Synergistic catalysis of Al distribution and pore structure in ZSM-5 zeolite for bioethanol-to-propylene
- Corresponding author: Zhaoteng XUE, ztxue@sit.edu.cn Dongsen MAO, dsmao@sit.edu.cn
Citation:
Yi RU, Tao MENG, Zhaoteng XUE, Dongsen MAO. Synergistic catalysis of Al distribution and pore structure in ZSM-5 zeolite for bioethanol-to-propylene[J]. Chinese Journal of Inorganic Chemistry,
;2026, 42(2): 247-262.
doi:
10.11862/CJIC.20250255
PHUNG T K, PHAM T L M, VU K B, BUSCA G. (Bio)propylene production processes: A critical review[J]. J. Environ. Chem. Eng., 2021, 9(4): 105673
doi: 10.1016/j.jece.2021.105673
ACHAKULWISUT P, ERICKSON P, GUIVARCH C, SCHAEFFER R, BRUTSCHIN E, PYE S. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions[J]. Nat. Commun., 2023, 14(1): 5425
doi: 10.1038/s41467-023-41105-z
CHERWOO L, GUPTA I, FLORA G, VERMA R, KAPIL M, ARYA S K, RAVINDRAN B, KHOO K S, BHATIA S K, CHANG S W, NGAMCHARUSSRIVICHAI C, ASHOKKUMAR V. Biofuels an alternative to traditional fossil fuels: A comprehensive review[J]. Sustain. Energy Technol. Assess., 2023, 60: 103503
MORAD M H. Current status and future perspectives of efficient catalytic conversion of bioethanol to value-added chemicals and fuels[J]. Arab. J. Chem., 2024, 17(2): 105560
XIA W, WANG F F, MU X C, CHEN K, WANG L X. Ethanol conversion reaction over M/ZrO2 (M=Mg, Ca, Sr, and Ba) catalysts: Effect of alkaline earth metal introduction[J]. React. Kinet. Mech. Catal., 2018, 124(1): 363-374
doi: 10.1007/s11144-018-1353-9
VAN DER BORGHT K, BATCHU R, GALVITA V V, ALEXOPOULOS K, REYNIERS M F, THYBAUT J W, MARIN G B. Insights into the reaction mechanism of ethanol conversion into hydrocarbons on H-ZSM-5[J]. Angew. Chem. ‒Int. Edit., 2016, 55(41): 12817-12821
doi: 10.1002/anie.201607230
XIA W, WANG X, LI S S, JIANG Z H, CHEN K, LIU D. Multiple synergistic roles of Zr modification on ZSM-5 in performant and stable catalyst for ethanol conversion to propene[J]. Energy, 2024, 288: 129910
doi: 10.1016/j.energy.2023.129910
LIN Y Y, YIN H T, CHEN S, WANG J Q, LI W, GAO Y N, SHENG M Y, JIANG N Z. Research and progress in catalyst modification for ZSM-5 zeolite catalyzed ethanol-to hydrocarbon reaction[J]. J. Ind. Eng. Chem., 2025, 146: 87-108
doi: 10.1016/j.jiec.2024.11.031
PHUNG T K, LAGAZZO A, RIVERO CRESPO M Á, ESCRIBANO V S, BUSCA G. A study of commercial transition aluminas and of their catalytic activity in the dehydration of ethanol[J]. J. Catal., 2014, 311: 102-113
doi: 10.1016/j.jcat.2013.11.010
PHUNG T K, HERNÁNDEZ L P, BUSCA G. Conversion of ethanol over transition metal oxide catalysts: Effect of tungsta addition on catalytic behaviour of titania and zirconia[J]. Appl. Catal. A‒Gen., 2015, 489: 180-187
doi: 10.1016/j.apcata.2014.10.025
XIA W, WANG J G, WANG L X, QIAN C, MA C, HUANG Y X, FAN Y, HOU M D, CHEN K. Ethylene and propylene production from ethanol over Sr/ZSM-5 catalysts: A combined experimental and computational study[J]. Appl. Catal. B‒Environ., 2021, 294: 120242
