oxygen evolution and urea oxidation reactions[J]. ACS Appl. Energy Mater., 2024, 7(9): 4260-4267  doi: 10.1021/acsaem.4c00694

    23. [23]

      SHARMA P J, MODI K H, SAHATIYA P, SUMESH C K, PATANIYA P M. Electroless deposited NiP-fabric electrodes for efficient water and urea electrolysis for hydrogen production at industrial scale[J]. Appl. Surf. Sci., 2024, 644: 158766  doi: 10.1016/j.apsusc.2023.158766

    24. [24]

      WU Z C, ZOU Z X, HUANG J S, GAO F. Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting[J]. J. Catal., 2018, 358: 243-252  doi: 10.1016/j.jcat.2017.12.020

    25. [25]

      TROTOCHAUD L, YOUNG S L, RANNEY J K, BOETTCHER S W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation[J]. J. Am. Chem. Soc., 2014, 136(18): 6744-6753  doi: 10.1021/ja502379c

    26. [26]

      ZHANG X X, FANG X Q, ZHU K, YUAN W Z, JIANG T F, XUE H G, TIAN J Q. Fe-doping induced electronic structure reconstruction in Ni-based metal-organic framework for improved energy-saving hydrogen production via urea degradation[J]. J. Power Sources, 2022, 520: 230882  doi: 10.1016/j.jpowsour.2021.230882

    27. [27]

      CAO Z, ZHOU T T, MA X R, SHEN Y L, DENG Q B, ZHANG W, ZHAO Y F. Hydrogen production from urea sewage on NiFe-based porous electrocatalysts[J]. ACS Sustain. Chem. Eng., 2020, 8(29): 11007-11015

    28. [28]

      GUO H, WEI T, SHEN Q Q, HONG A Q, DENG Z T, FANG Z, SHI J C, LI R H. Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction[J]. Chinese J. Inorg. Chem., 2024, 40(11): 2141-2154  doi: 10.11862/CJIC.20240085

    29. [29]

      QIAN G F, LU T, WANG Y P, XU H T, CAO X Y, XIE Z H, CHEN C Z, MIN D Y. N-induced compressive strain in Ni-MoO2 heterostructure with micro-nano array for improving high-current-output urea-assisted water electrolysis performance[J]. Chem. Eng. J., 2024, 480: 147993  doi: 10.1016/j.cej.2023.147993

    30. [30]

      LI J Y, XU X J, HOU X B, ZHANG S C, SU G, TIAN W Q, WANG H L, HUANG M H, TOGHAN A. Interface engineering of NiSe2 nanowrinkles/Ni5P4 nanorods for boosting urea oxidation reaction at large current densities[J]. Nano Res., 2023, 16(7): 8853-8862  doi: 10.1007/s12274-023-5575-4

    31. [31]

      CAI M M, ZHU Q, WANG X Y, SHAO Z Y, YAO L, ZENG H, WU X F, CHEN J, HUANG K K, FENG S H. Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: Composite electrocatalyst for oxygen evolution and urea oxidation reactions[J]. Adv. Mater., 2023, 35(7): 202209338

    32. [32]

      ZHOU S F, LV S L, SHI J W, ZHANG L, LI J, CAI W W. Self-supported ultrathin NiMn-LDH nanosheets for highly active and robust urea oxidation[J]. Chem. Eng. J., 2024, 484: 149706  doi: 10.1016/j.cej.2024.149706

    33. [33]

      GAO Z, WANG Y, XU L, TAO Q Q, WANG X D, ZHOU Z Y, LUO Y D, YU J Y, HUANG Y X. Optimizing local charge distribution of metal nodes in bimetallic metal-organic frameworks for efficient urea oxidation reaction[J]. Chem. Eng. J., 2022, 433(2): 133515

    34. [34]

      LI P, LI W Q, HUANG Y Q, HUANG Q H, TIAN S H. 3D hierarchical-architectured nanoarray electrode for boosted and sustained urea electro-oxidation[J]. Small, 2023, 19(30): 202300725

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    3. [3]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    4. [4]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    5. [5]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    11. [11]

      Ruyan LiuZhenrui NiOlim RuzimuradovKhayit TurayevTao LiuLuo YuPanyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159

    12. [12]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    13. [13]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    14. [14]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    15. [15]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    16. [16]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    17. [17]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    18. [18]

      Min WANGDehua XINWei ZHANGHaiying YANGYuchun WANGZhaorong LIUMeng SHILe SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109

    19. [19]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    20. [20]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return