Citation: Zhengkun QIN, Lixin BAO, Yunkai ZHANG, Lin CUI, Jinyu WANG, Yuhao WANG, Mingxing SONG. Theoretical study on the thermally activated delayed fluorescence, and efficiency roll-off characteristics of a series of blue and blue-green Ir(Ⅲ) complexes[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 365-374. doi: 10.11862/CJIC.20250222 shu

Theoretical study on the thermally activated delayed fluorescence, and efficiency roll-off characteristics of a series of blue and blue-green Ir(Ⅲ) complexes

  • Corresponding author: Mingxing SONG, mxsong@jlnu.edu.cn
  • Received Date: 1 July 2025
    Revised Date: 18 November 2025

Figures(3)

  • A series of blue and blue-green Ir(Ⅲ) complexes has been investigated theoretically to explore their electronic structures, photophysical properties, efficiency roll-off effect, and thermal activation delayed fluorescence (TADF) properties. All calculations were performed using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Calculations for electronic structures, frontier molecular orbital characteristics (which determine the efficiency roll-off effect of the complexes), and photophysical properties were conducted using the Gaussian 09 software package. The calculation of spin-orbit coupling matrix elements <T|HSOC|S>, which determine the TADF properties of the complexes, was performed using the ORCA software package. The calculation results show that the auxiliary ligand tetraphenylimidodiphosphinate (tpip), a strong electron-withdrawing group, can mitigate the efficiency roll-off effect of the complex. Furthermore, TADF is observed in one of the designed complexes, (F3Phppy)2Ir(tpip), where F3Phppy=2-[4-(2,4,6-trifluorophenyl)phenyl] pyridine.
  • 加载中
    1. [1]

      LI X N, XIE Y J, LI Z. Diversity of luminescent metal complexes in OLEDs: Beyond traditional precious metals[J]. Chem. Asian J., 2021, 16: 2817-2829  doi: 10.1002/asia.202100784

    2. [2]

      JAYARAMAN J, VENUGOPAL T, SHANMUGAM T. Phosphorescent organic light-emitting devices: iridium based emitting materials-An overview[J]. Coord. Chem. Rev., 2023, 483: 215100  doi: 10.1016/j.ccr.2023.215100

    3. [3]

      BALDO M A, LAMANSKY S, BURROWS P E, THOMPSON M E, FORREST S R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl. Phys. Lett., 1999, 75(1): 4-6  doi: 10.1063/1.124258

    4. [4]

      HOLMES R J, FORREST S R, TUNG Y J, KWONG R C, BROWN J J, GARON S, THOMPSON M E. Efficient blue organic light-emitting devices with reduced efficiency roll-off[J]. Appl. Phys. Lett., 2003, 82(15): 2422-2424  doi: 10.1063/1.1568146

    5. [5]

      TOKITO S, IIJIMA T, SUZURI Y, KITA H, TSUZUKI T, SATO F. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer[J]. Appl. Phys. Lett., 2003, 83: 569-571  doi: 10.1063/1.1594834

    6. [6]

      LI J, DJUROVICH P I, ALLEYNE B D, YOUSUFUDDIN M, HO N N, THOMAS J C, PETERS J C, BAU R, THOMPSON M E. Synthetic control of excited-state properties in cyclometalated Ir(Ⅲ) complexes using ancillary ligands[J]. Inorg. Chem., 2005, 44(6): 1713-1727  doi: 10.1021/ic048599h

    7. [7]

      LYU Y Y, BYUN Y, KWON O, HAN E, JEON W S, DAS R R, CHAR K. Substituent effect on the luminescent properties of a series of deep blue emitting mixed ligand Ir(Ⅲ) complexes[J]. J. Phys. Chem. B, 2006, 110(21): 10303-10314  doi: 10.1021/jp057446s

    8. [8]

      CHENG M N, WANG H, GONG L Z. A Facile and general approach to the synthesis of chiral biphenyl-based phosphoric acids and their application in asymmetric catalysis[J]. Angew. Chem. ‒Int. Edit., 2007, 46(14): 2418-2421  doi: 10.1002/anie.200604733