doi: 10.1016/j.apcatb.2021.120242
DUAN C, ZHANG X, ZHOU R, HUA Y, ZHANG L, CHEN J. Comparative studies of ethanol to propylene over HZSM-5/SAPO-34 catalysts prepared by hydrothermal synthesis and physical mixture[J]. Fuel Process. Technol., 2013, 108: 31-40
doi: 10.1016/j.fuproc.2012.03.015
XUE F Q, MIAO C X, YUE Y H, HUA W M, GAO Z. Direct conversion of bio-ethanol to propylene in high yield over the composite of In2O3 and zeolite beta[J]. Green Chem., 2017, 19(23): 5582-5590
doi: 10.1039/C7GC02400B
XUE F Q, MIAO C X, YUE Y H, HUA W M, GAO Z. Sc2O3-promoted composite of In2O3 and Beta zeolite for direct conversion of bio-ethanol to propylene[J]. Fuel Process. Technol., 2019, 186: 110-115
doi: 10.1016/j.fuproc.2018.12.024
IWAMOTO M. Selective catalytic conversion of bio-ethanol to propene: A review of catalysts and reaction pathways[J]. Catal. Today, 2015, 242: 243-248
doi: 10.1016/j.cattod.2014.06.031
TREPS L, GOMEZ A, DE BRUIN T, CHIZALLET C. Environment, stability and acidity of external surface sites of silicalite-1 and ZSM-5 micro and nano slabs, sheets, and crystals[J]. ACS Catal., 2020, 10(5): 3297-3312
doi: 10.1021/acscatal.9b05103
DĚDEČEK J, TABOR E, SKLENAK S. Tuning the aluminum distribution in zeolites to increase their performance in acid-catalyzed reactions[J]. ChemSusChem, 2019, 12(3): 556-576
doi: 10.1002/cssc.201801959
YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J. Phys. Chem. C, 2015, 119(27): 15303-15315
doi: 10.1021/acs.jpcc.5b03289
EZENWA S, MONTALVO-CASTRO H, HOFFMAN A J, LOCHT H, ATTEBERY J, JAN D Y, SCHMITHORST M, CHMELKA B, HIBBITTS D, GOUNDER R. Synthetic placement of active sites in MFI zeolites for selective toluene methylation to para-xylene[J]. J. Am. Chem. Soc., 2024, 146(15): 10666-10678
doi: 10.1021/jacs.4c00373
LI Z X, DAI W J, LIU X Y, WANG F, LI R F. Insight into structure and reactivity of ZSM-5[J]. Chem. Ind. Eng. Prog., 2025, 44(2): 788-808
LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting[J]. ACS Catal., 2016, 6(11): 7311-7325
doi: 10.1021/acscatal.6b01771
TANG X M, CHEN W, DONG W J, LIU Z Q, YUAN J M, XIA H Q, YI X F, ZHENG A M. Framework aluminum distribution in ZSM-5 zeolite directed by organic structure-directing agents: A theoretical investigation[J]. Catal. Today, 2022, 405-406: 101-110
doi: 10.1016/j.cattod.2022.06.027
BILIGETU T, WANG Y, NISHITOBA T, OTOMO R, PARK S, MOCHIZUKI H, KONDO J N, TATSUMI T, YOKOI T. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols[J]. J. Catal., 2017, 353: 1-10
KIM S, PARK G, WOO M H, KWAK G, KIM S K. Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion[J]. ACS Catal., 2019, 9(4): 2880-2892
doi: 10.1021/acscatal.8b04493
TUO J, FAN S B, YANG N W, CHENG S P, WANG D, ZHANG J L. Direct synthesis of [B, H]ZSM-5 by a solid-phase method: AlF siting and catalytic performance in the MTP reaction[J]. Catal. Sci. Technol., 2020, 10(20): 7034-7045
doi: 10.1039/D0CY01056A
