Citation: Xiaoqi LAN, Wei LI, Long JING, Mengyu SU, Xiaoling LUO, Zheng LIU, Qun TANG. Synthesis, crystal structure, and spectral properties of transition-metal-organic frameworks based on thiophene carboxylic acid ligands[J]. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 309-316. doi: 10.11862/CJIC.20250212
基于噻吩羧酸类配体构筑的过渡金属有机骨架的合成、晶体结构及谱学性质
-
关键词:
- 金属有机骨架
- / 2, 5-二溴噻吩-3, 4-二羧酸
- / 晶体结构
- / 谱学性质
English
Synthesis, crystal structure, and spectral properties of transition-metal-organic frameworks based on thiophene carboxylic acid ligands
-
金属有机骨架(MOFs)是配位化合物的一个分支,以金属离子/团簇与有机配体配位形成可延伸的周期性网络结构[1]。MOFs的多孔结构、大比表面积及丰富可调的金属位点在催化[2]、传感[3]、气体吸附与分离[4]、能量储存及转换[5]等领域展现巨大的应用潜力。因此,不断制备出结构新颖的MOFs是一项重要的研究课题。
混合配体合成策略是制备MOFs的常用方法,而如何组合配体,是成功的关键[6-7]。MOFs的常见有机配体有含羧基的有机阴离子配体和中性含氮杂环,选用刚性吡啶类有机配体有利于桥联网络的形成和拓扑结构的延伸,而选用含氧、含硫杂环类配体能够丰富MOFs的配位活性位点并使其结构趋于多元化[8]。柔性噻吩羧酸类有机配体因配位模式多样、含孤对电子、具芳香性等特质[9],已被广泛用于MOFs的制备[10-11]。研究表明,含溴MOFs在气体吸附[12]和反应催化[13]方面存在巨大应用潜力。亲电卤素原子(F、Cl、Br、I)和路易斯碱之间的吸引相互作用类似于氢键,卤素原子电负性越低、极化率越高,相互作用强度越大,即I > Br > Cl≫F。因此,在混合配体合成策略中选用含有卤素的噻吩羧酸类有机配体,并与联吡啶配体组合,有望获得结构新颖和性能优越的MOFs。
本研究以2,5-二溴噻吩-3,4-二羧酸(H2L)、4,4′-联吡啶(4,4′-bipy)、六水合硝酸钴、四水合乙酸锰为原料,合成了2种过渡金属有机骨架:{[Co2(L)2(4,4′-bipy)2(H2O)4]·H2O}n (Co-MOF)和{[Mn(L)(4,4′-bipy)0.5(H2O)2]·H2O}n (Mn-MOF),并以单晶X射线衍射、粉末X射线衍射(PXRD)、红外光谱(IR)、紫外可见光谱(UV-Vis)方法对所合成MOF进行结构表征,利用热重(TG)分析、荧光光谱方法测定MOF热稳定性和荧光性质。
1. 实验部分
1.1 试剂与仪器
六水合硝酸钴、四水合乙酸锰、4,4′-bipy、N,N-二甲基甲酰胺(DMF)、氢氧化钠均为市售分析纯试剂,购于上海麦克林试剂有限公司,H2L(95%)购于吉林中科研伸科技有限公司,使用时未经纯化。
所用仪器包括Agilent Technologies G8910A单晶衍射仪、FTIR-8400型傅里叶红外光谱仪(4 000~400 cm-1,KBr压片)、F-7000型荧光分光光度计、HITACHI STA300热重分析仪(N2气氛,温度范围30~1 100 ℃,升温速率10 ℃·min-1)、UV-5500PC型紫外可见分光光度计(无水BaSO4压片)、X′Pert3 Powder X射线衍射仪(Cu Kα,工作电压:40 kV,电流:40 mA,波长:0.154 06 nm,测试范围:5°~90°)、Perkin-Elmer240Q元素分析仪。
1.2 MOF单晶的合成
