Citation: Xin ZHANG, Xinyi JIAO, Wanqiao BAI, Xuehua SUN, Huali CUI, Yixia REN, Hongmei CHAI. Flexible Gd-MOF@PMMA/BMA composite film fluorescent sensor for highly sensitive detection of tyramine in bananas[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 217-226. doi: 10.11862/CJIC.20250219 shu

Flexible Gd-MOF@PMMA/BMA composite film fluorescent sensor for highly sensitive detection of tyramine in bananas

  • Corresponding author: Hongmei CHAI, chm8550@163.com
  • Received Date: 1 July 2025
    Revised Date: 24 September 2025

Figures(5)

  • In this study, using 3, 5-di(3′, 5′-dicarboxylphenyl)-1H-1, 2, 4-triazole (H4L) as ligands, a gadolinia-based organic framework complex {[GdNa(L)(H2O)3]·2H2O}n (Gd-Na-MOF) was successfully designed and synthesized by hydrothermal method. The structure and properties were systematically characterized and tested by techniques such as single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and fluorescence spectroscopy. The results indicate that this complex has a unique 3D structure, excellent thermal stability, and outstanding luminescent performance. Based on its luminescent properties, a polymer-embedding method was employed to fabricate the Gd-Na-MOF into a flexible, washable composite fluorescent film, Gd-Na-MOF@PMMA/BMA (PMMA=polymethyl methacrylate, BMA=butyl methacrylate). This fluorescent film exhibited highly sensitive recognition capability for tyramine, with a low detection limit of 1.66 μmol·L-1. It was used for the detection of tyramine in bananas, with a recovery rate of 96.92%-100.26%.
  • 加载中
    1. [1]

      SHENG W, SUN C C, FANG G Z, WU X N, HU G S, ZHANG Y, WANG S. Development of an enzyme-linked immunosorbent assay for the detection of tyramine as an index of freshness in meat and seafood[J]. J. Agric. Food Chem., 2016, 64(46): 8944-8949  doi: 10.1021/acs.jafc.6b04422

    2. [2]

      MA L, CHEN Z C, LI X, LIU W W, YU Z C, LI C G, YU G, XU Q Y. De novo synthesis of tyramine in engineered Escherichia coli using two-stage dissolved oxygen-controlled fermentation[J]. J. Agric. Food Chem., 2025, 73(7): 4174-4184  doi: 10.1021/acs.jafc.4c11385

    3. [3]

      KAPOOR A, RAJPUT J K. Electroactive core-shell chitosan-coated lanthanum iron oxide as a food freshness level indicator for tyramine content determination[J]. ACS Sustainable Chem. Eng., 2022, 10(35): 11666-11679  doi: 10.1021/acssuschemeng.2c03747

    4. [4]

      WANG T T, LIU F N, CHEN C X, LU Y Z. Fluorometric "AND" logic gate for detection of tyramine and tyrosinase based on in-situ formation of silicon-containing nanoparticles[J]. Anal. Chim. Acta, 2024, 1298: 342415  doi: 10.1016/j.aca.2024.342415

    5. [5]

      FAN L H, ZHANG J Y, ZHAO Y, SUN C Y, LI W J, CHANG Z D. A robust Eu-MOF as a multi-functional fluorescence sensor for detection of benzaldehyde, Hg2+, and Cr2O72-/CrO42-[J]. Microchem. J., 2024, 196: 109712  doi: 10.1016/j.microc.2023.109712

    6. [6]

      QI D Y, SI X, GUO L L, YAN Z P, SHAO C Y, YANG L R. Two novel and high-efficiency optical chemosensors of detecting Fe3+ and CrO42- based on metal-organic frameworks of Cd(Ⅱ)[J]. J. Solid State Chem., 2022, 314: 123400  doi: 10.1016/j.jssc.2022.123400

    7. [7]

      YANG C L, ZHANG H W, HOU C H, SUN F F, XU G J. Self-assembly fluorescent copper nanoclusters in alginate-based hydrogel sensor for histamine detection and visual monitoring of food spoilage[J]. Talanta, 2025, 294: 128292  doi: 10.1016/j.talanta.2025.128292

    8. [8]

