Citation: Shunping WANG, Chuandong GE, Shuguang QU, Tianduo LI, Shaomin WANG, Qingyuan YANG. Synthesis of a fluorescent probe based on urea-based coordination and Si—O bond cleavage for F- and Cr(Ⅵ) detection[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 297-308. doi: 10.11862/CJIC.20250214 shu

Synthesis of a fluorescent probe based on urea-based coordination and Si—O bond cleavage for F- and Cr(Ⅵ) detection

Figures(11)

  • A novel bifunctional fluorescent probe 1-methyl-2, 4-bis[2-(tert-butyldimethylsilyloxy)ethylurea]benzene (T1) based on urea-based coordination and Si—O bond cleavage was designed and synthesized for highly selective detection of Cr(Ⅵ) and F- in environmental and biological samples. The probe exhibited excellent recognition performance in dimethyl sulfoxide/water (DMSO/H2O, 1∶1, V/V) solvent. For Cr(Ⅵ) detection, T1 showed fluorescence quenching at 395 nm based on urea coordination with a detection limit of 4.70×10-7 mol·L-1, without interference from other metal ions. For F- recognition, the probe displayed significant fluorescence enhancement at 320 nm via Si—O bond cleavage mechanism with a detection limit of 7.07×10-8 mol·L-1, maintaining high selectivity in the presence of various anions. Spectroscopic analyses confirmed that T1 binds Cr(Ⅵ) in a 1∶2 stoichiometric ratio (Ka=2.62×104 L·mol-1) and reacts quantitatively with F- through Si—O bond cleavage in a molar ratio of 1∶2. The probe showed good linear response in the 0-20.00 μmol·L-1 range, providing an efficient analytical tool for environmental monitoring and biomedical detection.
  • 加载中
    1. [1]

      VAN DEN BERGH M, KRAJNC A, VOORSPOELS S, TAVARES S R, MULLENS S, BEURROIES I, MAURIN G, MALI G, DE VOS D E. Highly selective removal of perfluorinated contaminants by adsorption on all-silica zeolite beta[J]. Angew. Chem. ‒Int. Edit., 2020, 59(33): 14086-14090  doi: 10.1002/anie.202002953

    2. [2]

      CHEN X L, LI X M, XU D D, YANG W C, BAI S Y. Application of nanoscale zero-valent iron in hexavalent chromium-contaminated soil: A review[J]. Nanotechnol. Rev., 2020, 9(1): 736-750  doi: 10.1515/ntrev-2020-0059

    3. [3]

      LOPEZ A M, PACHECO J L, FENDORF S. Metal toxin threat in wildland fires determined by geology and fire severity[J]. Nat. Commun., 2023, 14(1): 8007-8018  doi: 10.1038/s41467-023-43101-9

    4. [4]

      GAILLARD L, BAROUKI R, BLANC E, COUMOUL X, ANDREAU K. Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts[J]. Trends Endocrinol. Metab., 2025, 36(3): 249-261  doi: 10.1016/j.tem.2024.07.021

    5. [5]

      MA Y, LI M N, QI X, CAO Y Y, ZHANG W T, GAO G R, TANG B. A multimode optical sensor for selective and sensitive detection of harmful heavy metal Cr(Ⅵ) in fresh water and sea water[J]. Anal. Chem., 2024, 96(21): 8705-8712  doi: 10.1021/acs.analchem.4c00947

    6. [6]

      SUGUMAR M, ANNAMALAI S K. A sustainable redox-active electrocatalyst utilizing natural quercetin-infused MWCNT for ultra-sensitive detection of environmental Cr(Ⅵ) contaminants[J]. Chem. Eng. J., 2024, 487: 150381  doi: 10.1016/j.cej.2024.150381

    7. [7]

      HU Y, XUE Q, TANG J, FAN X, CHEN H H. New insights on Cr(Ⅵ) retention by ferrihydrite in the presence of Fe(Ⅱ)[J]. Chemosphere, 2019, 222: 511-516  doi: 10.1016/j.chemosphere.2019.01.160

    8. [8]

      CHAKRABORTY R, RENU K, ELADL M A, EL-SHERBINY M, ELSHERBINI D M A, MIRZA A K, VELLINGIRI B, LYER M, DEY A, GOPALAKRISHNAN A V. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents[J]. Biomed. Pharmacother., 2022, 151: 113119  doi: 10.1016/j.biopha.2022.113119

