Synthesis, structural characterization, electrocatalytic proton reduction, and fungicidal activity of thiazole-containing di-iron complexes
- Corresponding author: Xufeng LIU, nkxfliu@126.com
Citation:
Chengyu JIANG, Xufeng LIU. Synthesis, structural characterization, electrocatalytic proton reduction, and fungicidal activity of thiazole-containing di-iron complexes[J]. Chinese Journal of Inorganic Chemistry,
;2026, 42(2): 355-364.
doi:
10.11862/CJIC.20250253
FREY M. Hydrogenases: Hydrogen-activating enzymes[J]. ChemBioChem, 2002, 3(2/3): 153-160
DU P W, SCHNEIDER J, JAROSZ P, EISENBERG R. Photocatalytic generation of hydrogen from water using a platinum (Ⅱ) terpyridyl acetylide chromophore[J]. J. Am. Chem. Soc., 2006, 128(24): 7726-7727
doi: 10.1021/ja0610683
NA Y, WANG M, PAN J X, ZHANG P, ÅKERMARK B, SUN L C. Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes[J]. Inorg. Chem., 2008, 47(7): 2805-2810
doi: 10.1021/ic702010w
LI X Q, WANG M, ZHANG S P, PAN J X, NA Y, LIU J H, ÅKERMARK B, SUN L C. Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: Photo-induced electron transfer and hydrogen generation[J]. J. Phys. Chem. B, 2008, 112(27): 8198-8202
doi: 10.1021/jp710498v
ZHONG W, WU L, JIANG W D, LI Y L, MOOKAN N, LIU X M. Proton-coupled electron transfer in the reduction of diiron hexacarbonyl complexes and its enhancement on the electrocatalytic reduction of protons by a pendant basic group[J]. Dalton Trans., 2019, 48(36): 13711-13718
doi: 10.1039/C9DT02058F
ZHAO P H, JIN B, WANG S J, WANG D, GUO Y, HU T P. Variation of dithiolate bridges in carbon nanotube-attached diiron chelate compounds for electrocatalytic hydrogen evolution reaction[J]. Appl. Surf. Sci., 2023, 639: 158276
doi: 10.1016/j.apsusc.2023.158276
TARD C, PICKETT C J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases[J]. Chem. Rev., 2009, 109(6): 2245-2274
doi: 10.1021/cr800542q
LUBITZ W, OGATA H, RÜDIGER O, REIJERSE E. Hydrogenases[J]. Chem. Rev., 2014, 114(8): 4081-4148
doi: 10.1021/cr4005814
PETERS J W, LANZILOTTA W N, LEMON B J, SEEFELDT L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution[J]. Science, 1998, 282(5395): 1853-1858
doi: 10.1126/science.282.5395.1853
NICOLET Y, PIRAS C, LEGRAND P, HATCHIKIAN C E, FONTECILLA-CAMPS J C. Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center[J]. Structure, 1999, 7(1): 13-23
doi: 10.1016/S0969-2126(99)80005-7
SCHMIDT M, CONTAKES S M, RAUCHFUSS T B. First generation analogues of the binuclear site in the Fe-only hydrogenases: Fe2(μ-SR)2(CO)4(CN)22‒[J]. J. Am. Chem. Soc., 1999, 121(4): 9736-9737
MEJIA-RODRIGUEZ R, CHONG D, REIBENSPIES J H, SORIAGA M P, DARENSBOURG M Y. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: Iron hydrogenase model complexes[J]. J. Am. Chem. Soc., 2004, 126(38): 12004-12014
doi: 10.1021/ja039394v
AHMED M E, NAYEK A, KRIžAN A, COUTARD N, MOROZAN A, DEY S G, LOMOTH R, HAMMARSTRöM L, ARTERO V, DEY A. A bidirectional bioinspired [FeFe]-hydrogenase model[J]. J. Am. Chem. Soc., 2022, 144(8): 3614-3625
doi: 10.1021/jacs.1c12605