称取H2L(0.033 0 g,0.1 mmol)、4,4′-bipy(0.015 6 g,0.1 mmol)和六水合硝酸钴(0.043 7 g,0.15 mmol)于烧杯中,加入8 mL混合溶剂DMF/H2O(体积比2∶6),超声15 min,磁力搅拌20 min,将混合溶液转入带聚四氟乙烯内衬的高压反应釜,在鼓风干燥箱内恒温90 ℃反应3 d。以10 ℃·h-1的速率降至室温,生成红色透明的块状晶体。形成的晶体经过滤,用DMF和水分别洗涤3次后50 ℃真空干燥,得到0.045 7 g目标产物Co-MOF,产率:49.51%。元素分析理论值按C32H26Br4Co2N4O13S2计算(%):C 32.68,H 2.23,N 4.76;实测值(%):C 32.75,H 2.34,N 4.70。
称取H2L(0.033 0 g,0.1 mmol)、4,4′-bipy(0.015 6 g,0.1 mmol)和四水合乙酸锰(0.024 5 g,0.1 mmol)置于烧杯中,加入8 mL混合溶剂DMF/H2O(体积比2∶6),用现配1 mol·L-1氢氧化钠溶液调节pH=5~6,超声15 min,磁力搅拌20 min,将混合溶液转入带聚四氟乙烯内衬的高压反应釜,在鼓风干燥箱内恒温90 ℃反应3 d。以10 ℃·h-1的速率降至室温,静置2个月后生成无色透明的条状晶体。形成的晶体经过滤,用DMF和水分别洗涤3次后50 ℃真空干燥,得到0.027 7 g目标产物Mn-MOF,产率:31.97%。元素分析理论值按C11H10Br2MnNO7S计算(%):C 25.65,H 1.96,N 2.72;实测值(%):C 25.70,H 1.98,N 2.74。
1.3 晶体结构测试
挑选形状规整、尺寸为0.24 mm×0.21 mm× 0.18 mm (Co-MOF)和0.23 mm×0.11 mm×0.09 mm (Mn-MOF)的单晶,借助Agilent Technologies G8910A单晶衍射仪,分别在223和298 K下以Mo Kα(λ=0.071 073 nm)为辐射源,φ-ω变速扫描模式收集衍射点数据,使用SADABS程序进行吸收校正[14]。在ShelXS程序中采取直接法进行单晶结构解析,并对非氢原子的坐标及其各向异性温度因子进行全矩阵最小二乘法精修[15],碳原子上的氢原子坐标以理论加氢方式添加,水上的氢原子通过Q峰找出再精修确定。由于Mn-MOF存在一个严重无序的晶格水分子,使用OLEX2[16]的Solvent Mask[17]进行溶剂遮掩,根据电荷平衡、TGA曲线、元素分析等确定Mn-MOF的分子式为{[Mn(L)(4,4′-bipy)0.5 (H2O)2]·H2O}n。相关晶体学数据列于表 1中。
表 1
Parameter Co-MOF Mn-MOF Empirical formula C32H26Br4Co2N4O13S2 C11H10Br2MnNO7S Formula weight 1 176.19 515.02 Crystal system Orthorhombic Trigonal Space group Ibca P3 a / nm 3.003 69(19) 2.032 3(8) b / nm 2.289 47(14) 2.032 3(8) c / nm 2.306 16(11) 0.637 1(2) Volume / nm3 15.859 1(16) 2.278 8(19) Z 16 6 Dc / (g·cm-3) 1.970 2.252 μ / mm-1 5.041 6.301 F(000) 9 216.0 1 500.0 θ range / (°) 2.091-27.527 2.314-27.518 Index ranges -38 ≤ h ≤ 38, -29 ≤ k ≤ 29, -29 ≤ l ≤ 22 -26 ≤ h ≤ 26, -26 ≤ k ≤ 26, -8 ≤ l ≤ 7 Reflection collected 106 066 45 838 Independent reflection 9 116 (Rint=0.110 2, Rσ=0.066 1) 3 496 (Rint=0.079 5, Rσ=0.031 5) Rint 0.110 2 0.079 5 Data, number of restraints, number of parameters 9 116, 3, 552 3 496, 0, 211 Goodness-of-fit on F 2 1.041 1.066 Final R indexes [I≥2σ(I)] R1=0.048 6, wR2=0.119 0 R1=0.031 7, wR2=0.086 6 Final R indexes (all data) R1=0.072 4, wR2=0.132 0 R1=0.041 2, wR2=0.090 9 2. 结果与讨论
