Citation: Yi RU, Tao MENG, Zhaoteng XUE, Dongsen MAO. Synergistic catalysis of Al distribution and pore structure in ZSM-5 zeolite for bioethanol-to-propylene[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 247-262. doi: 10.11862/CJIC.20250255 shu

Synergistic catalysis of Al distribution and pore structure in ZSM-5 zeolite for bioethanol-to-propylene

Figures(14)

  • Magnesium (Mg) was successfully incorporated into the ZSM-5 zeolite framework via hydrothermal synthesis, and its effects on pore structure, acidity, framework aluminum (AlF) distribution, and catalytic performance in bioethanol-to-propylene (ETP) conversion were systematically investigated. It was demonstrated that the mesopore volume was significantly enhanced while the crystallinity was slightly reduced with increasing Mg content. By temperature programmed desorption (NH3-TPD) and pyridine infrared (Py-IR) analyses, it was revealed that the total acid amount and strong acid strength were effectively decreased by Mg incorporation, while the Brønsted-to-Lewis acid ratio was increased. Through solid-state nuclear magnetic resonance (27Al MAS NMR) and UV-visible diffuse reflectance spectra (UV-Vis DRS) characterizations, it was indicated that the migration of AlF from channel intersections to sinusoidal or straight channels was promoted by Mg, and the formation of aluminum pairs (Alpair) was reduced. In the ETP reaction, the 2-MgHZ5 catalyst with moderate Mg modification demonstrated superior performance, exhibiting an enhanced propylene selectivity (29.5%) compared to the unmodified ZSM-5(HZ5) (26.8%), along with a twofold extension in the time during which the propylene selectivity was maintained at no less than 10% (30 vs 15 h for HZ5). This improved catalytic performance was attributed to its moderate acid strength, well-developed mesoporous structure, and optimized aluminum distribution, through which aromatization and coke formation were collectively suppressed while the olefin-cyclopentadiene cycle pathway was promoted.
  • 加载中
    1. [1]

      PHUNG T K, PHAM T L M, VU K B, BUSCA G. (Bio)propylene production processes: A critical review[J]. J. Environ. Chem. Eng., 2021, 9(4): 105673  doi: 10.1016/j.jece.2021.105673

    2. [2]

      ACHAKULWISUT P, ERICKSON P, GUIVARCH C, SCHAEFFER R, BRUTSCHIN E, PYE S. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions[J]. Nat. Commun., 2023, 14(1): 5425  doi: 10.1038/s41467-023-41105-z

    3. [3]

      CHERWOO L, GUPTA I, FLORA G, VERMA R, KAPIL M, ARYA S K, RAVINDRAN B, KHOO K S, BHATIA S K, CHANG S W, NGAMCHARUSSRIVICHAI C, ASHOKKUMAR V. Biofuels an alternative to traditional fossil fuels: A comprehensive review[J]. Sustain. Energy Technol. Assess., 2023, 60: 103503

    4. [4]

      MORAD M H. Current status and future perspectives of efficient catalytic conversion of bioethanol to value-added chemicals and fuels[J]. Arab. J. Chem., 2024, 17(2): 105560

    5. [5]

      XIA W, WANG F F, MU X C, CHEN K, WANG L X. Ethanol conversion reaction over M/ZrO2 (M=Mg, Ca, Sr, and Ba) catalysts: Effect of alkaline earth metal introduction[J]. React. Kinet. Mech. Catal., 2018, 124(1): 363-374  doi: 10.1007/s11144-018-1353-9

    6. [6]

      VAN DER BORGHT K, BATCHU R, GALVITA V V, ALEXOPOULOS K, REYNIERS M F, THYBAUT J W, MARIN G B. Insights into the reaction mechanism of ethanol conversion into hydrocarbons on H-ZSM-5[J]. Angew. Chem. ‒Int. Edit., 2016, 55(41): 12817-12821  doi: 10.1002/anie.201607230

    7. [7]

      XIA W, WANG X, LI S S, JIANG Z H, CHEN K, LIU D. Multiple synergistic roles of Zr modification on ZSM-5 in performant and stable catalyst for ethanol conversion to propene[J]. Energy, 2024, 288: 129910  doi: 10.1016/j.energy.2023.129910

    8. [8]

      LIN Y Y, YIN H T, CHEN S, WANG J Q, LI W, GAO Y N, SHENG M Y, JIANG N Z. Research and progress in catalyst modification for ZSM-5 zeolite catalyzed ethanol-to hydrocarbon reaction[J]. J. Ind. Eng. Chem., 2025, 146: 87-108  doi: 10.1016/j.jiec.2024.11.031