ORTON G R F, RINGENBERG M R, HOGARTH G. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: Ferrocene-bridged dithiolate complexes [Fe2(CO)6(μ-EC5H4FeC5H4E)] (E=S, Se)[J]. J. Organomet. Chem., 2022, 978: 122472
doi: 10.1016/j.jorganchem.2022.122472
MERINERO A D, COLLADO A, CASARRUBIOS L, GÓMEZ-GALLEGO M, DE ARELLANO C R, CABALLERO A, ZAPATA F, SIERRA M A. Triazole-containing [FeFe] hydrogenase mimics: Synthesis and electrocatalytic behavior[J]. Inorg. Chem., 2019, 58(23): 16267-16278
doi: 10.1021/acs.inorgchem.9b02813
ORTAN G R F, GHOSH S, ALKER L, SARKER J C, PUGH D, RICHMOND M G, HARTL F, HOGARTH G. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: Synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates[J]. Dalton Trans., 2022, 51(25): 9748-9769
doi: 10.1039/D2DT00419D
SOLIMAN N N, SALAM M A E, FADDA A A, ABDEL-MOTAAL M. Synthesis, characterization, and biochemical impacts of some new bioactive sulfonamide thiazole derivatives as potential insecticidal agents against the cotton leafworm, Spodoptera littoralis[J]. J. Agric. Food Chem., 2020, 68(21): 5790-5805
doi: 10.1021/acs.jafc.9b06394
LIU H, XU T, XUE Z H, HUANG M J, WANG T T, ZHANG M M, YANG R G, GUO Y. Current development of thiazole-containing compounds as potential antibacterials against methicillin-resistant Staphylococcus aureus[J]. ACS Infect. Dis., 2024, 10(2): 350-370
doi: 10.1021/acsinfecdis.3c00647
GUO X F, ZHAO B, FAN Z J, YANG D Y, ZHANG N L, WU Q F, YU B, ZHOU S, KALININA T A, BELSKAYA N P. Discovery of novel thiazole carboxamides as antifungal succinate dehydrogenase inhibitors[J]. J. Agric. Food Chem., 2019, 67(6);1647-1655
doi: 10.1021/acs.jafc.8b06935
LIU N, WAN Y H, BAI Z D, HAN J C, BAI H D, LI H, WANG Y Y, BAI L Y, LUO D F, LI Z R. Design, synthesis, and herbicidal activities of N-(5-(3,5-methoxyphenyl)-(thiazole-2-yl))phenoxyacetamide derivatives[J]. J. Agric. Food Chem., 2024, 72(42): 23097-23107
doi: 10.1021/acs.jafc.4c01824
RAZAVET M, LE CLOIREC A, DAVIES S C, HUGHES D L, PICKETT C J. X-ray crystallographic analysis of D, L-[Fe2{SCH2CH(CH2OH)S}(CO)6] reveals a hydrogen-bonded cyclic hexamer with ordered optical centres[J]. Dalton Trans., 2001: 3551-3552
TONG J Y, MIN L J, SUN N B, WU H K, YU S J, BIAN Q, LIU X H. Facile synthesis of novel quinolin-8-amine derivatives: Crystallographic study, in silico and antifungal investigation[J]. Chem. Biol. Technol. Agric., 2025, 12: 134
doi: 10.1186/s40538-025-00853-4
ZHAO P H, LI J R, MA Z Y, HAN H F, QU Y P, LU B P. Diiron azadithiolate clusters supported on carbon nanotubes for efficient electrocatalytic proton reduction[J]. Inorg. Chem. Front., 2021, 8(8): 2107-2118
doi: 10.1039/D0QI01415J
GAO Y, WANG S J, GUO Z, WANG Y Z, QU Y P, ZHAO P H. Covalent versus noncovalent attachments of [FeFe]-hydrogenase models onto carbon nanotubes for aqueous hydrogen evolution reaction[J]. J. Inorg. Biochem., 2024, 259: 112665
doi: 10.1016/j.jinorgbio.2024.112665
LIU X F, XU B, XU H, LI Y L. Diiron butane-1, 2-dithiolate complexes with phosphine ligands: Preparation, crystal structures, and electrochemical catalytic performance[J]. Chinese J. Inorg. Chem., 2022, 38(12): 2521-2529