    9. [9]

      ZHOU G J, WONG W Y, YAO B, XIE Z Y, WANG L X. A facile synthesis of chiral biphenyl-based phosphoric acids via palladium-catalyzed asymmetric cross-coupling[J]. Angew. Chem. ‒Int. Edit., 2007, 46(8): 1189-1192  doi: 10.1002/anie.200790022

    10. [10]

      HO C L, WONG W Y, WANG Q, MA D G, WANG L X, LIN Z Y. Highly efficient green-emitting iridium(Ⅲ) phosphors with tunable triplet energy for phosphorescent organic light-emitting diodes[J]. Adv. Funct. Mater., 2008, 18(13): 2305-2310

    11. [11]

      CHANG C F, CHENG Y M, CHI Y, CHIU Y C, LIN C C, LEE G H, CHOU P T, CHEN C C, CHANG C H, WU C C. Ruthenium-catalyzed asymmetric transfer hydrogenation of quinolines: A practical approach to chiral tetrahydroquinolines[J]. Angew. Chem. ‒Int. Edit., 2008, 47(24): 4449-4452  doi: 10.1002/anie.200890111

    12. [12]

      LEE J H, SHIN H, KIM J M, KIM K H, KIM J J. Exciplex-forming co-host-based red phosphorescent organic light-emitting diodes with long operational stability and high efficiency[J]. ACS Appl. Mater. Interfaces, 2017, 9(4): 3277-3281  doi: 10.1021/acsami.6b14438

    13. [13]

      KIM K H, AHN E S, HUH J S, KIM Y H, KIM J J. Design of heteroleptic Ir complexes with horizontal emitting dipoles for highly efficient organic light-emitting diodes with an external quantum efficiency of 38%[J]. Chem. Mater., 2016, 28(20): 7505-7510  doi: 10.1021/acs.chemmater.6b03428

    14. [14]

      KIM S Y, JEONG W I, MAYR C, PARK Y S, KIM K H, LEE J H, MOON C K, BRÜTTING W, KIM J J. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter[J]. Adv. Funct. Mater., 2013, 23(31): 3896-3900  doi: 10.1002/adfm.201300104

    15. [15]

      SEO S, SHITAGAKI S, OHSAWA N, INOUE H, SUZUKI K, NOWATARI H, YAMAZAKI S. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V[J]. Jpn. J. Appl. Phys., 2014, 53: 042102  doi: 10.7567/JJAP.53.042102

    16. [16]

      KIM K H, LEE S, MOON C K, KIM S Y, PARK Y S, LEE J H, KIM J J. Phosphorescent dye-based supra-molecules for high-efficiency organic light-emitting diodes[J]. Nat. Commun., 2014, 5: 4769  doi: 10.1038/ncomms5769

    17. [17]

      LI X, ZHANG J, ZHAO Z, WANG L, YANG H, CHANG Q, LU Z. Deep blue phosphorescent organic light-emitting diodes with CIEy value of 0.11 and external quantum efficiency up to 22.5%[J]. Adv. Mater., 2018, 30: 1705005  doi: 10.1002/adma.201705005

    18. [18]

      LEE J H, CHENG S H, YOO S J, SHIN H, CHANG J H, WU C I, WONG K T, KIM J J. An exciplex forming host for highly efficient blue organic light emitting diodes with low driving voltage[J]. Adv. Funct. Mater., 2015, 25(3): 361-366  doi: 10.1002/adfm.201402707

    19. [19]

      SHIN H, LEE J H, MOON C K, HUH J S, SIM B, KIM J J. Sky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layer[J]. Adv. Mater., 2016, 28(25): 4920-4925

    20. [20]

      ZAEN R, PARK K M, LEE K H, LEE J Y, KANG Y. Blue phosphorescent Ir(Ⅲ) complexes achieved with over 30% external quantum efficiency[J]. Adv. Opt. Mater., 2019, 7: 1901387  doi: 10.1002/adom.201901387