      YAN Y, GUO H, YU Z, YANG Z Y, ZHUANG D K, MA Y Y, WANG M Y, YANG W. A rapid on-site fluorescence sensing platform for malachite green in an aqueous phase based on lanthanide-functionalized MOF[J]. Microchim. Acta, 2025, 192: 253  doi: 10.1007/s00604-025-07113-0

    9. [9]

      PAPAGEORGIOU M, LAMBROULOU D, MORRISON C, KŁODZIŃSKA E, NAMIEŚNIK J, PŁOTKA-WASYLKA J. Literature update of analytical methods for biogenic amines determination in food and beverages[J]. Trac‒Trends Anal. Chem., 2018, 98: 128-142  doi: 10.1016/j.trac.2017.11.001

    10. [10]

      GU M Y, SUN M R, LU Y, ZENG D C, ZHAO J H, CHANG Z H, XIN D X, ZHOU X Y, HU Y Y, DU E D, ZHANG Y Q, PENG M G. A facile fluorescence Zr-MOF probe for selective sensing tetracycline in water[J]. Inorg. Chem. Commun., 2025, 178: 114548  doi: 10.1016/j.inoche.2025.114548

    11. [11]

      LU Y Y, ZHOU H J, YANG H, ZHOU Z, JIANG Z C, PANG H. Anisotropy of metal-organic framework and their composites: Properties, synthesis, and applications[J]. J. Mater. Chem. A, 2024, 12(15): 6243-6260

    12. [12]

      GAO Y X, ZHU Y Y, WANG Y P, BI J H. Water-stable Ln-MOF as a multi-emitting luminescent sensor for the detection of metal ions and pharmaceuticals[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2024, 323: 124915  doi: 10.1016/j.saa.2024.124915

    13. [13]

      YAN R K, CHEN X L, REN J, CUI H L, YANG H, WANG J J. Design and synthesis of a new highly efficient adjustable Ln-MOF for fluorescence sensing and information encryption[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2025, 330: 125669  doi: 10.1016/j.saa.2024.125669

    14. [14]

      NINGBO INSTITUTE OF MATERIALS TECHNOLOGY AND ENGINEERING, CHINESE ACADEMY OF SCIENCES. Method for improving dispersibility of MOFs in polymer solution and preparation method of MOFs/polymer composite membrane: CN201810294450.4[P]. 2021-03-26.

    15. [15]

      APPELHAN N L, HUGHES L, MCKENZIE B, RODRIGUEZ M, GRIEGO J, BRISCOE J, MOORMAN M, FREDERICK E, WRIGHT B J. Facile microwave synthesis of zirconium metal-organic framework thin films on gold and silicon and application to sensor functionalization[J]. Microporous Mesoporous Mat., 2021, 323: 111133  doi: 10.1016/j.micromeso.2021.111133

    16. [16]

      SABZEHEMEIDANI M M, GAFARI S, JAMALI S, KAZEMZAD M. Concepts, fabrication and applications of MOF thin films in optoelectronics: A review[J]. Appl. Mater. Today, 2024, 38: 102153  doi: 10.1016/j.apmt.2024.102153

    17. [17]

      WANG X, WANG Y, CHEN L, XIE X F, SUN J. Gel-state MOFs for environmental decontamination: Synthesis, application and optimization[J]. Chem. Eng. J., 2024, 499: 156241  doi: 10.1016/j.cej.2024.156241

    18. [18]

      MAKIURA R. Creation of metal-organic framework nanosheets by the Langmuir-Blodgett technique[J]. Coord. Chem. Rev., 2022, 469: 214650  doi: 10.1016/j.ccr.2022.214650

    19. [19]

      SUN Z H, ZHAO G K, TANG G Q, ZHAO Z H, LI P. Preparation of high-performance pervaporation membranes for ethanol dehydration using a layer-by-layer self-assembly method[J]. Adv. Membr., 2025, 5: 100132  doi: 10.1016/j.advmem.2025.100132

    20. [20]

      CEVIK E, IQBAL A, MUSTAFA A, QAHAN F T, ZEEZHAN M, ISIK O. Metal organic frameworks embedded polymeric membranes: A comprehensive review on application in water purification and seawater desalination[J]. J. Environ. Chem. Eng., 2025, 13(3): 116215  doi: 10.1016/j.jece.2025.116215