YAN L, HU K, LIU X F, LI Y L, LIU X H, JIANG Z Q. Diiron ethane-1, 2-dithiolate complexes with 1, 2, 3-thiadiazole moiety: Synthesis, X-ray crystal structures, electrochemistry and fungicidal activity[J]. Appl. Organomet. Chem., 2021, 35(2): e6084
doi: 10.1002/aoc.6084
CHEN F Y, HE J, YU X Y, WANG Z, MU C, LIU X F, LI Y L, JIANG Z Q, WU H K. Electrocatalytic properties of diiron ethanedithiolate complexes containing benzoate ester[J]. Appl. Organomet. Chem., 2018, 32(12): e4549
doi: 10.1002/aoc.4549
LIN H M, LI J R, MU C, LI A, LIU X F, ZHAO P H, LI Y L, JIANG Z Q, WU H K. Synthesis, characterization, and electrochemistry of monophosphine-containing diiron propane-1, 2-dithiolate complexes related to the active site of [FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2019, 33(11): e5196
doi: 10.1002/aoc.5196
LIU X F, XU B, XU H, LI Y L. Synthesis, characterization, and electrocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand[J]. Chinese J. Inorg. Chem., 2023, 39(8): 1619-1627
LIU X F, LI Y L, LIU X H. Synthesis, characterization, electrocatalytic properties, and antifungal activity of isoxazole-containing di-iron complexes[J]. Chinese J. Inorg. Chem., 2023, 39(12): 2367-2376
GHOSH S, HOGARTH G, HOLLINGSWORTH N, HOLT K B, RICHARD I, RICHMOND M G, SANCHEZ B E, UNWIN D. Models of the iron-only hydrogenase: A comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts[J]. Dalton Trans., 2013, 42(19): 6775-6792
doi: 10.1039/c3dt50147g
ZHAO P H, MA Z Y, HU M Y, HE J, WANG Y Z, JING X B, CHEN H Y, LI Y L. PNP-chelated and -bridged diiron dithiolate complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} together with related monophosphine complexes for the [2Fe]H subsite of [FeFe]-hydrogenases: Preparation, structure, and electrocatalysis[J]. Organometallics, 2018, 37(8): 1280-1290
doi: 10.1021/acs.organomet.8b00030
DEY S, RANA A, DEY S G, DEY A. Electrochemical hydrogen production in acidic water by an azadithiolate bridged synthetic hydrogenese mimic: Role of aqueous solvation in lowering overpotential[J]. ACS Catal., 2013, 3(3): 429-436
doi: 10.1021/cs300835a
AHMED M E, DEY S, MONDAL B, DEY A. H2 evolution catalyzed by a FeFe-hydrogenase synthetic model covalently attached to graphite surfaces[J]. Chem. Commun., 2017, 53(58): 8188-8191
doi: 10.1039/C7CC04281G
JIN B, TAN X, ZHANG X X, WANG Z Y, QU Y P, HE Y B, HU T P, ZHAO P H. Substituent effects in carbon-nanotube-supported diiron monophosphine complexes for hydrogen evolution reaction[J]. Electrochim. Acta, 2022, 434: 141325
doi: 10.1016/j.electacta.2022.141325
CHONG D, GEORGAKAKI I P, MEJIA-RODRIGUEZ R, SANABRIA-CHINCHILLA J, SORIAGA M P, DARENSBOURG M Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: Structure/function relationships[J]. Dalton Trans., 2003: 4158-4163
GLOAGUEN F, LAWRENCE J D, RAUCHFUSS T B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001, 123(38): 9476-9477
doi: 10.1021/ja016516f
BAI S F, DU X M, TIAN W J, XU H, ZHANG R F, MA C L, WANG Y L, LÜ S, LI Q L, LI Y L. Di-, tri- and tetraphosphine-substituted Fe/Se carbonyls: Synthesis, characterization and electrochemical properties[J]. Dalton Trans., 2022, 51(29): 11125-11134