    21. [21]

      BARANOFF E, CURCHOD B F E. FIrpic: Archetype blue phosphorescent emitter for electroluminescence[J]. Dalton Trans., 2014, 43(21): 2991-2995

    22. [22]

      KANG J W, LEE S H, PARK H D, JEONG W I, YOO K M, PARK Y S, KIM J J. Highly efficient blue phosphorescent organic light-emitting diodes with a hole-blocking layer[J]. Appl. Phys. Lett., 2007, 90(22): 223508  doi: 10.1063/1.2745224

    23. [23]

      ZHU Y C, ZHOU L, LI H Y, XU Q L, TENG M Y, ZHENG Y X, ZUO J L, ZHANG H J, YOU X Z. Highly efficient green and blue-green phosphorescent OLEDs based on iridium complexes with the tetraphenylimidodiphosphinate ligand[J]. Adv. Mater., 2011, 23: 4041-4046  doi: 10.1002/adma.201101792

    24. [24]

      WONG M Y, ZYSMAN-COLMAN E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes[J]. Adv. Mater., 2017, 29(22): 1605444  doi: 10.1002/adma.201605444

    25. [25]

      ADACHI C, BALDO M A, THOMPSON M E. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J. Appl. Phys., 2001, 90(10): 5048-5051  doi: 10.1063/1.1409582

    26. [26]

      ENDO A, OGASAWARA M, TAKAHASHI A, YOKOYAMA D, KATO Y, ADACHI C. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes——A novel mechanism for electroluminescence[J]. Adv. Mater., 2009, 21(47): 4802-4806  doi: 10.1002/adma.200900983

    27. [27]

      LEITL M J, KRYLOVA V A, DJUROVICH P I, THOMPSON M E, YERSIN H. Phosphorescence versus thermally activated delayed fluorescence: Controlling singlet-triplet splitting in brightly emitting and sublimable Cu􀃬 compounds[J]. J. Am. Chem. Soc., 2014, 136(45): 16032  doi: 10.1021/ja508155x

    28. [28]

      KRYLOVA V A, DJUROVICH P I, CONLEY B L, HAIGES R, WHITED M T, WILLIAMS T J, THOMPSON M E. Highly efficient blue thermally activated delayed fluorescence emitters based on ortho-metalated iridium complexes[J]. Chem. Commun., 2014, 50(60): 7176-7178

    29. [29]

      HOFBECK T, MONKOWIUS U, YERSIN H. Highly efficient luminescence of Cu􀃬 compounds: Thermally activated delayed fluorescence combined with short-lived phosphorescence[J]. J. Am. Chem. Soc., 2015, 137(1): 399-404  doi: 10.1021/ja5109672

    30. [30]

      ZINK D M, VOLZ D, BAUMANN T, MYDLAK M, FLÜGGE H, FRIEDRICHS J, NIEGER M, BRÄSE S. Highly soluble copper􀃬 complexes for inkjet-printed OLEDs[J]. Chem. Mater., 2013, 25(22): 4471-4479  doi: 10.1021/cm4018375

    31. [31]

      WALLESCH M, VOLZ D, ZINK D M, SCHEPERS U, NIEGER M, BAUMANN T, BRÄSE S. Bright coppertunities: Multinuclear Cu􀃬 complexes with N-P ligands and their applications[J]. Chem. ‒Eur. J., 2014, 20(22): 6578-6590  doi: 10.1002/chem.201402060

    32. [32]

      BIZZARRI C, STRABLER C, PROCK J, TRETTENBREIN B, RUGGENTHALER M, YANG C H, POLO F, IORDACHE A, BRUGGELLER P, DE COLA L. Influence of substituents on the energy and nature of the lowest excited states of heteroleptic phosphorescent Ir(Ⅲ) complexes: A joint theoretical and experimental study[J]. Inorg. Chem., 2014, 53(21): 10944-10952

    33. [33]