    21. [21]

      ZHANG Z H, MA W P, YAN B. Multi-step tandem functionalization assembly of MOFs-based hybrid polymeric films for color tuning luminescence and responsive sensing on organic vapors[J]. Colloid Surf. A‒Physicochem. Eng. Asp., 2022, 648: 129416  doi: 10.1016/j.colsurfa.2022.129416

    22. [22]

      MUTMAINNA I, TAHIR D, GARESO L P, SURYANI S. Development of PVA-chitosan based smart packaging with the addition of red cabbage (Brassica Oleracea Var. capitata F. rubra) anthocyanin extract and copper-based metal-organic material (Cu-MOF)[J]. Int. J. Biol. Macromol., 2025, 313: 14420

    23. [23]

      ALI A, ALTAKROORI H H D, GREISH Y E, ALZAMLY A, SIDDIG L A, QAMHIEH N, MAHMOUD S T. Flexible Cu3(HHTP)2 MOF membranes for gas sensing application at room temperature[J]. J. Nanomater., 2022, 12(6): 913  doi: 10.3390/nano12060913

    24. [24]

      KAZEMI A, MOHAMMADI M, PORDSARI M A, TAMTAJI M, BAESMAT H, KESHAVARZ S, ZEINALI F, MANTEGHI F, FASIHI M, GHAEMI A, ROHANI S, GODDARD A W. Eco-friendly mixed-metal MOF embedded in PVA-based packaging films for ethylene adsorption and enhancing fresh produce shelf-life[J]. Food Packaging Shelf Life, 2025, 49: 101517  doi: 10.1016/j.fpsl.2025.101517

    25. [25]

      FANG M, DROBEK M, COT D, MONTORO C, SEMSARILAR M. A straightforward method to prepare MOF-based membranes via direct seeding of MOF-polymer hybrid nanoparticles[J]. J. Membr. Sci., 2023, 13(1): 65

    26. [26]

      KRAUSE L, HERBST-IRMER R, SHELDRICK G M, STALKE D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination[J]. J. Appl. Crystallogr., 2015, 48(1): 3-10  doi: 10.1107/S1600576714022985

    27. [27]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. A, 2015, A71(1): 3-8

    28. [28]

      KIRKAN B. Enzyme inhibition: Mechanisms, types, and applications in drug development[J]. J. Cell. Mol. Pharmacol., 2024, 8(6): 249

    29. [29]

      ALLWARDT J R, STEBBINS J F, SCHMIDT B C, FROST D J, WITHERS A C, HIRSCHMANN M M. Aluminum coordination and the densification of high-pressure aluminosilicate glasses[J]. Am. Miner., 2005, 90(7): 1218-1222  doi: 10.2138/am.2005.1836

    30. [30]

      GAGNÉ O C, HAWTHORNE F C. Bond-length distributions for ions bonded to oxygen: Results for the transition metals and quantification of the factors underlying bond-length variation in inorganic solids[J]. IUCrJ, 2020, 7(4): 581-629  doi: 10.1107/S2052252520005928

    31. [31]

      ESTEBAN T G, SÁNCHEZ L B, EXPÓSITO L, RODRÍGUEZ-SAN-MIGUEL D, ZAMORA F, PARIENTE F, GUTIÉRREZ-SÁNCHEZ C, LORENZO E. Synergistic enhancement of electrochemiluminescence through hybridization of α-Ge nanolayers and gold nanoparticles for highly sensitive detection of tyramine[J]. Sens. Actuator B‒Chem., 2023, 396: 134649  doi: 10.1016/j.snb.2023.134649

    32. [32]

      SINGH R, ZHANG W, LIU X C, ZHANG B Y, KUMAR S. WaveFlex biosensor: MXene-immobilized W-shaped fiber-based LSPR sensor for highly selective tyramine detection[J]. Opt. Laser Technol., 2024, 171: 110357  doi: 10.1016/j.optlastec.2023.110357

    33. [33]