    9. [9]

      PHUNG T K, LAGAZZO A, RIVERO CRESPO M Á, ESCRIBANO V S, BUSCA G. A study of commercial transition aluminas and of their catalytic activity in the dehydration of ethanol[J]. J. Catal., 2014, 311: 102-113  doi: 10.1016/j.jcat.2013.11.010

    10. [10]

      PHUNG T K, HERNÁNDEZ L P, BUSCA G. Conversion of ethanol over transition metal oxide catalysts: Effect of tungsta addition on catalytic behaviour of titania and zirconia[J]. Appl. Catal. A‒Gen., 2015, 489: 180-187  doi: 10.1016/j.apcata.2014.10.025

    11. [11]

      XIA W, WANG J G, WANG L X, QIAN C, MA C, HUANG Y X, FAN Y, HOU M D, CHEN K. Ethylene and propylene production from ethanol over Sr/ZSM-5 catalysts: A combined experimental and computational study[J]. Appl. Catal. B‒Environ., 2021, 294: 120242  doi: 10.1016/j.apcatb.2021.120242

    12. [12]

      DUAN C, ZHANG X, ZHOU R, HUA Y, ZHANG L, CHEN J. Comparative studies of ethanol to propylene over HZSM-5/SAPO-34 catalysts prepared by hydrothermal synthesis and physical mixture[J]. Fuel Process. Technol., 2013, 108: 31-40  doi: 10.1016/j.fuproc.2012.03.015

    13. [13]

      XUE F Q, MIAO C X, YUE Y H, HUA W M, GAO Z. Direct conversion of bio-ethanol to propylene in high yield over the composite of In2O3 and zeolite beta[J]. Green Chem., 2017, 19(23): 5582-5590  doi: 10.1039/C7GC02400B

    14. [14]

      XUE F Q, MIAO C X, YUE Y H, HUA W M, GAO Z. Sc2O3-promoted composite of In2O3 and Beta zeolite for direct conversion of bio-ethanol to propylene[J]. Fuel Process. Technol., 2019, 186: 110-115  doi: 10.1016/j.fuproc.2018.12.024

    15. [15]

      IWAMOTO M. Selective catalytic conversion of bio-ethanol to propene: A review of catalysts and reaction pathways[J]. Catal. Today, 2015, 242: 243-248  doi: 10.1016/j.cattod.2014.06.031

    16. [16]

      TREPS L, GOMEZ A, DE BRUIN T, CHIZALLET C. Environment, stability and acidity of external surface sites of silicalite-1 and ZSM-5 micro and nano slabs, sheets, and crystals[J]. ACS Catal., 2020, 10(5): 3297-3312  doi: 10.1021/acscatal.9b05103

    17. [17]

      DĚDEČEK J, TABOR E, SKLENAK S. Tuning the aluminum distribution in zeolites to increase their performance in acid-catalyzed reactions[J]. ChemSusChem, 2019, 12(3): 556-576  doi: 10.1002/cssc.201801959

    18. [18]

      YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J. Phys. Chem. C, 2015, 119(27): 15303-15315  doi: 10.1021/acs.jpcc.5b03289

    19. [19]

      EZENWA S, MONTALVO-CASTRO H, HOFFMAN A J, LOCHT H, ATTEBERY J, JAN D Y, SCHMITHORST M, CHMELKA B, HIBBITTS D, GOUNDER R. Synthetic placement of active sites in MFI zeolites for selective toluene methylation to para-xylene[J]. J. Am. Chem. Soc., 2024, 146(15): 10666-10678  doi: 10.1021/jacs.4c00373

    20. [20]

      LI Z X, DAI W J, LIU X Y, WANG F, LI R F. Insight into structure and reactivity of ZSM-5[J]. Chem. Ind. Eng. Prog., 2025, 44(2): 788-808

    21. [21]

      LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting[J]. ACS Catal., 2016, 6(11): 7311-7325  doi: 10.1021/acscatal.6b01771

    22. [22]

      TANG X M, CHEN W, DONG W J, LIU Z Q, YUAN J M, XIA H Q, YI X F, ZHENG A M. Framework aluminum distribution in ZSM-5 zeolite directed by organic structure-directing agents: A theoretical investigation[J]. Catal. Today, 2022, 405-406: 101-110  doi: 10.1016/j.cattod.2022.06.027