FENG R, HU X Y, YAN X L, WU J J. Preparation of boron and fluorine doped ZSM-5 zeolites for methanol to propylene reaction[J]. Chinese J. Inorg. Chem., 2020, 36(9): 1791-1803
doi: 10.11862/CJIC.20240026
LI J L, GAO M K, YAN W F, YU J H. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties[J]. Chem. Sci., 2023, 14(8): 1935-1959
doi: 10.1039/D2SC06010H
XING M J, ZHANG L, CAO J, HAN Y L, WANG F, HAO K, HUANG L H, TAO Z C, WEN X D, YANG Y, LI Y W. Impact of the aluminum species state on Al pairs formation in the ZSM-5 framework[J]. Microporous Mesoporous Mater., 2022, 334: 111769
doi: 10.1016/j.micromeso.2022.111769
FENG R, SHEN J M, LIU B, LI T B, HU X Y, YAN X L, ZHANG Z D. Synthesis of ZSM-5 zeolites with low silica-to-alumina ratio and its performance in the cracking of n-heptane[J]. Chinese J. Inorg. Chem., 2023, 39(11): 2042-2054
doi: 10.11862/CJIC.2023.183
SHAMZHY M, OPANASENKO M, CONCEPCIÓN P, MARTÍNEZ A. New trends in tailoring active sites in zeolite-based catalysts[J]. Chem. Soc. Rev., 2019, 48(4): 1095-1149
doi: 10.1039/C8CS00887F
CUI N, GUO H L, ZHOU J, LI L H, GUO L M, HUA Z L. Regulation of framework Al distribution of high-silica hierarchically structured ZSM‑5 zeolites by boron‑modification and its effect on materials catalytic performance in methanol‑to‑propylene reaction[J]. Microporous Mesoporous Mater., 2020, 306: 110411
doi: 10.1016/j.micromeso.2020.110411
LIU X H, YAN C, WANG Y L, ZHANG P, YAN S Y, ZHUANG J G, ZHU X D, YANG F. Simultaneously enhanced aromatics selectivity and catalyst lifetime in methanol aromatization over [Zn, Al]-ZSM-5 via isomorphous substitution with optimized acidic properties and pore structure[J]. Fuel, 2023, 349: 128758
doi: 10.1016/j.fuel.2023.128758
TONG S L, SHI H B, JIANG H Y, ZHAO D M, CHEN X G, FENG X, ZHOU X, ZHAO H, YAN H, CHEN X B, LIU Y B, YANG C H. Tuning the framework Al distribution of ZSM-5 by Sn to enhance the catalytic performance in 1-hexene cracking[J]. Ind. Eng. Chem. Res., 2025, 64(6): 3204-3216
doi: 10.1021/acs.iecr.4c03883
CHEN X S, JIANG R L, HOU H L, ZHOU Z H, WANG X W. Facile synthesis of an Mg-incorporated ZSM-5 zeolite from dual silicon sources and its application for conversion of methanol to olefins[J]. ChemistrySelect, 2021, 6(28): 7056-7061
doi: 10.1002/slct.202100802
CHEN K, WU X Q, ZHAO J Y, ZHAO H J, LI A H, ZHANG Q, XIA T, LIU P, MENG B, SONG W Y, ZHU X C, LIU H H, GAO X H, XU C M, SHEN B J. Organic-free modulation of the framework Al distribution in ZSM-5 zeolite by magnesium participated synthesis and its impact on the catalytic cracking reaction of alkanes[J]. J. Catal., 2022, 413: 735-750
doi: 10.1016/j.jcat.2022.07.032
DĚDEČEK J, TABOR E, SKLENAK S. Tuning the aluminum distribution in zeolites to increase their performance in acid-catalyzed reactions[J]. ChemSusChem, 2018, 12(3): 556-576
GOŁĄBEK K, TABOR E, PASHKOVA V, DEDECEK J, TARACH K, GÓRA-MAREK K. The proximity of aluminium atoms influences the reaction pathway of ethanol transformation over zeolite ZSM-5[J]. Commun. Chem., 2020, 3(1): 25
doi: 10.1038/s42004-020-0268-3
