Manganese-doped poly(1,5-diaminonaphthalene) based high-performance supercapacitors
- Corresponding author: Kannan Palanisamy, ktpkannan@zjxu.edu.cn Lianpeng ZHANG, lpz@zju.edu.cn Peng WANG, pengwang@zjxu.edu.cn
Citation:
Mengying XU, Wen LI, Junzhong MEI, Cheng ZHANG, Kannan Palanisamy, Lei LU, Lianpeng ZHANG, Peng WANG. Manganese-doped poly(1,5-diaminonaphthalene) based high-performance supercapacitors[J]. Chinese Journal of Inorganic Chemistry,
;2026, 42(2): 387-397.
doi:
10.11862/CJIC.20250211
LIU B, LIU G, TANG Y B, CHENG H M. Advanced materials and energy technologies towards carbon neutrality[J]. Sci. China Mater., 2022, 65(12): 3187-3189
doi: 10.1007/s40843-022-2324-0
NAVARRO G, TORRES J, BLANCO M, NÁJERA J, SANTOS-HERRAN M, LAFOZ M. Present and future of supercapacitor technology applied to powertrains, renewable generation and grid connection applications[J]. Energies, 2021, 14(11): 3060
doi: 10.3390/en14113060
HUANG S F, ZHU X L, SARKAR S, ZHAO Y F. Challenges and opportunities for supercapacitors[J]. APL Mater., 2019, 7(10): 100901
doi: 10.1063/1.5116146
YI T F, QIU L Y, MEI J, QI S Y, CUI P, LUO S H, ZHU Y R, XIE Y, HE Y B. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials[J]. Sci. Bull., 2020, 65(7): 546-556
doi: 10.1016/j.scib.2020.01.011
KUMAR M S, K Y Y, DAS P, MALIK S, KOTHURKAR N K, BATABYAL S K. Urea-mediated synthesized carbon quantum dots to tune the electrochemical performance of polyaniline nanorods for supercapacitor device[J]. J. Sci. Adv. Mater. Dev., 2022, 7(2): 100403
NASKAR P, MAITI A, CHAKRABORTY P, KUNDU D, BISWAS B, BANERJEE A. Chemical supercapacitors: A review focusing on metallic compounds and conducting polymers[J]. J. Mater. Chem. A, 2021, 9(4): 1970-2017
doi: 10.1039/D0TA09655E
MENG Q F, CAI K F, CHEN Y X, CHEN L D. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285
doi: 10.1016/j.nanoen.2017.04.040
LIU T Y, FINN L, YU M H, WANG H Y, ZHAI T, LU X H, TONG Y X, LI Y. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Lett., 2014, 14(5): 2522-2527
doi: 10.1021/nl500255v
BAKER C O, HUANG X W, NELSON W, KANER R B. Polyaniline nanofibers: Broadening applications for conducting polymers[J]. Chem. Soc. Rev., 2017, 46(5): 1510-1525
doi: 10.1039/C6CS00555A
WU Y G, ZHANG J Y, FEI Z P, BO Z S. Spiro-bridged ladder-type poly(p-phenylene)s: Towards structurally perfect light-emitting materials[J]. J. Am. Chem. Soc., 2008, 130(23): 7192-7193
doi: 10.1021/ja801422n
LEE J B, KALIN A J, YUAN T Y, AL-HASHIMI M, FANG L. Fully conjugated ladder polymers[J]. Chem. Sci., 2017, 8(4): 2503-2521
doi: 10.1039/C7SC00154A
ABDEL A M, YOUSEF U S, LIMOSIN D, PIERRE G. Electro-oxidative oligomerization of 1, 5-diaminonaphthalene in acetonitrile medium[J]. J. Electroanal. Chem., 1996, 417(1/2): 163-173
JACKOWSKA K, BUKOWSKA J, JAMKOWSKI M. Synthesis, electroactivity and molecular structure of poly(1, 5-diaminonaphthalene)[J]. J. Electroanal. Chem., 1995, 388(1/2): 101-108
LI H L, WANG J X, CHU Q X, WANG Z, ZHANG F B, WANG S C. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid[J]. J. Power Sources, 2009, 190(2): 578-586
doi: 10.1016/j.jpowsour.2009.01.052
ACERCE M, CHIOVOLONI S, HERNANDEZ Y, ORTUNO C, QIAN J, LU J. Poly(1, 5-diaminonaphthalene)-grafted monolithic 3D hierarchical carbon as highly capacitive and stable supercapacitor electrodes[J]. ACS Appl. Mater. Interfaces, 2021, 13(45): 53736-53745
doi: 10.1021/acsami.1c13746
STAVALE F, SHAO X, NILIUS N, FREUND H J, PRADA S, GIORDANO L, PACCHIONI G. Donor characteristics of transition-metal-doped oxides: Cr-doped MgO versus Mo-doped CaO[J]. J. Am. Chem. Soc., 2012, 134(28): 11380-11383