    23. [23]

      BILIGETU T, WANG Y, NISHITOBA T, OTOMO R, PARK S, MOCHIZUKI H, KONDO J N, TATSUMI T, YOKOI T. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols[J]. J. Catal., 2017, 353: 1-10

    24. [24]

      KIM S, PARK G, WOO M H, KWAK G, KIM S K. Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion[J]. ACS Catal., 2019, 9(4): 2880-2892  doi: 10.1021/acscatal.8b04493

    25. [25]

      TUO J, FAN S B, YANG N W, CHENG S P, WANG D, ZHANG J L. Direct synthesis of [B, H]ZSM-5 by a solid-phase method: AlF siting and catalytic performance in the MTP reaction[J]. Catal. Sci. Technol., 2020, 10(20): 7034-7045  doi: 10.1039/D0CY01056A

    26. [26]

      FENG R, HU X Y, YAN X L, WU J J. Preparation of boron and fluorine doped ZSM-5 zeolites for methanol to propylene reaction[J]. Chinese J. Inorg. Chem., 2020, 36(9): 1791-1803  doi: 10.11862/CJIC.20240026

    27. [27]

      LI J L, GAO M K, YAN W F, YU J H. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties[J]. Chem. Sci., 2023, 14(8): 1935-1959  doi: 10.1039/D2SC06010H

    28. [28]

      XING M J, ZHANG L, CAO J, HAN Y L, WANG F, HAO K, HUANG L H, TAO Z C, WEN X D, YANG Y, LI Y W. Impact of the aluminum species state on Al pairs formation in the ZSM-5 framework[J]. Microporous Mesoporous Mater., 2022, 334: 111769  doi: 10.1016/j.micromeso.2022.111769

    29. [29]

      FENG R, SHEN J M, LIU B, LI T B, HU X Y, YAN X L, ZHANG Z D. Synthesis of ZSM-5 zeolites with low silica-to-alumina ratio and its performance in the cracking of n-heptane[J]. Chinese J. Inorg. Chem., 2023, 39(11): 2042-2054  doi: 10.11862/CJIC.2023.183

    30. [30]

      SHAMZHY M, OPANASENKO M, CONCEPCIÓN P, MARTÍNEZ A. New trends in tailoring active sites in zeolite-based catalysts[J]. Chem. Soc. Rev., 2019, 48(4): 1095-1149  doi: 10.1039/C8CS00887F

    31. [31]

      CUI N, GUO H L, ZHOU J, LI L H, GUO L M, HUA Z L. Regulation of framework Al distribution of high-silica hierarchically structured ZSM‑5 zeolites by boron‑modification and its effect on materials catalytic performance in methanol‑to‑propylene reaction[J]. Microporous Mesoporous Mater., 2020, 306: 110411  doi: 10.1016/j.micromeso.2020.110411

    32. [32]

      LIU X H, YAN C, WANG Y L, ZHANG P, YAN S Y, ZHUANG J G, ZHU X D, YANG F. Simultaneously enhanced aromatics selectivity and catalyst lifetime in methanol aromatization over [Zn, Al]-ZSM-5 via isomorphous substitution with optimized acidic properties and pore structure[J]. Fuel, 2023, 349: 128758  doi: 10.1016/j.fuel.2023.128758

    33. [33]

      TONG S L, SHI H B, JIANG H Y, ZHAO D M, CHEN X G, FENG X, ZHOU X, ZHAO H, YAN H, CHEN X B, LIU Y B, YANG C H. Tuning the framework Al distribution of ZSM-5 by Sn􀃯 to enhance the catalytic performance in 1-hexene cracking[J]. Ind. Eng. Chem. Res., 2025, 64(6): 3204-3216  doi: 10.1021/acs.iecr.4c03883

    34. [34]

      CHEN X S, JIANG R L, HOU H L, ZHOU Z H, WANG X W. Facile synthesis of an Mg-incorporated ZSM-5 zeolite from dual silicon sources and its application for conversion of methanol to olefins[J]. ChemistrySelect, 2021, 6(28): 7056-7061  doi: 10.1002/slct.202100802

    35. [35]