2.1 晶体结构描述
Co-MOF的空间群为Ibca,属正交晶系。其不对称单元如图 1a所示,Co1与1个L2-配体螯合,与0.5个4,4′-bipy配位,Co2与0.5个4,4′-bipy和2个水配位,Co3、Co4配位形式分别与Co1、Co2相似。在图 1b的结构单元中,Co1、Co3均分别与2个L2-配体和2个4,4′-bipy配位形成中心对称结构,Co2、Co4均分别与2个4,4′-bipy配体以及4个配位水配位,形成线性双核结构。每个Co(Ⅱ)均通过L2-配体相互桥联,其中Co1、Co2沿b轴并列延伸,Co3、Co4沿c轴并列延伸,在bc面上形成二维层状结构,最后沿a轴通过氢键的交联作用构造形成图 1c中的三维网络结构[18]。中心金属Co(Ⅱ)为6配位的八面体构型(图 1d),Co1配位环境中的O2、O3为L2-的2个羧酸氧,N1、N1ⅱ属于4,4′-bipy。Co2则与4,4′-bipy的N2、N3ⅰ和溶剂水分子的O5、O6、O5ⅳ、O6ⅳ配位。Co—O键长在0.201 9(3)~0.211 6(3) nm范围内[19],Co—N键长在0.215 5(6)~0.223 1(6) nm内[20],均与已报道的键长相近。键角O—Co—X(X=O、N)在85.60(15)°~180.0°之间[21],键角N—Co—N均为180°,与已报道文献数值接近[22]。层间氢键O—H…O键长(O…O)为0.265 8(5)~0.278 8(5) nm,均在正常范围内。
图 1
图 1. Co-MOF的晶体结构: (a) 椭球概率50%的不对称单元; (b) 结构单元; (c) b轴方向上的三维堆积图; (d) Co离子的配位环境For panels a and c, the hydrogen atoms, the free hydronium ions, and the free water molecules are omitted; For panel b, all hydrogen atoms except the bonding hydrogen atoms are omitted; Symmetry codes: ⅰ x, 1/2+y, 1-z; ⅱ 3/2-x, 3/2-y, 1/2-z; ⅲ 1-x, 1-y, 1-z; ⅳ 3/2-x, y, 1-z; ⅴ 1-x, 3/2-y, z.
Figure 1. Crystal structure of Co-MOF: (a) asymmetric unit with an ellipsoidal probability of 50%; (b) structural unit; (c) 3D packing diagram in the b-axis direction; (d) coordination environment of Co ionMn-MOF在P3空间群中结晶,为三方晶系。其不对称单元包含1个Mn(Ⅱ)离子、1个L2-配体、0.5个4,4′-bipy配体、2个配位水分子(图 2a)。如图 2b所示,6个Mn(Ⅱ)通过L2-配体上的O3、O4桥联形成六元环结构,4,4′-bipy从每个Mn(Ⅱ)向外延伸桥接各六元环,各六元环又以L2-配体沿c轴堆叠,形成具备2种不同一维通道的三维蜂窝状结构(图 2c)[23]。Mn1的配位环境为轻微扭曲的八面体构型,其六配位结构如图 2d所示,包含2个水分子的O5与O6、4,4′-bipy的N1和3个L2-的O4、O3ⅰ、O1ⅱ。Mn—O键长在0.196 8(13)~0.236 4(6) nm间[24],Mn—N平均键长为0.228 1(3) nm[25],O—Mn—X(X=O、N)键角在79.1(3)°~172.96(14)°之间[26],均在Mn基配合物的合理范围内。
图 2
图 2. Mn-MOF的晶体结构: (a) 椭球概率50%的不对称单元; (b) 分子结构; (c) c轴方向上的三维堆积图; (d) Mn离子的配位环境For panel a, the free water molecules are omitted; For panels b and c, the hydrogen atoms, the free hydronium ions, and the free water molecules are omitted; Symmetry codes: ⅰ y, -x+y, 1-z; ⅱ y, -x+y, 2-z.