doi: 10.1021/ja304497n
GÜNGÖR A, BAKAN-MISIRLIOGLU F, GENÇ ALTURK R, ERDEM E. Elevating supercapacitor performance: Enhancing electrochemical efficiency with transition metal-doped polyaniline electrode[J]. J. Energy Storage, 2024, 76: 110143
doi: 10.1016/j.est.2023.110143
YAN L J, NIU L Y, SHEN C, ZHANG Z K, LIN J H, SHEN F Y, GONG Y Y, LI C, LIU X J, XU S Q. Modulating the electronic structure and pseudocapacitance of δ-MnO2 through transitional metal M (M=Fe, Co and Ni) doping[J]. Electrochim. Acta, 2019, 306: 529-540
doi: 10.1016/j.electacta.2019.03.174
XU X D, LIU W, KIM Y, CHO J. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges[J]. Nano Today, 2014, 9(5): 604-630
doi: 10.1016/j.nantod.2014.09.005
MOHD ABDAH M A A, AZMAN N H N, KULANDAIVALU S, SULAIMAN Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors[J]. Mater. Des., 2020, 186: 108199
doi: 10.1016/j.matdes.2019.108199
ZHU C R, YANG L, SEO J K, ZHANG X, WANG S, SHIN J, CHAO D L, ZHANG H, MENG Y S, FAN H J. Self-branched α-MnO2/δ-MnO2 heterojunction nanowires with enhanced pseudocapacitance[J]. Mater. Horiz., 2017, 4(3): 415-422
doi: 10.1039/C6MH00556J
HUANG Z H, SONG Y, FENG D Y, SUN Z, SUN X Q, LIU X X. High mass loading MnO2 with hierarchical nanostructures for supercapacitors[J]. ACS Nano, 2018, 12(4): 3557-3567
doi: 10.1021/acsnano.8b00621
YUAN L Y, LU X H, XIAO X, ZHAI T, DAI J J, ZHANG F C, HU B, WANG X, GONG L, CHEN J, HU C G, TONG Y X, ZHOU J, WANG Z L. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure[J]. ACS Nano, 2012, 6(1): 656-661
doi: 10.1021/nn2041279
DHIBAR S, BHATTACHARYA P, HATUI G, SAHOO S, DAS C K. Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: Efficient electrode material for high performance supercapacitors[J]. ACS Sustain. Chem. Eng., 2014, 2(5): 1114-1127
doi: 10.1021/sc5000072
BRYAN A M, SANTINO L M, LU Y, ACHARYA S, D′ARCY J M. Conducting polymers for pseudocapacitive energy storage[J]. Chem. Mater., 2016, 28(17): 5989-5998
doi: 10.1021/acs.chemmater.6b01762
MIKE J F, LUTKENHAUS J L. Recent advances in conjugated polymer energy storage[J]. J. Polym. Sci. Pt. B‒Polym. Phys., 2013, 51(7): 468-480
doi: 10.1002/polb.23256
ISLAM S, ALFARUQI M H, SONG J, KIM S, PHAM D T, JO J, KIM S, MATHEW V, BABOO J P, XIU Z L, KIM J. Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications[J]. J. Energy Chem., 2017, 26(4): 815-819
doi: 10.1016/j.jechem.2017.04.002
FENG J, GAO H, ZHENG L, CHEN Z, ZENG S, JIANG C, DONG H, LIU L, ZHANG S, ZHANG X. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction[J]. Nat. Commun., 2020, 11(1): 4341
doi: 10.1038/s41467-020-18143-y
GUO Z, XIE Y, XIAO J, ZHAO Z J, WANG Y, XU Z, ZHANG Y, YIN L, CAO H, GONG J. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution[J]. J. Am. Chem. Soc., 2019, 141(30): 12005-12010
doi: 10.1021/jacs.9b04569
GHOSH D, GIRI S, MANDAL A, DAS C K. Supercapacitor based on H+ and Ni2+ co-doped polyaniline-MWCNTs nanocomposite: Synthesis and electrochemical characterization[J]. RSC Adv., 2013, 3(29): 11676
doi: 10.1039/c3ra40955d
CHEN Y C, XIE Y B. Electrochemical performance of manganese coordinated polyaniline[J]. Adv. Electron. Mater., 2019, 5(12): 1900816
doi: 10.1002/aelm.201900816
BIESINGER M C, PAYNE B P, GROSVENOR A P, LAU L W M, GERSON A R, SMART R S C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Appl. Surf. Sci., 2011, 257(7): 2717-2730
doi: 10.1016/j.apsusc.2010.10.051
VOGT H. Note on a method to interrelate inner and outer electrode areas[J]. Electrochim. Acta, 1994, 39(13): 1981-1983