      CHEN K, WU X Q, ZHAO J Y, ZHAO H J, LI A H, ZHANG Q, XIA T, LIU P, MENG B, SONG W Y, ZHU X C, LIU H H, GAO X H, XU C M, SHEN B J. Organic-free modulation of the framework Al distribution in ZSM-5 zeolite by magnesium participated synthesis and its impact on the catalytic cracking reaction of alkanes[J]. J. Catal., 2022, 413: 735-750  doi: 10.1016/j.jcat.2022.07.032

    36. [36]

      DĚDEČEK J, TABOR E, SKLENAK S. Tuning the aluminum distribution in zeolites to increase their performance in acid-catalyzed reactions[J]. ChemSusChem, 2018, 12(3): 556-576

    37. [37]

      GOŁĄBEK K, TABOR E, PASHKOVA V, DEDECEK J, TARACH K, GÓRA-MAREK K. The proximity of aluminium atoms influences the reaction pathway of ethanol transformation over zeolite ZSM-5[J]. Commun. Chem., 2020, 3(1): 25  doi: 10.1038/s42004-020-0268-3

    38. [38]

      BORADE R, SAYARI A, ADNOT A, KALIAGUINE S. Characterization of acidity in ZSM-5 zeolites: An X-ray photoelectron and IR spectroscopy study[J]. J. Phys. Chem., 1990, 94(15): 5989-5994  doi: 10.1021/j100378a068

    39. [39]

      HUANG F T, MIAO L, LI L, JIA W Z, HONG Z, ZHAO G Q, ZHU Z R. Fabrication of hierarchical ZSM-5 with tailorable AlF distribution by metal‑containing anions participating in synthesis and their impacts on the alkylation of toluene with ethanol[J]. Ind. Eng. Chem. Res., 2023, 62(29): 11367-11377  doi: 10.1021/acs.iecr.3c01073

    40. [40]

      LI C G, VIDAL-MOYA A, MIGUEL P J, DEDECEK J, BORONAT M, CORMA A. Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications[J]. ACS Catal., 2018, 8(8): 7688-7697  doi: 10.1021/acscatal.8b02112

    41. [41]

      MENG B, REN S Y, LIU X Y, ZHANG L, HU Q X, WANG J J, GUO Q X, SHEN B J. Synthesis of USY zeolite with a high mesoporous content by introducing Sn and enhanced catalytic performance[J]. Ind. Eng. Chem. Res., 2020, 59(13): 5712-5719  doi: 10.1021/acs.iecr.0c00051

    42. [42]

      FURUMOTO Y, HARADA Y, TSUNOJI N, TAKAHASHI A, FUJITANI T, IDE Y, SADAKANE M, SANO T. Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene[J]. Appl. Catal. A‒Gen., 2011, 399(1/2): 262-267

    43. [43]

      GAO J, GUO J Z, LIANG D, HOU Z Y, FEI J H, ZHENG X M. Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined CeO2-ZrO2/SiO2 supported Ni catalysts[J]. Int. J. Hydrog. Energy, 2008, 33(20): 5493-5500  doi: 10.1016/j.ijhydene.2008.07.040

    44. [44]

      NIE R F, LEI H, PAN S Y, WANG L N, FEI J H, HOU Z Y. Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2012, 96: 419-425  doi: 10.1016/j.fuel.2011.12.048

    45. [45]

      SANG J C, WANG Y Q, ZHANG X, SU X M, LI Y N, WEN M H, REN G M. One-pot synthesis of Mg-incorporated ZSM-5 nanosheet via EDTA-MgNa2 as an efficient catalyst for methanol-to-propylene reaction[J]. Chem. Eng. J., 2025, 520: 165918  doi: 10.1016/j.cej.2025.165918

    46. [46]

      JONES A J, IGLESIA E. The strength of Brønsted acid sites in microporous aluminosilicates[J]. ACS Catal., 2015, 5(10): 5741-5755  doi: 10.1021/acscatal.5b01133

    47. [47]

      EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J. Catal., 1993, 141(2): 347-354  doi: 10.1006/jcat.1993.1145

    48. [48]

      MAO D S, YANG W M, XIA J C, ZHANG B, SONG Q Y, CHEN Q L. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component[J]. J. Catal., 2005, 230(1): 140-149  doi: 10.1016/j.jcat.2004.12.007

    49. [49]

      CHEN K Z, GAN Z H, HORSTMEIER S, WHITE J L. Distribution of aluminum species in zeolite catalysts: 27Al NMR of framework, partially-coordinated framework, and non-framework moieties[J]. J. Am. Chem. Soc., 2021, 143(17): 6669-6680  doi: 10.1021/jacs.1c02361