      LIANG D, CHEN X L, LIAO J Z, HU J Y, JIA J H, LU C Z. Influence of substituents on the magnetic properties of a series of dysprosium-based single-molecule magnets[J]. Inorg. Chem., 2016, 55(14): 7467-7474

    34. [34]

      WANG Z, ZHENG C, WANG W, XU C, JI B, ZHANG X. Synthesis, structure, and magnetic properties of a series of dysprosium-based single-molecule magnets with different substituents[J]. Inorg. Chem., 2016, 55(5): 2157-2164  doi: 10.1021/acs.inorgchem.5b02546

    35. [35]

      KAWAMURA Y, BROOKS J, BROWN J J. Intermolecular interaction and a concentration-quenching mechanism of phosphorescent iridium(Ⅲ) complexes in a solid film[J]. Phys. Rev. Lett., 2006, 96(1): 017404  doi: 10.1103/PhysRevLett.96.017404

    36. [36]

      CHI H Y, JI Y, ZHANG Y K, ZHAO X M, QU S J, JIANG F D, LU C H, XIAO B, SONG M X, LI D F. Theoretical study of blue-green iridium(Ⅲ) complexes with low-efficiency roll-off properties for application in phosphorescent organic light-emitting diodes[J]. Appl. Organomet. Chem., 2024, 38: e7322  doi: 10.1002/aoc.7322

    37. [37]

      CHI H Y, ZHANG Y K, JI Y, SUN Y, LI G, ZHU Y, JIANG L, XIAO B, SONG M X, LI D F. Theoretical study on a series of iridium(Ⅲ) complexes with low-efficiency roll-off properties for application in OLEDs[J]. Chem. Phys. Lett., 2024, 838(1): 141080

    38. [38]

      QIN Z, ZHANG Y, TIAN H, PAN Z, WANG M, CUI L, WANG J, BAO L, WANG Y, ZHANG W, SONG M. A series of blue phosphorescent iridium(Ⅲ) complexes with thermally activated delayed fluorescence and efficiency roll-off properties[J]. RSC Adv., 2024, 14(34): 36895-36901

    39. [39]

      SONG M X, ZHANG H, LIU X H, JI Y, GUO X L, YANG J Y, QIN Z K, BAI F Q, ZHANG H J. Theoretical study of the high intersystem spin crossing (ISC) ability of a series of iridium complexes with low efficiency roll-off properties[J]. Appl. Organomet. Chem., 2022, 36: e6875  doi: 10.1002/aoc.6875

    40. [40]

      PARK N G, CHOI G C, LEE Y H, KIM Y S. Theoretical studies on the ground and excited states of blue phosphorescent cyclometalated Ir(Ⅲ) complexes having ancillary ligand[J]. Curr. Appl. Phys., 2006, 6(6): 620-626

    41. [41]

      GU X, FEI T, ZHANG H Y, XU H, YANG B, MA Y G, LIU X D. Theoretical studies of blue-emitting iridium complexes with different ancillary ligands[J]. J. Phys. Chem. A, 2008, 112(36): 8387-8393  doi: 10.1021/jp8026429

    42. [42]

      YANG B, ZHANG M, ZHANG H, SUN J. Theoretical study on the influence of ancillary ligand on the energy and optical properties of heteroleptic phosphorescent Ir(Ⅲ) complexes[J]. J. Lumin., 2011, 131(6): 1158-1163  doi: 10.1016/j.jlumin.2011.02.026

    43. [43]

      RUNGE E, GROSS E K U. Density-functional theory for time-dependent systems[J]. Phys. Rev. Lett., 1984, 52(12): 997-1000  doi: 10.1103/PhysRevLett.52.997

    44. [44]

      PETERSILKA M, GOSSMANN U J, GROSS E K U. Time-dependent density-functional theory for many-body systems[J]. Phys. Rev. Lett., 1996, 76(6): 1212-1215

    45. [45]

      MAYO S L, OLAFSON B D, GODDARD W A Ⅲ. DREIDING: A generic force field for molecular simulations[J]. J. Phys. Chem., 1990, 94(26): 8897-8909  doi: 10.1021/j100389a010