BORADE R, SAYARI A, ADNOT A, KALIAGUINE S. Characterization of acidity in ZSM-5 zeolites: An X-ray photoelectron and IR spectroscopy study[J]. J. Phys. Chem., 1990, 94(15): 5989-5994
doi: 10.1021/j100378a068
HUANG F T, MIAO L, LI L, JIA W Z, HONG Z, ZHAO G Q, ZHU Z R. Fabrication of hierarchical ZSM-5 with tailorable AlF distribution by metal‑containing anions participating in synthesis and their impacts on the alkylation of toluene with ethanol[J]. Ind. Eng. Chem. Res., 2023, 62(29): 11367-11377
doi: 10.1021/acs.iecr.3c01073
LI C G, VIDAL-MOYA A, MIGUEL P J, DEDECEK J, BORONAT M, CORMA A. Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications[J]. ACS Catal., 2018, 8(8): 7688-7697
doi: 10.1021/acscatal.8b02112
MENG B, REN S Y, LIU X Y, ZHANG L, HU Q X, WANG J J, GUO Q X, SHEN B J. Synthesis of USY zeolite with a high mesoporous content by introducing Sn and enhanced catalytic performance[J]. Ind. Eng. Chem. Res., 2020, 59(13): 5712-5719
doi: 10.1021/acs.iecr.0c00051
FURUMOTO Y, HARADA Y, TSUNOJI N, TAKAHASHI A, FUJITANI T, IDE Y, SADAKANE M, SANO T. Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene[J]. Appl. Catal. A‒Gen., 2011, 399(1/2): 262-267
GAO J, GUO J Z, LIANG D, HOU Z Y, FEI J H, ZHENG X M. Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined CeO2-ZrO2/SiO2 supported Ni catalysts[J]. Int. J. Hydrog. Energy, 2008, 33(20): 5493-5500
doi: 10.1016/j.ijhydene.2008.07.040
NIE R F, LEI H, PAN S Y, WANG L N, FEI J H, HOU Z Y. Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2012, 96: 419-425
doi: 10.1016/j.fuel.2011.12.048
SANG J C, WANG Y Q, ZHANG X, SU X M, LI Y N, WEN M H, REN G M. One-pot synthesis of Mg-incorporated ZSM-5 nanosheet via EDTA-MgNa2 as an efficient catalyst for methanol-to-propylene reaction[J]. Chem. Eng. J., 2025, 520: 165918
doi: 10.1016/j.cej.2025.165918
JONES A J, IGLESIA E. The strength of Brønsted acid sites in microporous aluminosilicates[J]. ACS Catal., 2015, 5(10): 5741-5755
doi: 10.1021/acscatal.5b01133
EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J. Catal., 1993, 141(2): 347-354
doi: 10.1006/jcat.1993.1145
MAO D S, YANG W M, XIA J C, ZHANG B, SONG Q Y, CHEN Q L. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component[J]. J. Catal., 2005, 230(1): 140-149
doi: 10.1016/j.jcat.2004.12.007
CHEN K Z, GAN Z H, HORSTMEIER S, WHITE J L. Distribution of aluminum species in zeolite catalysts: 27Al NMR of framework, partially-coordinated framework, and non-framework moieties[J]. J. Am. Chem. Soc., 2021, 143(17): 6669-6680
doi: 10.1021/jacs.1c02361
YU Z W, LI S H, WANG Q, ZHENG A M, JUN X, CHEN L, DENG F. Brønsted/Lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy[J]. J. Phys. Chem. C, 2011, 115(45): 22320-22327
doi: 10.1021/jp203923z
DEDECEK J, KAUCKY D, WICHTERLOVA B. Al distribution in ZSM-5 zeolites: An experimental study[J]. Chem. Commun., 2001(11): 970-971
doi: 10.1039/b009589n
WANG S, WANG P F, QIN Z F, CHEN Y Y, DONG M, LI J F, ZHANG K, LIU P, WANG J G, FAN W B. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11[J]. ACS Catal., 2018, 8(6): 5485-5505