Figure 2. Crystal structure of Mn-MOF: (a) asymmetrical unit with an ellipsoidal probability of 50%; (b) molecular structure; (c) 3D stacking diagram in the c-axis direction; (d) coordination environment of Mn ion2.2 红外光谱
图 3为Co-MOF、Mn-MOF与配体的红外光谱图。对于H2L,其羧酸特征峰分别位于3 026 cm-1(νOH)、1 701 cm-1(νCO)、927 cm-1(δOH)处[27]。1 525 cm-1为H2L的C=C伸缩振动,噻吩环的骨架振动位于1 080 cm-1处[28],C—Br键的振动峰在596 cm-1处[29]。4,4′-bipy的C=N特征峰位于1 591 cm-1,1 535~ 1 406 cm-1为芳环的C=C伸缩振动带[30]。
图 3
Co-MOF上的羧基由于与Co(Ⅱ)配位失去质子,原羧酸的νOH峰消失,配位水分子在3 401~3 102 cm-1形成新的—OH宽峰。失质子后的羧基不对称伸缩振动
和对称伸缩振动$ {\nu }_{as, CO{O}^{-}} $ 分别出现在1 606和1 418 cm-1处,两者差值188 cm-1小于200 cm-1,表明L2-的羧酸根与Co(Ⅱ)双齿配位[31]。Co-MOF的C=C伸缩振动对应1 533 cm-1,噻吩环的呼吸振动在1 065 cm-1处[28],与H2L、4,4′-bipy的峰位相比基本不变。Co-MOF的C—Br键受配位环境影响,蓝移至573 cm-1。Co—N和Co—O的伸缩振动分别位于495、450 cm-1 [32],表明Co(Ⅱ)与H2L、4,4′-bipy成功配位。$ {\nu }_{s, CO{O}^{-}} $ Mn-MOF的红外谱图与Co-MOF相似,其中羧酸的反对称伸缩振动
(1 603 cm–1)和对称伸缩振动$ {\nu }_{as, CO{O}^{-}} $ (1 376 cm–1)差值为227 cm-1,表明L2-的羧酸根与Mn(Ⅱ)为单齿配位形式。Mn—O和Mn—N的伸缩振动分别处于503和441 cm-1处[30]。$ {\nu }_{s, CO{O}^{-}} $ 2.3 荧光光谱
分别以配体及配合物的最强激发波长测定其固态荧光发射光谱。如图 4所示,H2L、4,4′-bipy、Co-MOF、Mn-MOF的最大发射波长分别为391、388、390、391 nm,激发波长对应图 5中的243、244、244、245 nm。配合物与配体的荧光发射峰位置相近,因此配合物荧光现象的产生是基于配体内的π*-π跃迁[33]。
图 4
图 5
2.4 MOF的热稳定性
对Co-MOF与Mn-MOF进行热重分析:在氮气气氛下从30 ℃以10 ℃·min-1速率升温至1 100 ℃。Co-MOF的热重/微分热重(TG/DTG)曲线如图 6a所示,DTG曲线上的吸热峰显示Co-MOF在110 ℃前失重1.63%(理论值1.53%),这是由于失去1分子晶格水。110~265 ℃范围内失重20.97%,推测为失去4个配位水分子和羧酸根的分解(理论值21.10%)[34]。265 ℃之后噻吩环和4,4′-bipy逐步分解[35-36]。TG曲线在800 ℃后趋于平缓,最终残余量37.17%。
图 6
Mn-MOF热重曲线如图 6b所示,在110 ℃前的吸热峰显示Mn-MOF失重3.53%,这是由于失去1分子晶格水(理论值3.50%)。110~195 ℃范围内失重6.97%对应于2分子配位水的失去(理论值7.00%)。195 ℃后配体L2-和4,4′-bipy逐步分解。TG曲线在880 ℃后趋于平缓,最终残余量27.25%。2种MOF的残余量均大于理论计算值,表明其在N2保护下的热分解产生了积炭效应,得到N掺杂碳材料[37]。
2.5 紫外可见吸收光谱
以无水硫酸钡为背景,测定H2L、4,4′-bipy、Co-MOF和Mn-MOF的固体紫外可见吸收光谱,测试结果如图 7所示。H2L、4,4′-bipy、Co-MOF和 Mn-MOF在280 nm左右均出现吸收峰,推断为分子内杂环上π-π*跃迁的B带[38]。Co-MOF与4,4′-bipy在230 nm处的吸收峰以及H2L在205 nm处的吸收峰均归属于共轭杂环上π-π*跃迁的K带,Co-MOF在512 nm处的宽吸收峰对应于Co2+(d7)的d-d自旋容许跃迁[39]。
图 7
2.6 MOF的相纯度
利用PXRD技术确认Co-MOF与Mn-MOF的相纯度。从图 8中可看出实验与根据单晶数据模拟的PXRD数据匹配良好,说明所合成的MOFs为纯相。部分峰强度存在差异可能是由于结晶粉末样品的择优取向所致。
图 8
3. 结论
采用2,5-二溴噻吩-3,4-二羧酸(H2L)为主配体、4,4′-联吡啶(4,4′-bipy)为辅配体,与六水合硝酸钴、四水合乙酸锰经溶剂热法合成了2种过渡金属有机骨架:{[Co2(L)2(4,4′-bipy)2(H2O)4]·H2O}n (Co-MOF)和{[Mn(L)(4,4′-bipy)0.5(H2O)2]·H2O}n (Mn-MOF),并对其结构与谱学性质进行表征。晶体结构分析表明,Co-MOF中的Co(Ⅱ)以4,4′-bipy桥联,经氢键分别沿b轴和c轴延展成二维层状结构,层间以氢键沿a轴堆积成三维结构。Mn-MOF的Mn(Ⅱ)与2种配体配位后,由配位键堆积成蜂窝状的三维结构。荧光光谱和热稳定性研究结果表明2种MOF均具有较好的荧光性质及热稳定性。
-
-
[1]
YIN Z, ZHOU Y L, ZENG M H, KURMOO M. The concept of mixed organic ligands in metal-organic frameworks: Design, tuning and functions[J]. Dalton Trans., 2015, 44(12): 5258-5275 doi: 10.1039/C4DT04030A
-
[2]