doi: 10.1016/0013-4686(94)85077-1
ZHU C Z, KALIN A J, FANG L. Covalent and noncovalent approaches to rigid coplanar π-conjugated molecules and macromolecules[J]. Acc. Chem. Res., 2019, 52(4): 1089-1100
doi: 10.1021/acs.accounts.9b00022
LAI X J, DANG Z Q, WANG L, LI P, YANG Y F, WANG C. Electropolymerization of 1, 5-diaminonaphthalene in water-in-reline electrolyte as supercapacitor electrode material[J]. J. Energy Storage, 2024, 91: 112032
doi: 10.1016/j.est.2024.112032
WANG N N, DING G P, YANG X H, ZHAO L J, HE D Y. Membrane MnO2 coated Fe3O4/CNTs negative material for efficient full-pseudocapacitance supercapacitor[J]. Mater. Lett., 2019, 255: 126589
doi: 10.1016/j.matlet.2019.126589
GHOSH K, YUE C Y, SK M M, JENA R K. Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@ PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application[J]. ACS Appl. Mater. Interfaces, 2017, 9(18): 15350-15363
doi: 10.1021/acsami.6b16406
CAKICI M, KAKARLA R R, ALONSO-MARROQUIN F. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes[J]. Chem. Eng. J., 2017, 309: 151-158
doi: 10.1016/j.cej.2016.10.012
MA Y H, FU Y, WEI N, ZHU J B, NIU H J, QIN C L, JIANG X K. Polyaniline/manganese nickel oxide/graphene composites as electrode materials for supercapacitors[J]. J. Appl. Polym. Sci., 2023, 140(46): e54672
doi: 10.1002/app.54672
LEE C C, OMAR F S, NUMAN A, DURAISAMY N, RAMESH K, RAMESH S. An enhanced performance of hybrid supercapacitor based on polyaniline-manganese phosphate binary composite[J]. J. Solid State Electrochem., 2017, 21(11): 3205-3213
doi: 10.1007/s10008-017-3624-1
DAS T, VERMA B. Polyaniline based ternary composite with enhanced electrochemical properties and its use as supercapacitor electrodes[J]. J. Energy Storage, 2019, 26: 100975
doi: 10.1016/j.est.2019.100975
YAN L, ZHU Q, QI Y, XU J, PENG Y, SHU J, MA J, WANG Y G. Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode[J]. Angew. Chem. ‒Int. Edit., 2022, 61(42): e202211107
doi: 10.1002/anie.202211107
Hongren RONG , Gexiang GAO , Zhiwei LIU , Ke ZHOU , Lixin SU , Hao HUANG , Wenlong LIU , Qi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Lixing ZHANG , Yaowen WANG , Xu HAN , Junhong ZHOU , Jinghui WANG , Liping LI , Guangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
Yijing GU , Huan PANG , Rongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186
Ao XIA , Botao YU , Jun CHEN , Guoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163
Chunhua Ma , Mengjiao Liu , Siyu Ouyang , Zhenwei Cui , Jingjing Bi , Yuqin Jiang , Zhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Malaika Arshad , Zia Ul Haq Khan , Swera Talib , Sana Sabahat , Noor Samad Shah , Huma Ajab , Farooq Ahmad , Syed Khasim , M. A. Diab , Heba A. El-Sabban . A comprehensive review: MOFs and their derivatives as high-performance supercapacitor electrodes. Chinese Journal of Structural Chemistry, 2025, 44(9): 100676-100676. doi: 10.1016/j.cjsc.2025.100676
Zhuwei Yang , Linsen Li , Yijie Lin , Xinyuan Tao , Xiao Liu , Lei Chen , Ming Ma , Li Lin , Riguang Zhang , Jiayuan Li , Zhao Jiang . Regulating the Oxygen Vacancies in Ni-CexZr1-xO2/ZSM-5 to Improve the Long-term Stability for Methane Dry Reforming. Chinese Journal of Structural Chemistry, 2025, 44(8): 100632-100632. doi: 10.1016/j.cjsc.2025.100632
Bofei JIA , Zhihao LIU , Zongyuan GAO , Shuai ZHOU , Mengxiang WU , Qian ZHANG , Xiamei ZHANG , Shuzhong CHEN , Xiaohan YANG , Yahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Inset: corresponding equivalent circuit diagram.