Citation: Chengyu JIANG, Xufeng LIU. Synthesis, structural characterization, electrocatalytic proton reduction, and fungicidal activity of thiazole-containing di-iron complexes[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 355-364. doi: 10.11862/CJIC.20250253 shu

Synthesis, structural characterization, electrocatalytic proton reduction, and fungicidal activity of thiazole-containing di-iron complexes

  • Corresponding author: Xufeng LIU, nkxfliu@126.com
  • Received Date: 3 August 2025
    Revised Date: 22 November 2025

Figures(6)

  • This paper reports the preparation of three di-iron complexes containing a thiazole moiety. Esterification of complex [Fe2(CO)6(μ-SCH2CH(CH2OH)S)] (1) with 4-methylthiazole-5-carboxylic acid gave the corresponding ester [Fe2(CO)6(μ-tedt)] (2), where tedt=SCH2CH(CH2OOC(5-C3HNSCH3))S. Further reactions of complex 2 with tri(p-tolyl)phosphine (tp) or tris(4-fluorophenyl)phosphine (fp) gave the phosphine-substituted derivatives [Fe2(CO)5(tp)(μ-tedt)] (3) and [Fe2(CO)5(fp)(μ-tedt)] (4). The structures of the newly prepared complexes were elucidated by elemental analysis, NMR, IR, and X-ray photoelectron spectroscopy. Moreover, single-crystal X-ray diffraction analysis confirmed their molecular structures, showing that they contain a di-iron core ligated by a bridged dithiolate bearing a thiazole moiety and terminal carbonyls. The electrochemical and electrocatalytic proton reduction were probed by cyclic voltammetry, revealing that three complexes can catalyze the reduction of protons to H2 under the electrochemical conditions. For comparison, complex 4 possessed the best efficiency with a turnover frequency of 23.5 s-1 at 10 mmol·L-1 HOAc concentration. In addition, the fungicidal activity of these complexes was also investigated in this study.
  • 加载中
    1. [1]

      FREY M. Hydrogenases: Hydrogen-activating enzymes[J]. ChemBioChem, 2002, 3(2/3): 153-160

    2. [2]

      DU P W, SCHNEIDER J, JAROSZ P, EISENBERG R. Photocatalytic generation of hydrogen from water using a platinum (Ⅱ) terpyridyl acetylide chromophore[J]. J. Am. Chem. Soc., 2006, 128(24): 7726-7727  doi: 10.1021/ja0610683

    3. [3]

      NA Y, WANG M, PAN J X, ZHANG P, ÅKERMARK B, SUN L C. Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes[J]. Inorg. Chem., 2008, 47(7): 2805-2810  doi: 10.1021/ic702010w

    4. [4]

      LI X Q, WANG M, ZHANG S P, PAN J X, NA Y, LIU J H, ÅKERMARK B, SUN L C. Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: Photo-induced electron transfer and hydrogen generation[J]. J. Phys. Chem. B, 2008, 112(27): 8198-8202  doi: 10.1021/jp710498v

    5. [5]

      ZHONG W, WU L, JIANG W D, LI Y L, MOOKAN N, LIU X M. Proton-coupled electron transfer in the reduction of diiron hexacarbonyl complexes and its enhancement on the electrocatalytic reduction of protons by a pendant basic group[J]. Dalton Trans., 2019, 48(36): 13711-13718  doi: 10.1039/C9DT02058F

    6. [6]

      ZHAO P H, JIN B, WANG S J, WANG D, GUO Y, HU T P. Variation of dithiolate bridges in carbon nanotube-attached diiron chelate compounds for electrocatalytic hydrogen evolution reaction[J]. Appl. Surf. Sci., 2023, 639: 158276  doi: 10.1016/j.apsusc.2023.158276

    7. [7]

      TARD C, PICKETT C J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases[J]. Chem. Rev., 2009, 109(6): 2245-2274  doi: 10.1021/cr800542q

    8. [8]

      LUBITZ W, OGATA H, RÜDIGER O, REIJERSE E. Hydrogenases[J]. Chem. Rev., 2014, 114(8): 4081-4148  doi: 10.1021/cr4005814

    9. [9]

      PETERS J W, LANZILOTTA W N, LEMON B J, SEEFELDT L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution[J]. Science, 1998, 282(5395): 1853-1858  doi: 10.1126/science.282.5395.1853

    10. [10]