doi: 10.1039/D2DT01376B
ZHU L J, LIU X F. Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands[J]. Chinese J. Inorg. Chem., 2025, 41(2): 321-328
YAN L, YANG J, Lü S, LIU X F, LI Y L, LIU X H, JIANG Z Q. Phosphine-containing diiron propane-1, 2-dithiolate derivatives: Synthesis, spectroscopy, X-ray crystal structures, and electrochemistry[J]. Catal. Lett., 2021, 151(7): 1857-1867
doi: 10.1007/s10562-020-03450-2
HOGARTH G. An unexpected leading role for [Fe2(CO)6(μ-pdt)] in our understanding of [FeFe]-H2ases and the search for clean hydrogen production[J]. Coord. Chem. Rev., 2023, 490: 215174
doi: 10.1016/j.ccr.2023.215174
LÜ S, HUANG H L, ZHANG R F, MA C L, LI Q L, HE J, YANG J, LI T, LI Y L. Phosphine-substituted Fe-Te clusters related to the active site of [FeFe]-H2ases[J]. Inorg. Chem. Front., 2020, 7(12): 2352-2361
doi: 10.1039/D0QI00276C
ZHU L J, LIU X F. Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine[J]. Chinese J. Inorg. Chem., 2025, 41(5): 939-947
HELM M L, STEWART M P, BULLOCK R M, DUBOIS M R, DUBOIS D L. A synthetic nickel electrocatalyst with a turnover frequency above 100, 000 s-1 for H2 production[J]. Science, 2011, 333(6044): 863-866
doi: 10.1126/science.1205864
LIU X H, QIAO L, ZHAI Z W, CAI P P, CANTRELL C L, TAN C X, WENG J Q, HAN L, WU H K. Novel 4-pyrazole carboxamide derivatives containing flexible chain motif: Design, synthesis and antifungal activity[J]. Pest Manag. Sci., 2019, 75(11): 2892-2900
doi: 10.1002/ps.5463
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Yingyue ZHANG , Liuqing KANG , Yating YANG , Xiaofen GUAN , Wenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100
Jiarong ZHU , Xiaohua ZHANG , Xinting XIONG , Xuliang NIE , Xiuying SONG , Miaomiao ZHANG , Dayong PENG , Xiuguang YI . Crystal structure, Hirshfeld surface analysis, and antifungal activity of five complexes based on 2,5-bis(carboxymethoxy)terephthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2358-2370. doi: 10.11862/CJIC.20250150
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Zihe SONG , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Crystal structure, thermal analysis, and luminescence properties of six heterocyclic lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 181-192. doi: 10.11862/CJIC.20250126
Yinling HOU , Jia JI , Hong YU , Xiaoyun BIAN , Xiaofen GUAN , Jing QIU , Shuyi REN , Ming FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Xiumei LI , Linlin LI , Bo LIU , Yaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Yukun CHEN , Kexin FENG , Bolun ZHANG , Wentao SONG , Jianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448
Yinxia SUN , Liping LIU , Xue BAI , Yu SUN , Wanhong SUN , Zhepeng DENG , Jianghai CHEN , Jianjun WANG , Li XU , Shuzhen ZHANG . Synthesis and crystal structures of Co(Ⅱ)/Cu(Ⅱ) coordination polymers based on solvent and ligand concentration regulation strategy. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 340-354. doi: 10.11862/CJIC.20250226
Yan XU , Suzhi LI , Yan LI , Lushun FENG , Wentao SUN , Xinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150