    50. [50]

      YU Z W, LI S H, WANG Q, ZHENG A M, JUN X, CHEN L, DENG F. Brønsted/Lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy[J]. J. Phys. Chem. C, 2011, 115(45): 22320-22327  doi: 10.1021/jp203923z

    51. [51]

      DEDECEK J, KAUCKY D, WICHTERLOVA B. Al distribution in ZSM-5 zeolites: An experimental study[J]. Chem. Commun., 2001(11): 970-971  doi: 10.1039/b009589n

    52. [52]

      WANG S, WANG P F, QIN Z F, CHEN Y Y, DONG M, LI J F, ZHANG K, LIU P, WANG J G, FAN W B. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11[J]. ACS Catal., 2018, 8(6): 5485-5505  doi: 10.1021/acscatal.8b01054

    53. [53]

      TAKAHASHI A, XIA W, WU Q, FURUKAWA T, NAKAMURA I, SHIMADA H, FUJITANI T. Difference between the mechanisms of propylene production from methanol and ethanol over ZSM-5 catalysts[J]. Appl. Catal. A‒Gen., 2013, 467: 380-385  doi: 10.1016/j.apcata.2013.07.064

    54. [54]

      MENG T, MAO D S, GUO Q S, MA Z. Effect of the Si/Al ratios of nanocrystalline HZSM-5 zeolite on the performance in catalytic conversion of ethanol to propylene[J]. J. Nanosci. Nanotechnol., 2017, 17(6): 3779-3785  doi: 10.1166/jnn.2017.13992

    55. [55]

      ZHOU J, ZHANG N, MENG T, GUO Q S, XUE Z T, MAO D S. Fluoride-treated nano-HZSM-5 zeolite as a highly stable catalyst for the conversion of bioethanol to propylene[J]. Nanomaterials, 2024, 14(19): 1558  doi: 10.3390/nano14191558

    56. [56]

      SOUSA Z S B, VELOSO C O, HENRIQUES C A, TEIXEIRA DA SILVA V T. Ethanol conversion into olefins and aromatics over HZSM-5 zeolite: Influence of reaction conditions and surface reaction studies[J]. J. Mol. Catal. A‒Chem., 2016, 422: 266-274  doi: 10.1016/j.molcata.2016.03.005

    57. [57]

      HUANGFU J J, MAO D S, ZHAI X L, GUO Q S. Remarkably enhanced stability of HZSM-5 zeolite co-modified with alkaline and phosphorous for the selective conversion of bio-ethanol to propylene[J]. Appl. Catal. A‒Gen., 2016, 520: 99-104  doi: 10.1016/j.apcata.2016.04.016

    58. [58]

      HUANG H B, FANG T, LIU H, ZHOU H, CHEN D F, JIA W Z, LIU M, LI J H, ZHU Z R. Ethanol-to-hydrocarbons reaction over HZSM-5: Enhanced ethanol/ethylene into C3+ hydrocarbons conversion by pristine external Brönsted acid sites[J]. Microporous Mesoporous Mater., 2022, 335: 111824  doi: 10.1016/j.micromeso.2022.111824

    59. [59]

      ZHANG N, MAO D S, ZHAI X L. Selective conversion of bio-ethanol to propene over nano-HZSM-5 zeolite: Remarkably enhanced catalytic performance by fluorine modification[J]. Fuel Process. Technol., 2017, 167: 50-60  doi: 10.1016/j.fuproc.2017.06.028

    60. [60]

      SADEGHPOUR P, HAGHIGHI M, KHALEDI K. High-temperature efficient isomorphous substitution of boron into ZSM-5 nanostructure for selective and stable production of ethylene and propylene from methanol[J]. Mater. Chem. Phys., 2018, 217: 133-150  doi: 10.1016/j.matchemphys.2018.06.048

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    3. [3]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    8. [8]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    9. [9]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    10. [10]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    11. [11]

      Zhuwei Yang Linsen Li Yijie Lin Xinyuan Tao Xiao Liu Lei Chen Ming Ma Li Lin Riguang Zhang Jiayuan Li Zhao Jiang . Regulating the Oxygen Vacancies in Ni-CexZr1-xO2/ZSM-5 to Improve the Long-term Stability for Methane Dry Reforming. Chinese Journal of Structural Chemistry, 2025, 44(8): 100632-100632. doi: 10.1016/j.cjsc.2025.100632

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    14. [14]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-0. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    16. [16]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    17. [17]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return