      NICOLET Y, PIRAS C, LEGRAND P, HATCHIKIAN C E, FONTECILLA-CAMPS J C. Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center[J]. Structure, 1999, 7(1): 13-23  doi: 10.1016/S0969-2126(99)80005-7

    11. [11]

      SCHMIDT M, CONTAKES S M, RAUCHFUSS T B. First generation analogues of the binuclear site in the Fe-only hydrogenases: Fe2(μ-SR)2(CO)4(CN)22‒[J]. J. Am. Chem. Soc., 1999, 121(4): 9736-9737

    12. [12]

      MEJIA-RODRIGUEZ R, CHONG D, REIBENSPIES J H, SORIAGA M P, DARENSBOURG M Y. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: Iron hydrogenase model complexes[J]. J. Am. Chem. Soc., 2004, 126(38): 12004-12014  doi: 10.1021/ja039394v

    13. [13]

      AHMED M E, NAYEK A, KRIžAN A, COUTARD N, MOROZAN A, DEY S G, LOMOTH R, HAMMARSTRöM L, ARTERO V, DEY A. A bidirectional bioinspired [FeFe]-hydrogenase model[J]. J. Am. Chem. Soc., 2022, 144(8): 3614-3625  doi: 10.1021/jacs.1c12605

    14. [14]

      ORTON G R F, RINGENBERG M R, HOGARTH G. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: Ferrocene-bridged dithiolate complexes [Fe2(CO)6(μ-EC5H4FeC5H4E)] (E=S, Se)[J]. J. Organomet. Chem., 2022, 978: 122472  doi: 10.1016/j.jorganchem.2022.122472

    15. [15]

      MERINERO A D, COLLADO A, CASARRUBIOS L, GÓMEZ-GALLEGO M, DE ARELLANO C R, CABALLERO A, ZAPATA F, SIERRA M A. Triazole-containing [FeFe] hydrogenase mimics: Synthesis and electrocatalytic behavior[J]. Inorg. Chem., 2019, 58(23): 16267-16278  doi: 10.1021/acs.inorgchem.9b02813

    16. [16]

      ORTAN G R F, GHOSH S, ALKER L, SARKER J C, PUGH D, RICHMOND M G, HARTL F, HOGARTH G. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: Synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates[J]. Dalton Trans., 2022, 51(25): 9748-9769  doi: 10.1039/D2DT00419D

    17. [17]

      SOLIMAN N N, SALAM M A E, FADDA A A, ABDEL-MOTAAL M. Synthesis, characterization, and biochemical impacts of some new bioactive sulfonamide thiazole derivatives as potential insecticidal agents against the cotton leafworm, Spodoptera littoralis[J]. J. Agric. Food Chem., 2020, 68(21): 5790-5805  doi: 10.1021/acs.jafc.9b06394

    18. [18]

      LIU H, XU T, XUE Z H, HUANG M J, WANG T T, ZHANG M M, YANG R G, GUO Y. Current development of thiazole-containing compounds as potential antibacterials against methicillin-resistant Staphylococcus aureus[J]. ACS Infect. Dis., 2024, 10(2): 350-370  doi: 10.1021/acsinfecdis.3c00647

    19. [19]

      GUO X F, ZHAO B, FAN Z J, YANG D Y, ZHANG N L, WU Q F, YU B, ZHOU S, KALININA T A, BELSKAYA N P. Discovery of novel thiazole carboxamides as antifungal succinate dehydrogenase inhibitors[J]. J. Agric. Food Chem., 2019, 67(6);1647-1655  doi: 10.1021/acs.jafc.8b06935

    20. [20]

      LIU N, WAN Y H, BAI Z D, HAN J C, BAI H D, LI H, WANG Y Y, BAI L Y, LUO D F, LI Z R. Design, synthesis, and herbicidal activities of N-(5-(3,5-methoxyphenyl)-(thiazole-2-yl))phenoxyacetamide derivatives[J]. J. Agric. Food Chem., 2024, 72(42): 23097-23107  doi: 10.1021/acs.jafc.4c01824

    21. [21]

      RAZAVET M, LE CLOIREC A, DAVIES S C, HUGHES D L, PICKETT C J. X-ray crystallographic analysis of D, L-[Fe2{SCH2CH(CH2OH)S}(CO)6] reveals a hydrogen-bonded cyclic hexamer with ordered optical centres[J]. Dalton Trans., 2001: 3551-3552

    22. [22]