      AHMAD M W, DEY B, KIM B H, SARKHEL G, YANG D J, HOSSAIN S S, KAMAL T, CHOUDHURY A. Bimetallic copper-cobalt MOFs anchored carbon nanofibers hybrid mat based electrode for simultaneous determination of dopamine and tyramine[J]. Microchem. J., 2023, 193: 109074  doi: 10.1016/j.microc.2023.109074

    34. [34]

      TORRE R, CERRATO-ALVAREZ M, NOUWS P A H, DELERUE-MATOS C M, FERNÁNDEZ-ABEDUL T, COSTA-RAMA E. A hand-drawn graphite electrode for affordable analysis: Application to the enzymatic determination of tyramine in fish[J]. Sens. Actuator B‒Chem., 2025, 423: 136705  doi: 10.1016/j.snb.2024.136705

    35. [35]

      ZHANG D W, ZHANG Y H, LI K X, WANG S N, MA Y C, LIAO Y H, WANG F H, LIU H. A smartphone-combined ratiometric fluorescence molecularly imprinted probe based on biomass-derived carbon dots for determination of tyramine in fermented meat products[J]. Food Chem., 2024, 454: 139759  doi: 10.1016/j.foodchem.2024.139759

    36. [36]

      SU Y, YU J H, LI Y B, PHUA S F Z, LIU G F, LIM W Q, YANG X Z, GANGULY R. Versatile bimetallic lanthanide metal-organic frameworks for tunable emission and efficient fluorescence sensing[J]. Commun. Chem., 2018, 1: 12  doi: 10.1038/s42004-018-0016-0

    37. [37]

      FU Y X, WANG L, XU L, ZHOU Y, GONG H. LIBS detection of trace elements in fruits[J]. Journal of Bengbu University, 2020, 9(5): 71-75

    38. [38]

      GAO H J, LIU P, HE W D, BI F C, HU C H, DENG G M, DOU T X, YANG Q S, LI C Y, YI G J, SHENG O, DONG T. Ripening-stage variations in small metabolites across six banana cultivars: A metabolomic perspective[J]. Food Chem., 2025, 478: 143658  doi: 10.1016/j.foodchem.2025.143658

    39. [39]

      BORGES C V, BELIN M A F, AMORIM E P, MINATEL I O, MONTEIRO G C, GOMEZ H A G, MONAR G R S, LIMA G P P. Bioactive amines changes during the ripening and thermal processes of bananas and plantains[J]. Food Chem., 2019, 298: 125020  doi: 10.1016/j.foodchem.2019.125020

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Jiaxuan YANGChenfa DENGJingyang LIUChenzexi XUHongxin CHENYahui ZHUYing LIShuhua WANGRongping ZHOUChao CHEN . Advances in selective hydrogenation of α, β-unsaturated aldehydes/ketones catalyzed by metal-organic frameworks and their derivatives: A review. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1973-2010. doi: 10.11862/CJIC.20250175

    3. [3]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    4. [4]

      Haifeng ZHENGXingzhe GUOYunwei WEIXinfang WANGHuimin QIYuting YANJie ZHANGBingwen LI . Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 193-202. doi: 10.11862/CJIC.20250029

    5. [5]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    6. [6]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    7. [7]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    10. [10]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    11. [11]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    12. [12]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    13. [13]

      Li LiLin-Lin ZhangYansha GaoLu-Ying DuanWuying YangXigen HuangYanping HongJiaxin HongLin YuanLimin Lu . Target self-calibration ratiometric fluorescent sensor based on facile-synthesized europium metal-organic framework for multi-color visual detection of levofloxacin. Chinese Chemical Letters, 2025, 36(7): 110436-. doi: 10.1016/j.cclet.2024.110436

    14. [14]

      Mingyue LuoKehui ZhangHonghong RaoJianying LiXin XuePanpan SunXiaoquan LuZhonghua Xue . A simplified ratiometric fluorescent sensing strategy for enhanced detection of alkaline phosphatase employing Prussian blue nanozymes and commercially available chromogen. Chinese Chemical Letters, 2025, 36(9): 110703-. doi: 10.1016/j.cclet.2024.110703

    15. [15]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    16. [16]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    17. [17]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    18. [18]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    19. [19]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    20. [20]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return