    46. [46]

      ZHANG T, XIAO Y, WANG H, KONG S, HUANG R, AU V K, YU T, HUANG W. Highly twisted thermally activated delayed fluorescence (TADF) molecules and their applications in organic light-emitting diodes(OLEDs)[J]. Angew. Chem. ‒Int. Edit., 2023, 62: e202301896  doi: 10.1002/anie.202301896

    47. [47]

      FLAMIGNI L, BARBIERI A, SABATINI C, VENTURA B, BARIGELLETTI F. Luminescent platinum􀃭 complexes: Influence of ligands on excited states and applications[J]. Top. Curr. Chem., 2007, 281: 143-178

    48. [48]

      NEESE F. Software update: The ORCA program system——Version 5.0[J]. Wiley Interdiscip. Rev. ‒Comput. Mol. Sci., 2022, 12: e1606  doi: 10.1002/wcms.1606

    49. [49]

      HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual Molecular Dynamics[J]. J. Mol. Graph., 1996, 14: 33-38  doi: 10.1016/0263-7855(96)00018-5

  • 加载中
    1. [1]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    2. [2]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    3. [3]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    4. [4]

      Hao ZhuoMing ZhangHengyuan ZhangHui LinGang YangSilu TaoCaijun ZhengXiaohong Zhang . Modified triphenylamine donors with shallower HOMO energy levels to construct long-wavelength TADF emitters of efficient organic light-emitting diodes. Chinese Chemical Letters, 2025, 36(5): 110760-. doi: 10.1016/j.cclet.2024.110760

    5. [5]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    6. [6]

      Guoxi YangHongji TanJieji ZhuQingxiao TongJingxin JianZhihai YangDeli LiDenghui LiuShijian Su . [1,2,4]Triazolo[1,5-a]pyridine as regulating unit with high horizontal orientation for efficient non-doped blue OLEDs with negligible efficiency roll-off. Chinese Chemical Letters, 2025, 36(8): 111138-. doi: 10.1016/j.cclet.2025.111138

    7. [7]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    8. [8]

      Xinbao TongJiaying LiuYanqi ZhaoJingjun LiYe TianQingyi LiuShuiying GaoRong Cao . Metal-organic framework supported carbon quantum dots as white light-emitting phosphor. Chinese Chemical Letters, 2025, 36(7): 111058-. doi: 10.1016/j.cclet.2025.111058

    9. [9]

      Man XuQianyi LiJingyao MaHao LiYunfei ZhuFan YuKuande WangTao ZhouQuanyou FengLinghai XieJinyi Lin . Wide bandgap steric carbazole-fluorene-nanogrid polymers via metal-free CN polymerization for deep-blue polymer light-emitting diodes. Chinese Chemical Letters, 2026, 37(1): 111551-. doi: 10.1016/j.cclet.2025.111551

    10. [10]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    11. [11]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    12. [12]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    13. [13]

      Dixing NiJiarui QiZhi DengDong DingRui WangWenjie ZhouSisi ZhouYang SunShuai LiZhaoxiang Wang . Voltage design and transport channel optimization of anti-perovskite cathode materials: A density functional theory study. Chinese Chemical Letters, 2025, 36(12): 110683-. doi: 10.1016/j.cclet.2024.110683

    14. [14]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    15. [15]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    16. [16]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    17. [17]

      Xiaoqian Wei Hanyu Gao Tiantian Wang Zijian Li Yanru Geng Guiping Zheng Min Gyu Kim Haeseong Jang Xien Liu Qing Qin . Neodymium-doped hollow Ir/IrO2 nanospheres with low geometric iridium density enable excellent acidic water oxidation performance. Chinese Journal of Structural Chemistry, 2025, 44(7): 100600-100600. doi: 10.1016/j.cjsc.2025.100600

    18. [18]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    19. [19]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    20. [20]

      Ting ZhangBaojing HuangHong HuangAiling YanShiqiang LuXufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return