      TONG J Y, MIN L J, SUN N B, WU H K, YU S J, BIAN Q, LIU X H. Facile synthesis of novel quinolin-8-amine derivatives: Crystallographic study, in silico and antifungal investigation[J]. Chem. Biol. Technol. Agric., 2025, 12: 134  doi: 10.1186/s40538-025-00853-4

    23. [23]

      ZHAO P H, LI J R, MA Z Y, HAN H F, QU Y P, LU B P. Diiron azadithiolate clusters supported on carbon nanotubes for efficient electrocatalytic proton reduction[J]. Inorg. Chem. Front., 2021, 8(8): 2107-2118  doi: 10.1039/D0QI01415J

    24. [24]

      GAO Y, WANG S J, GUO Z, WANG Y Z, QU Y P, ZHAO P H. Covalent versus noncovalent attachments of [FeFe]-hydrogenase models onto carbon nanotubes for aqueous hydrogen evolution reaction[J]. J. Inorg. Biochem., 2024, 259: 112665  doi: 10.1016/j.jinorgbio.2024.112665

    25. [25]

      LIU X F, XU B, XU H, LI Y L. Diiron butane-1, 2-dithiolate complexes with phosphine ligands: Preparation, crystal structures, and electrochemical catalytic performance[J]. Chinese J. Inorg. Chem., 2022, 38(12): 2521-2529

    26. [26]

      YAN L, HU K, LIU X F, LI Y L, LIU X H, JIANG Z Q. Diiron ethane-1, 2-dithiolate complexes with 1, 2, 3-thiadiazole moiety: Synthesis, X-ray crystal structures, electrochemistry and fungicidal activity[J]. Appl. Organomet. Chem., 2021, 35(2): e6084  doi: 10.1002/aoc.6084

    27. [27]

      CHEN F Y, HE J, YU X Y, WANG Z, MU C, LIU X F, LI Y L, JIANG Z Q, WU H K. Electrocatalytic properties of diiron ethanedithiolate complexes containing benzoate ester[J]. Appl. Organomet. Chem., 2018, 32(12): e4549  doi: 10.1002/aoc.4549

    28. [28]

      LIN H M, LI J R, MU C, LI A, LIU X F, ZHAO P H, LI Y L, JIANG Z Q, WU H K. Synthesis, characterization, and electrochemistry of monophosphine-containing diiron propane-1, 2-dithiolate complexes related to the active site of [FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2019, 33(11): e5196  doi: 10.1002/aoc.5196

    29. [29]

      LIU X F, XU B, XU H, LI Y L. Synthesis, characterization, and electrocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand[J]. Chinese J. Inorg. Chem., 2023, 39(8): 1619-1627

    30. [30]

      LIU X F, LI Y L, LIU X H. Synthesis, characterization, electrocatalytic properties, and antifungal activity of isoxazole-containing di-iron complexes[J]. Chinese J. Inorg. Chem., 2023, 39(12): 2367-2376

    31. [31]

      GHOSH S, HOGARTH G, HOLLINGSWORTH N, HOLT K B, RICHARD I, RICHMOND M G, SANCHEZ B E, UNWIN D. Models of the iron-only hydrogenase: A comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts[J]. Dalton Trans., 2013, 42(19): 6775-6792  doi: 10.1039/c3dt50147g

    32. [32]

      ZHAO P H, MA Z Y, HU M Y, HE J, WANG Y Z, JING X B, CHEN H Y, LI Y L. PNP-chelated and -bridged diiron dithiolate complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} together with related monophosphine complexes for the [2Fe]H subsite of [FeFe]-hydrogenases: Preparation, structure, and electrocatalysis[J]. Organometallics, 2018, 37(8): 1280-1290  doi: 10.1021/acs.organomet.8b00030

    33. [33]

      DEY S, RANA A, DEY S G, DEY A. Electrochemical hydrogen production in acidic water by an azadithiolate bridged synthetic hydrogenese mimic: Role of aqueous solvation in lowering overpotential[J]. ACS Catal., 2013, 3(3): 429-436  doi: 10.1021/cs300835a

    34. [34]

      AHMED M E, DEY S, MONDAL B, DEY A. H2 evolution catalyzed by a FeFe-hydrogenase synthetic model covalently attached to graphite surfaces[J]. Chem. Commun., 2017, 53(58): 8188-8191  doi: 10.1039/C7CC04281G

    35. [35]