DENG X, YANG L L, HUANG H L, YANG Y Y, FENG S Q, ZENG M, LI Q, XU D S. Shape-defined hollow structural Co-MOF-74 and metal nanoparticles@Co-MOF-74 composite through a transformation strategy for enhanced photocatalysis performance[J]. Small, 2019, 15(35): 1902287 doi: 10.1002/smll.201902287
-
[3]
YAO M S, XIU J W, HUANG Q Q, LI W H, WU W W, WU A Q, CAO L A, DENG W H, WANG G E, XU G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing[J]. Angew. Chem. ‒Int. Edit., 2019, 58(42): 14915-14919 doi: 10.1002/anie.201907772
-
[4]
KANG D Y, LEE J S. Challenges in developing MOF-based membranes for gas separation[J]. Langmuir, 2023, 39(8): 2871-2880 doi: 10.1021/acs.langmuir.2c03458
-
[5]
YE Z Q, JIANG Y, LI L, WU F, CHEN R J. Rational design of MOF-based materials for next-generation rechargeable batteries[J]. Nano‒Micro Lett., 2021, 13: 1-37
-
[6]
曹阳政, 潘伟, 周川江, 张俊勇, 徐昊, 宫春华, 徐慧婷, 沈润溥, 刘遂军, 谢景力. 一系列基于混合配体策略构筑的金属有机骨架的合成、结构及性质[J]. 无机化学学报, 2022, 38(11): 2143-2153. doi: 10.11862/CJIC.2022.229CAO Y Z, PAN W, ZHOU C J, ZHANG J Y, XU H, GONG C H, XU H T, SHEN R P, LIU S J, XIE J L. A series of metal-organic frameworks based on mixed ligand strategy: Synthesis, structures, and properties[J]. Chinese J. Inorg. Chem., 2022, 38(11): 2143-2153 doi: 10.11862/CJIC.2022.229
-
[7]
YANG Y H, REN G J, LI W H, GU D X, LIANG Z Q, LIU Y F, PAN Q H. Three coordination complexes based on mixed ligand strategy: Coordination diversities and nitrobenzene detections[J]. Polyhedron, 2020, 185: 114599 doi: 10.1016/j.poly.2020.114599
-
[8]
RAZAVI S A A, MORSALI A. Linker functionalized metal-organic frameworks[J]. Coord. Chem. Rev., 2019, 399: 213023 doi: 10.1016/j.ccr.2019.213023
-
[9]
ZOU H H, HE Y P, GUI L C, LIANG F P. A new 8-connected porous coordination polymer: Crystal structure and selective adsorption properties[J]. CrystEngComm, 2011, 13(10): 3325-3329 doi: 10.1039/c1ce05103b
-
[10]
TAO J, YIN X, JIANG Y B, YANG L F, HUANG R B, ZHENG L S. Syntheses and crystal structures of two novel zinc(Ⅱ) coordination polymers[J]. Eur. J. Inorg. Chem., 2003(14): 2678-2682
-
[11]
HÖHNE D, HERDTWECK E, PÖTHIG A, KÜHN F E. Synthesis and characterization of dimeric and square-shaped dicarboxylate-bridged dimolybdenum(Ⅱ) coordination compounds[J]. Inorg. Chim. Acta, 2015, 424: 210-215 doi: 10.1016/j.ica.2014.08.043
-
[12]
ZHANG X, SHEN B X, ZHU S W, XU H, TIAN L H. UiO-66 and its Br-modified derivatives for elemental mercury removal[J]. J. Hazard. Mater., 2016, 320: 556-563 doi: 10.1016/j.jhazmat.2016.08.039
-
[13]
MARSHALL R J, GRIFFIN S L, WILSON C, FORGAN R S. Stereoselective halogenation of integral unsaturated C—C bonds in chemically and mechanically robust Zr and Hf MOFs[J]. Chem. ‒Eur. J., 2016, 22(14): 4870-4877 doi: 10.1002/chem.201505185
-
[14]
SHELDRICK G M. SADABS[CP]. University of Göttingen, Germany, 1996.