    9. [9]

      MURPHY M B, LOI E I H, KOWK K Y, LAM P K S. Ecotoxicology of organofluorous compounds[J]. Top. Curr. Chem., 2011, 308: 339-363

    10. [10]

      GENTLEMAN E, STEVENS M M, HILL R G, BRAUER D S. Surface properties and ion release from fluoride-containing bioactive glasses promote osteoblast differentiation and mineralization in vitro[J]. Acta Biomater., 2013, 9(3): 5771-5779  doi: 10.1016/j.actbio.2012.10.043

    11. [11]

      GARCIA A L H, DE SOUZA M R, PICININI J, SOARES S, ROHR P, LINDEN R, SCHNEIDER A, FREITAS M P M, ELY H C, BOBERMIN L D, DOS SANTOS A Q, DALBERTO D, DA SILVA J. Unraveling gene expression and genetic instability in dental fluorosis: Investigating the impact of chronic fluoride exposure[J]. Sci. Total Environ., 2024, 906: 167393  doi: 10.1016/j.scitotenv.2023.167393

    12. [12]

      BHOWMIK A D, DAS T, CHATTOPADHYAY A. Chronic exposure to environmentally relevant concentration of fluoride impairs osteoblast′s collagen synthesis and matrix mineralization: Involvement of epigenetic regulation in skeletal fluorosis[J]. Environ. Res., 2023, 236: 116845  doi: 10.1016/j.envres.2023.116845

    13. [13]

      YE R X, FURLANI T C, FOLKERSON A P, MABURY S A, VANDENBOER T C, YOUNG C J. A method to measure total gaseous fluorine[J]. Environ. Sci. Technol. Lett., 2024, 11(10): 1062-1067  doi: 10.1021/acs.estlett.4c00553

    14. [14]

      VON ABERCRON E, FALK S, STAHL T, GEORGII S, HAMSCHER G, BRUNN H, SCHMITZ F. Determination of adsorbable organically bound fluorine (AOF) and adsorbable organically bound halogens as sum parameters in aqueous environmental samples using combustion ion chromatography (CIC)[J]. Sci. Total Environ., 2019, 673: 384-391  doi: 10.1016/j.scitotenv.2019.04.068

    15. [15]

      NOGUCHI Y, ZHANG L, MARUTA T, YAMANE T, KIBA N. Simultaneous determination of fluorine, chlorine and bromine in cement with ion chromatography after pyrolysis[J]. Anal. Chim. Acta, 2009, 640: 106-109  doi: 10.1016/j.aca.2009.03.004

    16. [16]

      AKHDHAR A, SCHNEIDER M, ORME A, SCHULTES L, RAAB A, KRUPP E M, BENSKIN J P, WELZ B, FELDMANN J. The use of high resolution graphite furnace molecular absorption spectrometry (HR-MAS) for total fluorine determination in extractable organofluorines (EOF)[J]. Talanta, 2020, 209: 120466  doi: 10.1016/j.talanta.2019.120466

    17. [17]

      ELCI L, DIVRIKLI U, AKDOGAN A, HOL A, CETIN A, SOYLAK M. Selective extraction of chromium(Ⅵ) using a leaching procedure with sodium carbonate from some plant leaves, soil and sediment samples[J]. J. Hazard. Mater., 2010, 173(1/2/3): 778-782

    18. [18]

      WEI W Y, ZHAO B S, HE M, CHEN B B, HU B. Iminodiacetic acid functionalized magnetic nanoparticles for speciation of Cr􀃮 and Cr(Ⅵ) followed by craphite furnace atomic absorption spectrometry detection[J]. RSC Adv., 2017, 7(14): 8504-8511  doi: 10.1039/C6RA27544C

    19. [19]

      WEI X, ZHOU J J, LIU J H, CHEN M L, WANG J H. Determination of chromium based on laser ablation inductively coupled plasma mass spectrometry[J]. Chin. J. Anal. Chem., 2021, 49(3): 432-439

    20. [20]

      GUO W, JIN L L, HU S H, GUO Q H. Method development for the determination of total fluorine in foods by tandem inductively coupled plasma mass spectrometry with a mass-shift strategy[J]. J. Agric. Food Chem., 2017, 65(16): 3406-3412  doi: 10.1021/acs.jafc.7b00535