doi: 10.1021/acscatal.8b01054
TAKAHASHI A, XIA W, WU Q, FURUKAWA T, NAKAMURA I, SHIMADA H, FUJITANI T. Difference between the mechanisms of propylene production from methanol and ethanol over ZSM-5 catalysts[J]. Appl. Catal. A‒Gen., 2013, 467: 380-385
doi: 10.1016/j.apcata.2013.07.064
MENG T, MAO D S, GUO Q S, MA Z. Effect of the Si/Al ratios of nanocrystalline HZSM-5 zeolite on the performance in catalytic conversion of ethanol to propylene[J]. J. Nanosci. Nanotechnol., 2017, 17(6): 3779-3785
doi: 10.1166/jnn.2017.13992
ZHOU J, ZHANG N, MENG T, GUO Q S, XUE Z T, MAO D S. Fluoride-treated nano-HZSM-5 zeolite as a highly stable catalyst for the conversion of bioethanol to propylene[J]. Nanomaterials, 2024, 14(19): 1558
doi: 10.3390/nano14191558
SOUSA Z S B, VELOSO C O, HENRIQUES C A, TEIXEIRA DA SILVA V T. Ethanol conversion into olefins and aromatics over HZSM-5 zeolite: Influence of reaction conditions and surface reaction studies[J]. J. Mol. Catal. A‒Chem., 2016, 422: 266-274
doi: 10.1016/j.molcata.2016.03.005
HUANGFU J J, MAO D S, ZHAI X L, GUO Q S. Remarkably enhanced stability of HZSM-5 zeolite co-modified with alkaline and phosphorous for the selective conversion of bio-ethanol to propylene[J]. Appl. Catal. A‒Gen., 2016, 520: 99-104
doi: 10.1016/j.apcata.2016.04.016
HUANG H B, FANG T, LIU H, ZHOU H, CHEN D F, JIA W Z, LIU M, LI J H, ZHU Z R. Ethanol-to-hydrocarbons reaction over HZSM-5: Enhanced ethanol/ethylene into C3+ hydrocarbons conversion by pristine external Brönsted acid sites[J]. Microporous Mesoporous Mater., 2022, 335: 111824
doi: 10.1016/j.micromeso.2022.111824
ZHANG N, MAO D S, ZHAI X L. Selective conversion of bio-ethanol to propene over nano-HZSM-5 zeolite: Remarkably enhanced catalytic performance by fluorine modification[J]. Fuel Process. Technol., 2017, 167: 50-60
doi: 10.1016/j.fuproc.2017.06.028
SADEGHPOUR P, HAGHIGHI M, KHALEDI K. High-temperature efficient isomorphous substitution of boron into ZSM-5 nanostructure for selective and stable production of ethylene and propylene from methanol[J]. Mater. Chem. Phys., 2018, 217: 133-150
doi: 10.1016/j.matchemphys.2018.06.048
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
Yang ZHOU , Lili YAN , Wenjuan ZHANG , Pinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
Zhuwei Yang , Linsen Li , Yijie Lin , Xinyuan Tao , Xiao Liu , Lei Chen , Ming Ma , Li Lin , Riguang Zhang , Jiayuan Li , Zhao Jiang . Regulating the Oxygen Vacancies in Ni-CexZr1-xO2/ZSM-5 to Improve the Long-term Stability for Methane Dry Reforming. Chinese Journal of Structural Chemistry, 2025, 44(8): 100632-100632. doi: 10.1016/j.cjsc.2025.100632
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-0. doi: 10.3866/PKU.WHXB202406012
Yuan Chun , Yongmei Liu , Fuping Tian , Hong Yuan , Shu'e Song , Wanchun Zhu , Yunchao Li , Zhongyun Wu , Xiaokui Wang , Yunshan Bai , Li Wang , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364