Citation: Mengying XU, Wen LI, Junzhong MEI, Cheng ZHANG, Kannan Palanisamy, Lei LU, Lianpeng ZHANG, Peng WANG. Manganese-doped poly(1,5-diaminonaphthalene) based high-performance supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 387-397. doi: 10.11862/CJIC.20250211 shu

Manganese-doped poly(1,5-diaminonaphthalene) based high-performance supercapacitors

Figures(5)

  • Herein, manganese (Mn)-doped poly(1, 5-diaminonaphthalene) (PN) electrode material (Mn@PN) was synthesized via chemical oxidative polymerization. The material′s distinctive vesicular architecture enables rapid ion transport while maintaining the structural stability of the electrode under continuous charge-discharge cycles. Electrochemical characterization under a three-electrode system revealed exceptional rate capability: Mn@PN delivered an ultrahigh specific capacitance of 10 318 F·g-1 at a low current density of 3 A·g-1 and retained 9 415 F·g-1 (91.2% retention compared to the value at 3 A·g-1) even at an ultrahigh current density of 50 A·g-1. Moreover, the material exhibited 97.4% capacitance retention after 9 000 cycles at 30 A·g-1, corresponding with a low capacitance decay rate of 0.003‰ per cycle, significantly outperforming conventional conductive polymers like polyaniline (PANI). An asymmetric supercapacitor assembled with Mn@PN as the positive electrode (Mn@PN||AC) achieved an energy density of 328 Wh·kg-1 at 15 A·g-1 and retained 80.7% of its initial specific capacitance after 4 000 cycles at 20 A·g-1.
  • 加载中
    1. [1]

      LIU B, LIU G, TANG Y B, CHENG H M. Advanced materials and energy technologies towards carbon neutrality[J]. Sci. China Mater., 2022, 65(12): 3187-3189  doi: 10.1007/s40843-022-2324-0

    2. [2]

      NAVARRO G, TORRES J, BLANCO M, NÁJERA J, SANTOS-HERRAN M, LAFOZ M. Present and future of supercapacitor technology applied to powertrains, renewable generation and grid connection applications[J]. Energies, 2021, 14(11): 3060  doi: 10.3390/en14113060

    3. [3]

      HUANG S F, ZHU X L, SARKAR S, ZHAO Y F. Challenges and opportunities for supercapacitors[J]. APL Mater., 2019, 7(10): 100901  doi: 10.1063/1.5116146

    4. [4]

      YI T F, QIU L Y, MEI J, QI S Y, CUI P, LUO S H, ZHU Y R, XIE Y, HE Y B. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials[J]. Sci. Bull., 2020, 65(7): 546-556  doi: 10.1016/j.scib.2020.01.011

    5. [5]

      KUMAR M S, K Y Y, DAS P, MALIK S, KOTHURKAR N K, BATABYAL S K. Urea-mediated synthesized carbon quantum dots to tune the electrochemical performance of polyaniline nanorods for supercapacitor device[J]. J. Sci. Adv. Mater. Dev., 2022, 7(2): 100403

    6. [6]

      NASKAR P, MAITI A, CHAKRABORTY P, KUNDU D, BISWAS B, BANERJEE A. Chemical supercapacitors: A review focusing on metallic compounds and conducting polymers[J]. J. Mater. Chem. A, 2021, 9(4): 1970-2017  doi: 10.1039/D0TA09655E

    7. [7]

      MENG Q F, CAI K F, CHEN Y X, CHEN L D. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285  doi: 10.1016/j.nanoen.2017.04.040

    8. [8]

      LIU T Y, FINN L, YU M H, WANG H Y, ZHAI T, LU X H, TONG Y X, LI Y. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Lett., 2014, 14(5): 2522-2527  doi: 10.1021/nl500255v

    9. [9]

      BAKER C O, HUANG X W, NELSON W, KANER R B. Polyaniline nanofibers: Broadening applications for conducting polymers[J]. Chem. Soc. Rev., 2017, 46(5): 1510-1525  doi: 10.1039/C6CS00555A

    10. [10]

      WU Y G, ZHANG J Y, FEI Z P, BO Z S. Spiro-bridged ladder-type poly(p-phenylene)s: Towards structurally perfect light-emitting materials[J]. J. Am. Chem. Soc., 2008, 130(23): 7192-7193  doi: 10.1021/ja801422n

    11. [11]

      LEE J B, KALIN A J, YUAN T Y, AL-HASHIMI M, FANG L. Fully conjugated ladder polymers[J]. Chem. Sci., 2017, 8(4): 2503-2521  doi: 10.1039/C7SC00154A

    12. [12]

      ABDEL A M, YOUSEF U S, LIMOSIN D, PIERRE G. Electro-oxidative oligomerization of 1, 5-diaminonaphthalene in acetonitrile medium[J]. J. Electroanal. Chem., 1996, 417(1/2): 163-173

    13. [13]

