Citation: Yuxin LIAO, Xianheng SHEN, Li CHEN, Yujia TIAN, Zhihong LUO, Xiaoli CHEN, Jiaojing SHAO. Amino-modified F-containing silica slag for the construction of multi-functional interlayer and the inhibitory effect on the polysulfide shuttle effect in lithium-sulfur batteries[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 375-386. doi: 10.11862/CJIC.20250213 shu

Amino-modified F-containing silica slag for the construction of multi-functional interlayer and the inhibitory effect on the polysulfide shuttle effect in lithium-sulfur batteries

  • Corresponding author: Jiaojing SHAO, shaojiao_jing@163.com
  • Received Date: 21 June 2025
    Revised Date: 19 December 2025

Figures(6)

  • Herein, 3-aminopropyltriethoxysilane (APTES) was used to modify F-containing silica slag (SS) by simple grafting and served as a multifunctional barrier layer. The amino group (—NH2) in the amino-modified SS (NH2-SS) forms ligand bonds or hydrogen bonds with sulfur ions in lithium polysulfides (LiPSs), thus inhibiting the shuttle effect. Electrochemical analyses demonstrated that lithium-sulfur (Li-S) batteries employing the NH2-SS interlayer exhibited discharge specific capacities of 1 048 and 789 mAh·g-1 at 0.2C and 2C, respectively, and even at 4C, the initial discharge specific capacity remained at 590 mAh·g-1, outperforming the Li-S battery with unmodified SS as the interlayer.
  • 加载中
    1. [1]

      LIN Y C, WU Y HSUAN, TING J M, CHUNG S H. Stable lithium-sulfur cell separator with a high-entropy metal oxide modification[J]. Energy Fuels, 2023, 37(19): 15162-15169  doi: 10.1021/acs.energyfuels.3c02538

    2. [2]

      BATYRGALI N, YERKINBEKOVA Y, TOLGANBEK N, KALYBEKKYZY S, BAKENOV Z, MENTBAYEVA A. Recent advances on modification of separator for Li/S batteries[J]. ACS Appl. Energ. Mater., 2022, 6(2): 588-604

    3. [3]

      HE J J, LI X D. Recent materials development for Li-ion and Li-S battery separators[J]. J. Energy Storage, 2025, 112: 115541  doi: 10.1016/j.est.2025.115541

    4. [4]

      LIN Z, LIU Z C, FU W J, DUDNEY NANCY J, LIANG C D. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2013, 23(8): 1064-1069  doi: 10.1002/adfm.201200696

    5. [5]

      CHUNG S H, CHANG C H, MANTHIRAM A. Progress on the critical parameters for lithium-sulfur batteries to be practically viable[J]. Adv. Funct. Mater., 2018, 28(28): 1801188  doi: 10.1002/adfm.201801188

    6. [6]

      GAO X J, YANG X F, LI M S, SUN Q A, LIANG J N, LUO J, WANG J W, LI W H, LIANG J W, LIU Y L, WANG S Z, HU Y F, XIAO Q F, LI R Y, SHAM T K, SUN X L. Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li-S batteries[J]. Adv. Funct. Mater., 2019, 29(8): 1806724  doi: 10.1002/adfm.201806724

    7. [7]

      CHENG X B, ZHANG Q. Growth mechanism and suppression methods of lithium metal dendrites[J]. Progress Chem., 2018, 30(1): 51-72

    8. [8]

      GU S, JIN J, LU Y, QIAN R, WEN Z Y. Shuttle effect and suppression in lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1026-1040

    9. [9]

      ZHANG X C. Modification and preparation of sulfur/carbon composite cathode materials for lithium-sulfur batteries and investigation of their electrochemical performance[D]. Hangzhou: Zhejiang University, 2019.

    10. [10]

      WANG S Z, LIAO J X, YANG X F, LIANG J N, SUN Q A, LIANG J W, ZHAO F P, KOO A, KONG F P, YAO Y, GAO X J, WU M Q, YANG S Z, LI R Y, SUN X L. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries[J]. Nano Energy, 2019, 57: 230-240  doi: 10.1016/j.nanoen.2018.12.020

    11. [11]

      LI Z, ZHANG J T, GUAN B Y, WANG D, LIU L M, LOU X W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries[J]. Nat. Commun., 2016, 7(1): 13065  doi: 10.1038/ncomms13065

    12. [12]

      YUAN B, FENG Y, QIU X, HE Y, DONG L, ZHONG S, LIU J, LIANG Y, LIU Y, XIE H. A safe separator with heat-dispersing channels for high-rate lithium-ion batteries[J]. Adv. Funct. Mater., 2024, 34(9): 2308929  doi: 10.1002/adfm.202308929