-
[15]
SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015, C71(1): 3-8
-
[16]
DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. Appl. Crystallogr., 2009, 42(2): 339-341 doi: 10.1107/S0021889808042726
-
[17]
REES B, JENNER L, YUSUPOV M. Bulk-solvent correction in large macromolecular structures[J]. Biol. Crystallogr., 2005, 61(9): 1299-1301 doi: 10.1107/S0907444905019591
-
[18]
LI R, WANG S H, CHEN X X, LU J, FU Z H, LI Y, XU G, ZHENG F K, GUO G C. Highly anisotropic and water molecule-dependent proton conductivity in a 2D homochiral copper(Ⅱ) metal-organic framework[J]. Chem. Mat., 2017, 29(5): 2321-2331 doi: 10.1021/acs.chemmater.6b05497
-
[19]
WEI R Z, LIU Z, WEI W C, LIANG C X, HAN G C, ZHAN L. Synthesis, crystal structure and characterization of two cobalt(Ⅱ) complexes based on pyridine carboxylic acid ligands[J]. Z. Anorg. Allg. Chem., 2022, 648(9): e202000418 doi: 10.1002/zaac.202000418
-
[20]
AMIRI N, NOUIR S, HAJJI M, ROISNEL T, GUERFEL T, SIMONNEAUX G, NASRI H. Synthesis, structure, photophysical properties and biological activity of a cobalt(Ⅱ) coordination complex with 4, 4′-bipyridine and porphyrin chelating ligands[J]. J. Saudi Chem. Soc., 2019, 23(7): 781-794 doi: 10.1016/j.jscs.2019.03.003
-
[21]
POTGIETER H, PURCELL W, VISSER H G, NICLÓS-GUTIÉRREZ J. Identification of different Co apda complexes: Crystallisation of [Co(H2O)6]·[Co(Hapda)2]2·H2O[J]. Polyhedron, 2005, 24(15): 1968-1974 doi: 10.1016/j.poly.2005.05.014
-
[22]
PANG L Y, LIU P, ZHANG C P, CHEN X, CHEN B, WANG Y Y, SHI Q Z. Four cobalt(Ⅱ) complexes constructed from a butterfly-shaped tetracarboxylic acid with N-donor ligands: Structures, magnetism and influence of coordination modes on dihedral angles[J]. Inorg. Chim. Acta, 2013, 403: 43-52 doi: 10.1016/j.ica.2012.12.032
-
[23]
DU L T, MIAO Y C, ZHENG B S, MA M T, ZHANG J C. Honeycomb-like 2D metal-organic polyhedral framework exhibiting selective adsorption of CO2[J]. J. Solid State Chem., 2021, 300: 122230 doi: 10.1016/j.jssc.2021.122230
-
[24]
LIU Y, XU D J, HUNG C H. Catena-poly[aquabis(1H-benzimidazole-κN3) manganese(Ⅱ)]-μ-adipato][J]. Acta Crystallogr. Sect. C, 2005, C61(4): M155-M157
-
[25]
COGGINS M K, DOWNING A N, KAMINSKY W, KOVACS J A. Comparison of two MnⅣMnⅣ-bis-μ-oxo complexes {[MnⅣ(N4(6-Me-DPEN))]2(μ-O)2}2+ and {[MnⅣ(N4(6-Me-DPPN))]2(μ-O)2}2+[J]. Struct. Rep., 2020, 76(7): 1042-1046
-
[26]
CHE G B, WANG J, LIU C B, LI X Y, LIU B. A one-dimensional chain structure based on unusual tetranuclear manganese(Ⅱ) clusters[J]. Acta Crystallogr. Sect. C, 2008, C64(11): M362-M364
-
[27]
宝金荣, 赵永亮, 朱晓伟. 铕、铽-2-噻吩甲酸-2, 2′-联吡啶配合物的合成、表征及荧光性质研究[J]. 光谱学与光谱分析, 2007, 27(3): 539-542.BAO J R, ZHAO Y L, ZHU X W. Synthesis, characterization and fluorescence of Eu3+, Tb3+ complexes with 2-thiophencarboxylic acid and 2, 2′-bipyridine[J]. Spectrosc. Spectr. Anal., 2007, 27(3): 539-542