      JACKOWSKA K, BUKOWSKA J, JAMKOWSKI M. Synthesis, electroactivity and molecular structure of poly(1, 5-diaminonaphthalene)[J]. J. Electroanal. Chem., 1995, 388(1/2): 101-108

    14. [14]

      LI H L, WANG J X, CHU Q X, WANG Z, ZHANG F B, WANG S C. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid[J]. J. Power Sources, 2009, 190(2): 578-586  doi: 10.1016/j.jpowsour.2009.01.052

    15. [15]

      ACERCE M, CHIOVOLONI S, HERNANDEZ Y, ORTUNO C, QIAN J, LU J. Poly(1, 5-diaminonaphthalene)-grafted monolithic 3D hierarchical carbon as highly capacitive and stable supercapacitor electrodes[J]. ACS Appl. Mater. Interfaces, 2021, 13(45): 53736-53745  doi: 10.1021/acsami.1c13746

    16. [16]

      STAVALE F, SHAO X, NILIUS N, FREUND H J, PRADA S, GIORDANO L, PACCHIONI G. Donor characteristics of transition-metal-doped oxides: Cr-doped MgO versus Mo-doped CaO[J]. J. Am. Chem. Soc., 2012, 134(28): 11380-11383  doi: 10.1021/ja304497n

    17. [17]

      GÜNGÖR A, BAKAN-MISIRLIOGLU F, GENÇ ALTURK R, ERDEM E. Elevating supercapacitor performance: Enhancing electrochemical efficiency with transition metal-doped polyaniline electrode[J]. J. Energy Storage, 2024, 76: 110143  doi: 10.1016/j.est.2023.110143

    18. [18]

      YAN L J, NIU L Y, SHEN C, ZHANG Z K, LIN J H, SHEN F Y, GONG Y Y, LI C, LIU X J, XU S Q. Modulating the electronic structure and pseudocapacitance of δ-MnO2 through transitional metal M (M=Fe, Co and Ni) doping[J]. Electrochim. Acta, 2019, 306: 529-540  doi: 10.1016/j.electacta.2019.03.174

    19. [19]

      XU X D, LIU W, KIM Y, CHO J. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges[J]. Nano Today, 2014, 9(5): 604-630  doi: 10.1016/j.nantod.2014.09.005

    20. [20]

      MOHD ABDAH M A A, AZMAN N H N, KULANDAIVALU S, SULAIMAN Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors[J]. Mater. Des., 2020, 186: 108199  doi: 10.1016/j.matdes.2019.108199

    21. [21]

      ZHU C R, YANG L, SEO J K, ZHANG X, WANG S, SHIN J, CHAO D L, ZHANG H, MENG Y S, FAN H J. Self-branched α-MnO2/δ-MnO2 heterojunction nanowires with enhanced pseudocapacitance[J]. Mater. Horiz., 2017, 4(3): 415-422  doi: 10.1039/C6MH00556J

    22. [22]

      HUANG Z H, SONG Y, FENG D Y, SUN Z, SUN X Q, LIU X X. High mass loading MnO2 with hierarchical nanostructures for supercapacitors[J]. ACS Nano, 2018, 12(4): 3557-3567  doi: 10.1021/acsnano.8b00621

    23. [23]

      YUAN L Y, LU X H, XIAO X, ZHAI T, DAI J J, ZHANG F C, HU B, WANG X, GONG L, CHEN J, HU C G, TONG Y X, ZHOU J, WANG Z L. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure[J]. ACS Nano, 2012, 6(1): 656-661  doi: 10.1021/nn2041279

    24. [24]

      DHIBAR S, BHATTACHARYA P, HATUI G, SAHOO S, DAS C K. Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: Efficient electrode material for high performance supercapacitors[J]. ACS Sustain. Chem. Eng., 2014, 2(5): 1114-1127  doi: 10.1021/sc5000072

    25. [25]

      BRYAN A M, SANTINO L M, LU Y, ACHARYA S, D′ARCY J M. Conducting polymers for pseudocapacitive energy storage[J]. Chem. Mater., 2016, 28(17): 5989-5998  doi: 10.1021/acs.chemmater.6b01762

    26. [26]

      MIKE J F, LUTKENHAUS J L. Recent advances in conjugated polymer energy storage[J]. J. Polym. Sci. Pt. B‒Polym. Phys., 2013, 51(7): 468-480  doi: 10.1002/polb.23256

    27. [27]

      ISLAM S, ALFARUQI M H, SONG J, KIM S, PHAM D T, JO J, KIM S, MATHEW V, BABOO J P, XIU Z L, KIM J. Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications[J]. J. Energy Chem., 2017, 26(4): 815-819  doi: 10.1016/j.jechem.2017.04.002

    28. [28]

      FENG J, GAO H, ZHENG L, CHEN Z, ZENG S, JIANG C, DONG H, LIU L, ZHANG S, ZHANG X. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction[J]. Nat. Commun., 2020, 11(1): 4341  doi: 10.1038/s41467-020-18143-y

    29. [29]