    13. [13]

      ZHU W Y, ZHANG Z J, WEI J K, JING Y D, GUO W, XIE Z Z, QU D Y, LIU D, TANG H L, LI J S. A synergistic modification of polypropylene separator toward stable lithium-sulfur battery[J]. J. Membr. Sci., 2020, 597: 117646  doi: 10.1016/j.memsci.2019.117646

    14. [14]

      ZHU J D, YANILMAZ M, FU K, CHEN C, LU Y, GE Y Q, KIM D, ZHANG X. Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries[J]. J. Membr. Sci., 2016, 504: 89-96  doi: 10.1016/j.memsci.2016.01.020

    15. [15]

      ZHANG L L, WANG Y J, NIU Z Q, CHEN J. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries[J]. Carbon, 2019, 141: 400-416  doi: 10.1016/j.carbon.2018.09.067

    16. [16]

      XIAO Z B, YANG Z, WANG L, NIE H G, ZHONG M, LAI Q Q, XU X J, ZHANG L J, HUANG S M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Adv. Mater., 2015, 27(18): 2891-2898  doi: 10.1002/adma.201405637

    17. [17]

      CHEN C, JIANG Q B, XU H F, ZHANG Y P, ZHANG B K, ZHANG Z Y, LIN Z, ZHANG S Q. Ni/SiO2/graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries[J]. Nano Energy, 2020, 76: 105033  doi: 10.1016/j.nanoen.2020.105033

    18. [18]

      CHO S H, YOON W Y. Improved lithium sulfur battery performance through attaching nanosilica on the backside of nickel foam[C]//The Electrochemical Society, Inc. Electrochemical Society Meeting Abstracts: Vol. 227. [S. l. ]: [s. n. ], 2015: 572-572

    19. [19]

      LIANG X R, LIN Z, LIN Z, LUO Q Y, LIANG W H, CHEN C. A sulfur-infiltrated mesoporous silica/CNT composite-based functional interlayer for enhanced Li-S battery performance [J]. Appl. Phys. Lett., 2024, 125(5): 053903  doi: 10.1063/5.0223059

    20. [20]

      LI J, HUANG Y D, ZHANG S, JIA W, WANG X C, GUO Y, JIA D Z, WANG L S. Decoration of silica nanoparticles on polypropylene separator for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7499-7504  doi: 10.1021/acsami.7b00065

    21. [21]

      CHUNG S H, MANTHIRAM A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J]. J. Phys. Chem. Lett., 2014, 5(11): 1978-1983  doi: 10.1021/jz5006913

    22. [22]

      TU S B, CHEN X, ZHAO X X, CHENG M R, XIONG P X, HE Y W, ZHANG Q, XU Y H. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries[J]. Adv. Mater. 2018, 30(45): 1804581  doi: 10.1002/adma.201804581

    23. [23]

      XIN S, GU L, ZHAO N H, YIN Y X, ZHOU L J, GUO Y G, WAN L J. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2012, 134(45): 18510-18513  doi: 10.1021/ja308170k

    24. [24]

      YILMAZ M S. The CO2 adsorption performance of aminosilane-modified mesoporous silicas[J]. J. Therm. Anal. Calorim., 2021, 146(5): 2241-2251  doi: 10.1007/s10973-020-10417-3

    25. [25]

      FANG R P, ZHAO S Y, SUN Z H, WANG D W, CHENG H M, LI F. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Adv. Mater., 2017, 29(48): 1606823  doi: 10.1002/adma.201606823

    26. [26]

      ZHONG J T, REN L L, YING C H, GUO Y, LIU J, ZHONG W H. Amino acid as a multifunctional electrolyte additive for enhancing Li-S battery performance[J]. J. Energy Storage, 2025, 109: 115251  doi: 10.1016/j.est.2024.115251

    27. [27]

      KANG X Y, HE T Q, DANG H, LI X Y, WANG Y M, ZHU F L, RAN F. Designing amino functionalized titanium-organic framework on separators toward sieving and redistribution of polysulfides in lithium-sulfur batteries[J]. Nano‒Micro Lett., 2025, 277: 2-19

    28. [28]

      ZHANG Y Z, GE X, KANG Q, KONG Z K, WANG Y L, ZHAN L. Vanadium oxide nanorods embed in porous graphene aerogel as high-efficiency polysulfide-trapping-conversion mediator for high performance lithium-sulfur batteries[J]. Chem. Eng. J., 2020, 393: 124570  doi: 10.1016/j.cej.2020.124570