-
[28]
WANG G Q, DONG Y K. Bio-based poly (propylene 2, 5-furandicarboxylate-co-propylene 2, 5-thiophenedicarboxylate): Synthesis and characterization[J]. Polym. Bull., 2024, 81(5): 4609-4627 doi: 10.1007/s00289-023-04928-w
-
[29]
闭颖莉. 水质安全型噻吩基抗菌材料的研发及特性研究[D]. 阜新: 辽宁工程技术大学, 2023: 21-22.BI Y L. Research and development of water-safe thiophenyl antibacterial materials and their properties[D]. Fuxin: Liaoning Technical University, 2023: 21-22
-
[30]
DONG D P, YU N S, ZHAO H Y, LIU D D, LIU J, LI Z H, LIU D P. Synthesis, structure, and electrochemistry and magnetic properties of a novel 1D homochiral MnⅢ(5-Brsalen) coordination polymer with left-handed helical character[J]. J. Mol. Struct., 2016, 1104: 58-62
-
[31]
袁良杰, 李进, 张克立, 孙聚堂. α-噻吩羧酸锌铕复合物的光谱性质[J]. 光谱学与光谱分析, 2000, 20(6): 878-879.YUAN L J, LI J, ZHANG K L, SUN J T. Luminescence of zinc and europium composite α-thiophene carboxylate[J]. Spectrosc. Spectr. Anal., 2000, 20(6): 878-879
-
[32]
SRIVASTAVA A K, SRIVASTAVA K, YADAV P, PRASAD J, MAURYA A K. Synthesis, characterization, biological (in vitro) activity and electrochemical studies of mixed-ligand copper(Ⅱ) and cobalt(Ⅱ) complexes with picolinic acid and imides[J]. Chem. Data Collect., 2021, 31: 100620 doi: 10.1016/j.cdc.2020.100620
-
[33]
LIU G C, LI Y, CHI J, XU N, WANG X L, LIN H Y, CHEN Y Q. Multi-functional fluorescent responses of cobalt complexes derived from functionalized amide-bridged ligand[J]. Dyes Pigment., 2020, 174: 108064 doi: 10.1016/j.dyepig.2019.108064
-
[34]
TURAN N. Synthesis, spectroscopy, optical characteristics and parameters of Co(Ⅱ), Pd(Ⅱ) complexes and Schiff base ligand[J]. J. Electron. Mater., 2019, 48(11): 7366-7371 doi: 10.1007/s11664-019-07562-3
-
[35]
SALIMI S, AKHBARI K, F. FARNIA S M, WHITE J M. Multiple construction of a hierarchical nanoporous manganese(Ⅱ)-based metal-organic framework with active sites for regulating N2 and CO2 trapping[J]. Cryst. Growth Des., 2022, 22(3): 1654-1664 doi: 10.1021/acs.cgd.1c01183
-
[36]
史燚威, 杨瑞杰, 张迎春, 王鑫, 王敏, 宋志国. 4, 4′-联吡啶桥联的钴配位聚合物的合成、表征及量子化学计算[J]. 人工晶体学报, 2024, 53(9): 1583-1590.SHI Y W, YANG R J, ZHANG Y C, WANG X, WANG M, SONG Z G. Synthesis, characterization and quantum chemical calculation of cobalt coordination polymer with 4, 4′-bipy bridge[J]. Journal of Synthetic Crystals, 2024, 53(9): 1583-1590
-
[37]
罗小玲, 邹品田, 王小燕, 刘峥, 孔翔飞, 唐群, 王胜. 基于2, 5-二溴对苯二羧酸配体的镧系金属有机骨架的合成、结构及性质[J]. 无机化学学报, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271LUO X L, ZOU P T, WANG X Y, LIU Z, KONG X F, TANG Q, WANG S. Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand[J]. Chinese J. Inorg. Chem., 2024, 40(6): 1143-1150 doi: 10.11862/CJIC.20230271