      GUO Z, XIE Y, XIAO J, ZHAO Z J, WANG Y, XU Z, ZHANG Y, YIN L, CAO H, GONG J. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution[J]. J. Am. Chem. Soc., 2019, 141(30): 12005-12010  doi: 10.1021/jacs.9b04569

    30. [30]

      GHOSH D, GIRI S, MANDAL A, DAS C K. Supercapacitor based on H+ and Ni2+ co-doped polyaniline-MWCNTs nanocomposite: Synthesis and electrochemical characterization[J]. RSC Adv., 2013, 3(29): 11676  doi: 10.1039/c3ra40955d

    31. [31]

      CHEN Y C, XIE Y B. Electrochemical performance of manganese coordinated polyaniline[J]. Adv. Electron. Mater., 2019, 5(12): 1900816  doi: 10.1002/aelm.201900816

    32. [32]

      BIESINGER M C, PAYNE B P, GROSVENOR A P, LAU L W M, GERSON A R, SMART R S C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Appl. Surf. Sci., 2011, 257(7): 2717-2730  doi: 10.1016/j.apsusc.2010.10.051

    33. [33]

      VOGT H. Note on a method to interrelate inner and outer electrode areas[J]. Electrochim. Acta, 1994, 39(13): 1981-1983  doi: 10.1016/0013-4686(94)85077-1

    34. [34]

      ZHU C Z, KALIN A J, FANG L. Covalent and noncovalent approaches to rigid coplanar π-conjugated molecules and macromolecules[J]. Acc. Chem. Res., 2019, 52(4): 1089-1100  doi: 10.1021/acs.accounts.9b00022

    35. [35]

      LAI X J, DANG Z Q, WANG L, LI P, YANG Y F, WANG C. Electropolymerization of 1, 5-diaminonaphthalene in water-in-reline electrolyte as supercapacitor electrode material[J]. J. Energy Storage, 2024, 91: 112032  doi: 10.1016/j.est.2024.112032

    36. [36]

      WANG N N, DING G P, YANG X H, ZHAO L J, HE D Y. Membrane MnO2 coated Fe3O4/CNTs negative material for efficient full-pseudocapacitance supercapacitor[J]. Mater. Lett., 2019, 255: 126589  doi: 10.1016/j.matlet.2019.126589

    37. [37]

      GHOSH K, YUE C Y, SK M M, JENA R K. Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@ PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application[J]. ACS Appl. Mater. Interfaces, 2017, 9(18): 15350-15363  doi: 10.1021/acsami.6b16406

    38. [38]

      CAKICI M, KAKARLA R R, ALONSO-MARROQUIN F. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes[J]. Chem. Eng. J., 2017, 309: 151-158  doi: 10.1016/j.cej.2016.10.012

    39. [39]

      MA Y H, FU Y, WEI N, ZHU J B, NIU H J, QIN C L, JIANG X K. Polyaniline/manganese nickel oxide/graphene composites as electrode materials for supercapacitors[J]. J. Appl. Polym. Sci., 2023, 140(46): e54672  doi: 10.1002/app.54672

    40. [40]

      LEE C C, OMAR F S, NUMAN A, DURAISAMY N, RAMESH K, RAMESH S. An enhanced performance of hybrid supercapacitor based on polyaniline-manganese phosphate binary composite[J]. J. Solid State Electrochem., 2017, 21(11): 3205-3213  doi: 10.1007/s10008-017-3624-1

    41. [41]

      DAS T, VERMA B. Polyaniline based ternary composite with enhanced electrochemical properties and its use as supercapacitor electrodes[J]. J. Energy Storage, 2019, 26: 100975  doi: 10.1016/j.est.2019.100975

    42. [42]

      YAN L, ZHU Q, QI Y, XU J, PENG Y, SHU J, MA J, WANG Y G. Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode[J]. Angew. Chem. ‒Int. Edit., 2022, 61(42): e202211107  doi: 10.1002/anie.202211107

  • 加载中
    1. [1]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    2. [2]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    5. [5]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    6. [6]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    11. [11]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    12. [12]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    13. [13]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Malaika Arshad Zia Ul Haq Khan Swera Talib Sana Sabahat Noor Samad Shah Huma Ajab Farooq Ahmad Syed Khasim M. A. Diab Heba A. El-Sabban . A comprehensive review: MOFs and their derivatives as high-performance supercapacitor electrodes. Chinese Journal of Structural Chemistry, 2025, 44(9): 100676-100676. doi: 10.1016/j.cjsc.2025.100676

    17. [17]

      Zhuwei Yang Linsen Li Yijie Lin Xinyuan Tao Xiao Liu Lei Chen Ming Ma Li Lin Riguang Zhang Jiayuan Li Zhao Jiang . Regulating the Oxygen Vacancies in Ni-CexZr1-xO2/ZSM-5 to Improve the Long-term Stability for Methane Dry Reforming. Chinese Journal of Structural Chemistry, 2025, 44(8): 100632-100632. doi: 10.1016/j.cjsc.2025.100632

    18. [18]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    19. [19]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    20. [20]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return