    29. [29]

      ZHUANG T Z, HUANG J Q, PENG H J, HE L Y, CHENG X B, CHEN C M, ZHANG Q. Rational integration of polypropylene/graphene oxide/Nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries[J]. Small, 2015, 12(3): 381-389

    30. [30]

      SU Y S, MANTHIRAM A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chem. Commun., 2012, 48(70): 8817-8819  doi: 10.1039/c2cc33945e

    31. [31]

      SUN L, XU H N, XIE J, YUAN Y, WANG H Z, WANG M, CHEN X, JIN Z. D-band center modulation of metallic Co-incorporated Co7Fe3 alloy heterostructure for regulating polysulfides in highly efficient lithium-sulfur batteries[J]. Adv. Funct. Mater., 2025, 35: 2416826  doi: 10.1002/adfm.202416826

    32. [32]

      SUN L, LIU Y X, XIE J, ZHANG F, JIANG R Y, JIN Z. Encapsulating sulfur into a gel-derived nitrogen-doped mesoporous and microporous carbon sponge for high-performance lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2024, 16(10): 12907-12915  doi: 10.1021/acsami.3c15984

    33. [33]

      XIE J, CHENG F, CHEN R Y, JIN Z, SUN L. Promoting overall sulfur redox kinetics for Li-S batteries via interfacial synergy in a NiS-NiTe2 heterostructure-modified separator[J]. J. Mater. Chem. A, 2024, 12: 10737-10744  doi: 10.1039/D4TA00036F

    34. [34]

      SUN L, LIU Y X, XIE J, FAN L L, WU J, JIANG R Y, JIN Z. Polar Co9S8 anchored on pyrrole-modified graphene with in situ growth of CNTs as multifunctional self-supporting medium for efficient lithium-sulfur batteries[J]. Chem. Eng. J., 2023, 451: 138370  doi: 10.1016/j.cej.2022.138370

    35. [35]

      XIE P F, ZHANG B Y, ZHOU Y K, LI P, TIAN X H. A dual-coated multifunctional separator for the high-performance lithium-sulfur batteries[J]. Electrochim. Acta, 2021, 395: 139181  doi: 10.1016/j.electacta.2021.139181

  • 加载中
    1. [1]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    2. [2]

      Min ChenXinxin LiWeijie CaiXinxin HanChuancong ZhouKe ZhengRuomeng DuanYanfei ZhaoMengmeng ShaoWenlong WangKaihong ZhengBo FengXiaodong Shi . Conductive nanofabrics as multifunctional interlayer of sulfur-loading cathode towards durable lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(9): 110712-. doi: 10.1016/j.cclet.2024.110712

    3. [3]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    4. [4]

      Haiyan WangHucheng ZhangLijing WangYonghui LiTianhao ZhangZhansheng LuHao JiangChunzhong LiJianji Wang . Ti3C2Tx MXene-mediating near- and long-range electronic effect on atomically dispersed Co for efficient lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110373-. doi: 10.1016/j.cclet.2024.110373

    5. [5]

      Xuanyang JinXincheng GuoSiyang DongShilan LiShengdong JinPeng XiaShengjun LuYufei ZhangHaosen Fan . Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries. Chinese Chemical Letters, 2025, 36(7): 110604-. doi: 10.1016/j.cclet.2024.110604

    6. [6]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    7. [7]

      Qihou LiJiamin LiuFulu ChuJinwei ZhouJieshuangyang ChenZengqiang GuanXiyun YangJie LeiFeixiang Wu . Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(5): 110306-. doi: 10.1016/j.cclet.2024.110306

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    10. [10]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    11. [11]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    12. [12]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    13. [13]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    14. [14]

      Na LiWenxue WangPeng WangZhanying SunXinlong TianXiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731

    15. [15]

      Wenxue WangLongwei BaiNa LiShuo ZhaoXiaodong ShiPeng Wang . Selenium-doping metal phosphides as bifunctional catalyst carrier for durable lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110938-. doi: 10.1016/j.cclet.2025.110938

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    18. [18]

      Yue WangWenli HuBinchao ShiHe JiaShilin MeiChang-Jiang Yao . Design of carbon@WS2 host with graham condenser-like structure for tunable sulfur loading of lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(6): 110065-. doi: 10.1016/j.cclet.2024.110065

    19. [19]

      Hui YangGuangxun ZhangYueyao SunHuijie ZhouHuan Pang . Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel-zinc batteries. Chinese Chemical Letters, 2025, 36(6): 110016-. doi: 10.1016/j.cclet.2024.110016

    20. [20]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return