      JIN B, TAN X, ZHANG X X, WANG Z Y, QU Y P, HE Y B, HU T P, ZHAO P H. Substituent effects in carbon-nanotube-supported diiron monophosphine complexes for hydrogen evolution reaction[J]. Electrochim. Acta, 2022, 434: 141325  doi: 10.1016/j.electacta.2022.141325

    36. [36]

      CHONG D, GEORGAKAKI I P, MEJIA-RODRIGUEZ R, SANABRIA-CHINCHILLA J, SORIAGA M P, DARENSBOURG M Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: Structure/function relationships[J]. Dalton Trans., 2003: 4158-4163

    37. [37]

      GLOAGUEN F, LAWRENCE J D, RAUCHFUSS T B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001, 123(38): 9476-9477  doi: 10.1021/ja016516f

    38. [38]

      BAI S F, DU X M, TIAN W J, XU H, ZHANG R F, MA C L, WANG Y L, LÜ S, LI Q L, LI Y L. Di-, tri- and tetraphosphine-substituted Fe/Se carbonyls: Synthesis, characterization and electrochemical properties[J]. Dalton Trans., 2022, 51(29): 11125-11134  doi: 10.1039/D2DT01376B

    39. [39]

      ZHU L J, LIU X F. Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands[J]. Chinese J. Inorg. Chem., 2025, 41(2): 321-328

    40. [40]

      YAN L, YANG J, Lü S, LIU X F, LI Y L, LIU X H, JIANG Z Q. Phosphine-containing diiron propane-1, 2-dithiolate derivatives: Synthesis, spectroscopy, X-ray crystal structures, and electrochemistry[J]. Catal. Lett., 2021, 151(7): 1857-1867  doi: 10.1007/s10562-020-03450-2

    41. [41]

      HOGARTH G. An unexpected leading role for [Fe2(CO)6(μ-pdt)] in our understanding of [FeFe]-H2ases and the search for clean hydrogen production[J]. Coord. Chem. Rev., 2023, 490: 215174  doi: 10.1016/j.ccr.2023.215174

    42. [42]

      LÜ S, HUANG H L, ZHANG R F, MA C L, LI Q L, HE J, YANG J, LI T, LI Y L. Phosphine-substituted Fe-Te clusters related to the active site of [FeFe]-H2ases[J]. Inorg. Chem. Front., 2020, 7(12): 2352-2361  doi: 10.1039/D0QI00276C

    43. [43]

      ZHU L J, LIU X F. Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine[J]. Chinese J. Inorg. Chem., 2025, 41(5): 939-947

    44. [44]

      HELM M L, STEWART M P, BULLOCK R M, DUBOIS M R, DUBOIS D L. A synthetic nickel electrocatalyst with a turnover frequency above 100, 000 s-1 for H2 production[J]. Science, 2011, 333(6044): 863-866  doi: 10.1126/science.1205864

    45. [45]

      LIU X H, QIAO L, ZHAI Z W, CAI P P, CANTRELL C L, TAN C X, WENG J Q, HAN L, WU H K. Novel 4-pyrazole carboxamide derivatives containing flexible chain motif: Design, synthesis and antifungal activity[J]. Pest Manag. Sci., 2019, 75(11): 2892-2900  doi: 10.1002/ps.5463

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Yingyue ZHANGLiuqing KANGYating YANGXiaofen GUANWenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100

    4. [4]

      Jiarong ZHUXiaohua ZHANGXinting XIONGXuliang NIEXiuying SONGMiaomiao ZHANGDayong PENGXiuguang YI . Crystal structure, Hirshfeld surface analysis, and antifungal activity of five complexes based on 2,5-bis(carboxymethoxy)terephthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2358-2370. doi: 10.11862/CJIC.20250150

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    9. [9]

      Zihe SONGJinjin ZHAONing RENJianjun ZHANG . Crystal structure, thermal analysis, and luminescence properties of six heterocyclic lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 181-192. doi: 10.11862/CJIC.20250126

    10. [10]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    14. [14]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    15. [15]

      Yinxia SUNLiping LIUXue BAIYu SUNWanhong SUNZhepeng DENGJianghai CHENJianjun WANGLi XUShuzhen ZHANG . Synthesis and crystal structures of Co(Ⅱ)/Cu(Ⅱ) coordination polymers based on solvent and ligand concentration regulation strategy. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 340-354. doi: 10.11862/CJIC.20250226

    16. [16]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    17. [17]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    18. [18]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    19. [19]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    20. [20]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return