    21. [21]

      SUN Y L, ZHAO L Y, LIAN H Z, MAO L, CUI X B. Carboxyl-functionalized hybrid monolithic column prepared by "thiol-ene" click reaction for noninvasive speciation analysis of chromium with inductively coupled plasma-mass spectrometry[J]. Anal. Chim. Acta, 2020, 1137: 85-93

    22. [22]

      HOSSEINI M S, PADHYE R, WANG X, HOUSHYAR S. Advances in nanoparticle-enhanced paper sensor for detecting toxic metals in water[J]. Talanta, 2025, 293: 128146  doi: 10.1016/j.talanta.2025.128146

    23. [23]

      GONG Q H, XU X J, CHENG Y M, WANG X H, LIU D D, NIE G M. A novel "on-off-on" electrochemiluminescence strategy based on RNA cleavage propelled signal amplification and resonance energy transfer for Pb2+ detection[J]. Anal. Chim. Acta, 2024, 1290: 342218

    24. [24]

      LIU X R, ZHANG Y, FAN L P, TANG H H, XU K Y, XU J F, LIU G, CHANG W, LIU X Y, WANG H, WANG J. G-Quadruplex and DNAzyme dual-driven DNA detection system for real-time quantitative detection of environmental lead ions[J]. J. Hazard. Mater., 2025, 489: 137651  doi: 10.1016/j.jhazmat.2025.137651

    25. [25]

      DEVNATH A, CHOI Y, RYU H, VENKATESAN A, HYUN G, KIM S, LEE S. Real-time detection of mercury ions based on vertically grown ReS2 film[J]. J. Mater. Sci. Technol., 2023, 164: 52-58  doi: 10.1016/j.jmst.2023.04.010

    26. [26]

      AN Y Y, LU L P, ZHU M L. One Cd-MOF as a multi-responsive fluorescent probe for sensing Fe􀃮 and Cr(Ⅵ)[J]. Chinese J. Inorg. Chem., 2023, 39(5): 939-946

    27. [27]

      BAI Y, WANG J J, TANG L, YUE E L, BAI C, WANG X, ZHANG Y Q. Acadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol[J]. Chinese J. Inorg. Chem., 2025, 41(6): 1217-1226  doi: 10.11862/CJIC.20240457

    28. [28]

      ZHONG L N, CHEN J L, ZHAO Q H. Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid[J]. Chinese J. Inorg. Chem., 2025, 41(4): 709-718  doi: 10.11862/CJIC.20240280

    29. [29]

      DUAN N, WANG H, LI Y N, YANG S X, TIAN H Y, SUN B G. The research progress of organic fluorescent probe applied in food and drinking water detection[J]. Coord. Chem. Rev., 2021, 427: 213557  doi: 10.1016/j.ccr.2020.213557

    30. [30]

      QU W J, WEI T B, LIN Q, LI W T, SU J X, LIANG G Y, ZHANG Y M. A recyclable probe for highly selective and sensitive detection of cyanide anion in aqueous medium by fluorescent and colorimetric changes[J]. Sens. Actuator B‒Chem., 2016, 232: 115-124  doi: 10.1016/j.snb.2016.03.120

  • 加载中
    1. [1]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    2. [2]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    3. [3]

      Xiaohong Li Huanjiang Wang Fang Tan Xiaohua Cai Yingchun Luo Yanli Leng Guoyong Zhou Zhu Wen . Research on the Project-Driven Teaching Model in the Context of New Engineering: A Case Study of the Development of a “Portable Metal ions and Pesticide Residues Intelligent Detection System”. University Chemistry, 2026, 41(1): 204-212. doi: 10.12461/PKU.DXHX202510037

    4. [4]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    5. [5]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    6. [6]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    10. [10]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Vanita VanitaRoland SchochPascal PuphalHasan YilmazMatthias BauerOliver Clemens . Structural and electrochemical behaviour of bilayer manganite LaSr2Mn2O6.96 cathode for all-solid-state fluoride ion batteries. Acta Physico-Chimica Sinica, 2026, 42(3): 100181-0. doi: 10.1016/j.actphy.2025.100181

    14. [14]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    17. [17]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    18. [18]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    19. [19]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    20. [20]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return