-
[38]
韦文厂, 刘峥, 魏润芝, 唐群, 梁楚欣, 张淑芬. 基于3, 4-乙撑二氧基噻吩环配体的铜/锌配合物的合成、晶体结构及性质[J]. 无机化学学报, 2020, 36(10): 1891-1898.WEI W C, LIU Z, WEI R Z, TANG Q, LIANG C X, ZHANG S F. Syntheses, crystal structure and properties of Cu/Zn complexes based on 3, 4-ethylenedioxythiophene ring ligand[J]. Chinese J. Inorg. Chem., 2020, 36(10): 1891-1898
-
[39]
JI N N, SHI Z Q, HU H L. Three Co(Ⅱ) metal-organic frameworks based on a substituted thiophene carboxylic acid ligand with semiconductive properties[J]. J. Solid State Chem., 2018, 267: 68-75 doi: 10.1016/j.jssc.2018.08.015
-
[1]
-
图 1 Co-MOF的晶体结构: (a) 椭球概率50%的不对称单元; (b) 结构单元; (c) b轴方向上的三维堆积图; (d) Co离子的配位环境
Figure 1 Crystal structure of Co-MOF: (a) asymmetric unit with an ellipsoidal probability of 50%; (b) structural unit; (c) 3D packing diagram in the b-axis direction; (d) coordination environment of Co ion
For panels a and c, the hydrogen atoms, the free hydronium ions, and the free water molecules are omitted; For panel b, all hydrogen atoms except the bonding hydrogen atoms are omitted; Symmetry codes: ⅰ x, 1/2+y, 1-z; ⅱ 3/2-x, 3/2-y, 1/2-z; ⅲ 1-x, 1-y, 1-z; ⅳ 3/2-x, y, 1-z; ⅴ 1-x, 3/2-y, z.
图 2 Mn-MOF的晶体结构: (a) 椭球概率50%的不对称单元; (b) 分子结构; (c) c轴方向上的三维堆积图; (d) Mn离子的配位环境
Figure 2 Crystal structure of Mn-MOF: (a) asymmetrical unit with an ellipsoidal probability of 50%; (b) molecular structure; (c) 3D stacking diagram in the c-axis direction; (d) coordination environment of Mn ion
For panel a, the free water molecules are omitted; For panels b and c, the hydrogen atoms, the free hydronium ions, and the free water molecules are omitted; Symmetry codes: ⅰ y, -x+y, 1-z; ⅱ y, -x+y, 2-z.
表 1 Co-MOF和Mn-MOF的晶体学数据
Table 1. Crystallographic data for Co-MOF and Mn-MOF
Parameter Co-MOF Mn-MOF Empirical formula C32H26Br4Co2N4O13S2 C11H10Br2MnNO7S Formula weight 1 176.19 515.02 Crystal system Orthorhombic Trigonal Space group Ibca P3 a / nm 3.003 69(19) 2.032 3(8) b / nm 2.289 47(14) 2.032 3(8) c / nm 2.306 16(11) 0.637 1(2) Volume / nm3 15.859 1(16) 2.278 8(19) Z 16 6 Dc / (g·cm-3) 1.970 2.252 μ / mm-1 5.041 6.301 F(000) 9 216.0 1 500.0 θ range / (°) 2.091-27.527 2.314-27.518 Index ranges -38 ≤ h ≤ 38, -29 ≤ k ≤ 29, -29 ≤ l ≤ 22 -26 ≤ h ≤ 26, -26 ≤ k ≤ 26, -8 ≤ l ≤ 7 Reflection collected 106 066 45 838 Independent reflection 9 116 (Rint=0.110 2, Rσ=0.066 1) 3 496 (Rint=0.079 5, Rσ=0.031 5) Rint 0.110 2 0.079 5 Data, number of restraints, number of parameters 9 116, 3, 552 3 496, 0, 211 Goodness-of-fit on F 2 1.041 1.066 Final R indexes [I≥2σ(I)] R1=0.048 6, wR2=0.119 0 R1=0.031 7, wR2=0.086 6 Final R indexes (all data) R1=0.072 4, wR2=0.132 0 R1=0.041 2, wR2=0.090 9 -
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 2
- HTML全文浏览量: 0

下载:
下载: