Citation: Jiaxin LU, Yifu QIAO, Xing QIANG, Yong GAO, Ziya LIU, Manying ZHANG. Silver-doped antimicrobial fluorescent carbon dots: Dual properties of metal ion detection and antibacterial[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 398-412. doi: 10.11862/CJIC.20250207 shu

Silver-doped antimicrobial fluorescent carbon dots: Dual properties of metal ion detection and antibacterial

  • Corresponding author: Manying ZHANG, myzhang@jsut.edu.cn
  • Received Date: 16 June 2025
    Revised Date: 12 December 2025

Figures(7)

  • Herein, antibacterial silver-doped fluorescent carbon dots (Ag-CDs) were synthesized through a stepwise hydrothermal method, with polyethyleneimine (PEI), citric acid (CA), and silver nitrate (AgNO3) serving as precursors. The applicability and antimicrobial efficacy of these nanomaterials were systematically investigated for metal ion sensing. Experimental evidence demonstrated that the Ag-CDs exhibited a pronounced fluorescence quenching response toward ferric ions (Fe3+), enabling their quantitative determination via a linear concentration-dependent relationship. These Ag-CDs exhibited significant inhibitory effects on biofilm growth and disruption for both Escherichia coli and Staphylococcus aureus. Mechanism investigations indicate that Ag-CDs induced the death of Escherichia coli and Pseudomonas aeruginosa by disrupting their bacterial morphology and structure, triggering the generation of intracellular reactive oxygen species (ROS), and impairing their antioxidant defense system.
  • 加载中
    1. [1]

      YIN Z Y, SONG J, LIU D G, WU J F, YANG Y, SUN Y Y, WU J C. Mapping mining-affected water pollution in China: Status, patterns, risks, and implications[J]. Hydrol. Earth Syst. Sci., 2024, 29(16): 3957-3973

    2. [2]

      SALAZAR H, MARTINS P M, SANTOS B, FERNANDES M M, REIZABAL A, SEBASTIÁN V, BOTELHO G, TAVARES C J, VILAS-VILELA J L, LANCEROS-MENDEZ S. Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications[J]. Chemosphere, 2020, 250(7): 126299

    3. [3]

      YANG B, FAN G S, LIANG Z H. The comparison of membrane technology and conventional methods for water treatment[J]. J. Taiyuan Univ. Technol., 2004, 35(2): 155-159, 163

    4. [4]

      LI R H, HUANG L J H, HUANG W F, ZHAO B X, LI L. Factors affecting biofouling of reverse osmosis membrane and control methods[J]. Technol. Water Treat., 2019, 45(12): 19-25

    5. [5]

      ZHANG Y, QU Z Q, WANG J W, YANG Y, CHEN X, WANG J Z, ZHANG Y F, ZHU L Y. Natural biofilm as a potential integrative sample for evaluating the contamination and impacts of PFAS on aquatic ecosystems[J]. Water Res., 2022, 215: 118233  doi: 10.1016/j.watres.2022.118233

    6. [6]

      CAO Y H, CAI W J, HE X W, SONG H L, GAO J, YANG Y L, ZHOU J. A review of advances & potential of applying nanomaterials for biofilm inhibition[J]. NPJ Clean Water, 2024, 7(1): 131  doi: 10.1038/s41545-024-00423-5

    7. [7]

      CHUNG S H, REVIA R A, ZHANG M Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. [J]. Adv. Mater., 2021, 33: 2004362

    8. [8]

      FACURE M H M, SCHNEIDER R, MERCANTE L A, CORREA D S. A review on graphene quantum dots and their nanocomposites: From laboratory synthesis towards agricultural and environmental applications[J]. Environ. Sci. Nano, 2020, 7(12): 3710-3734  doi: 10.1039/D0EN00787K

    9. [9]

      CHEN W F, LV G, HU W M, LI D J, CHEN S N, DAI Z X. Synthesis and applications of graphene quantum dots: A review[J]. Nanotechnol. Rev., 2018, 7(2): 157  doi: 10.1515/ntrev-2017-0199

    10. [10]

      YOUNIS M R, HE G, LIN J, HUANG P. Recent advances on graphene quantum dots for bioimaging applications[J]. Front. Chem., 2020, 8: 424  doi: 10.3389/fchem.2020.00424

    11. [11]

      CUI F C, FAN R S, WANG D F, REN L K, WANG Q Q, MENG Y Q, MA R, WANG S L, LIU Z T, LI X P, LI T T, LI J R. Super Fe3+ competing ability, high biocompatibility, and mild antibacterial carbon dots for food preservation[J]. Chem. Eng. J., 2024, 492: 152103  doi: 10.1016/j.cej.2024.152103

    12. [12]

      WANG Y H, YAO J C, CAO Z L, FU P, DENG C, YAN S F, SHI S, ZHENG J P. Peroxidase-mimetic copper-doped carbon-dots for oxidative stress-mediated broad-spectrum and efficient antibacterial activity[J]. Chem. Eur. J., 2022, 28 (14): e202104174  doi: 10.1002/chem.202104174

    13. [13]

      LI L, WANG Y H, HU S X, CHANG X F, DING Q J, WANG K Z, CHEN Y J, ZHENG J P. Peroxidase-like copper-doped carbon-dots embedded in hydrogels for stimuli-responsive bacterial biofilm elimination and wound healing[J]. Acta Biomater., 2025, 195: 467-478  doi: 10.1016/j.actbio.2025.02.022

    14. [14]

      BIJOY G, SANGEETHA D. Biomass derived carbon quantum dots as potential tools for sustainable environmental remediation and eco-friendly food packaging[J]. J. Environ. Chem. Eng., 2024, 12 (5): 113727  doi: 10.1016/j.jece.2024.113727

    15. [15]

      LIU J H, LI R S, HE M T, XU Z G, XU L Q, KANG Y J, XUE P. Multifunctional SGQDs-CORM@HA nanosheets for bacterial eradication through cascade-activated "nanoknife" effect and photodynamic/CO gas therapy[J]. Biomaterials, 2021, 277: 121084  doi: 10.1016/j.biomaterials.2021.121084

    16. [16]

      BARAZ Z H, ARSALANI N, NAGHASH-HAMED S. Fluorescent biopolymer hydrogels crosslinked with carbon quantum dots for selective detection of heavy iron(Ⅲ) ions[J]. J. Ind. Eng. Chem., 2024, 139: 281-294  doi: 10.1016/j.jiec.2024.05.004

    17. [17]

      NGOC L X D, SON K A, LINH C N T, QUANG N K. Detection of Fe3+ ions using carbon dots derived from Gac fruit (Momordica cochinchinensis Spreng)[J]. MRS Adv., 2024, 9(17): 1337-1344  doi: 10.1557/s43580-024-00904-2

    18. [18]

      ALKIAN I, SUTANTO H, HADİYANTO B, PRASETİO A, UTAMI B A, ARELLANO-GARCIA H. Facile synthesized carbon dots for simple and selective detection of cobalt ions in aqueous media[J]. Cogent Eng., 2022, 9(1): 1998647

    19. [19]

      ZHANG S W, LI J X, ZENG M Y, XU J Z, WANG X K, HU W P. Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions[J]. Nanoscale, 2014, 6(8): 4157-4162  doi: 10.1039/c3nr06744k

    20. [20]

      ALÍ-TORRES J, RODRÍGUEZ-SANTIAGO L, SODUPE M, RAUK A. Structures and stabilities of Fe2+/3+ complexes relevant to alzheimer′s disease: An ab initio study[J]. J. Phys. Chem. A, 2011, 115(45): 12523-12530  doi: 10.1021/jp2026626

    21. [21]

      LIU P, BORRELL P F, BOŠIĆ M, KOKOL V, OKSMAN K, MATHEW A P. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents[J]. J. Hazard. Mater., 2015, 294(8): 177-185

    22. [22]

      PATI P B, ZADE S S. MLCT based colorimetric probe for iron having D-A-D type architecture of benzo[2, 1, 3]thiadiazole acceptor and thiophene donor with azomethine pendant arm[J]. Inorg. Chem. Commun., 2014, 39(1): 114-118

    23. [23]

      CHEN Y Q, SUN X B, PAN W, YU G F, WANG J P. Fe3+-sensitive carbon dots for detection of Fe3+ in aqueous solution and intracellular imaging of Fe3+ inside fungal cells[J]. Front. Chem., 2020, 7 (7): 504410

    24. [24]

      AL-HIMEIRI A N, AL-FATLAWI A H. Disinfection performance of polyvinyl chloride (PVC) membrane incorporating with AgNPs[C]//KARKUSH M, CHOUDHURY D, HAN J. Current trends in geotechnical engineering and construction. ICGECI 2022. Singapore: Springer, 2022: 31-37

    25. [25]

      YANG W X, LI L, WANG S, LIU J S. Preparation of multifunctional AgNPs/PAN nanofiber membrane for air filtration by one-step process[J]. Pigm. Resin Technol., 2020, 49(5): 355-361  doi: 10.1108/PRT-08-2019-0075

    26. [26]

      GHERASIM O, GRUMEZESCU A M, GRUMEZESCU V, IORDACHE F, VASILE B S, HOLBAN A M. Bioactive surfaces of polylactide and silver nanoparticles for the prevention of microbial contamination[J]. Materials, 2020, 13(3): 721  doi: 10.3390/ma13030721

    27. [27]

      GONDIKAS A P, MORRIS A, REINSCH B C, MARINAKOS S M, LOWRY G V, HSU-KIM H. Cysteine-induced modifications of zero-valent silver nanomaterials: Implications for particle surface chemistry, aggregation, dissolution, and silver speciation[J]. Environ. Sci. Technol., 2012, 46(13): 7037-7045  doi: 10.1021/es3001757

    28. [28]

      WANG P Y, SONG Y Z, MEI Q, DONG W F, LI L. Sliver nanoparticles@carbon dots for synergistic antibacterial activity[J]. Appl. Surf. Sci., 2022, 600(10): 154125

    29. [29]

      ALDAKHIL F, ALARFAJ N A, AL-TAMIMI S A, EL-TOHAMY M F. Development of silver-doped carbon dots sensor derived from lignin for dual-mode fluorometric and spectrophotometric determination of valsartan in a bulk powder and a commercial product[J]. Heliyon, 2024, 10(23): e40848  doi: 10.1016/j.heliyon.2024.e40848

    30. [30]

      LI K X, MA J L, WANG Z T, GU S B, WU Y, CHENG W W, NIU H W, ZHAO L N. Facile carbon-silver nanocomposites based on polysaccharide-derived carbon dots for antibacterial applications[J]. New J. Chem., 2023, 47(7): 3376-3384  doi: 10.1039/D2NJ05915K

    31. [31]

      ZHAO D, LIU X M, ZHANG R, XIAO X C, LI J. Preparation of two types of silver-doped fluorescent carbon dots and determination of their antibacterial properties[J]. J. Inorg. Biochem., 2021, 214(1): 111306

    32. [32]

      DONG X L, LIANG W X, MEZIANI M J, SUN Y P, YANG L J. Carbon dots as potent antimicrobial agents[J]. Theranostics, 2020, 10(2): 671-686  doi: 10.7150/thno.39863

    33. [33]

      CHEN J, SHAN M D, ZHU H J, ZHANG S C, LI J M, LI L J. Antimicrobial properties of heterojunction BiSnSbO6-ZnO composites in wastewater treatment[J]. Environ. Sci. Pollut. Res., 2023, 30(19): 55498-55512  doi: 10.1007/s11356-023-25934-5

    34. [34]

      CHOI S, ISAACS A, CLEMENTS D, LIU D, DEGRADO W F. De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers[J]. Proc. Natl. Acad. Sci., 2009, 106(17): 6968-6973  doi: 10.1073/pnas.0811818106

    35. [35]

      ZHANG H Y, DUNPHY D R, JIANG X M, MENG H, SUN B B, TARN D, XUE M, WANG X, LIN S J, JI Z X, LI R B, GARCIA F L, YANG J, KIRK M L, XIA T, ZINK J I, NEL A, BRINKER C J. Processing pathway dependence of amorphous silica nanoparticle toxicity: Colloidal vs pyrolytic. [J]. J. Am. Chem. Soc., 2012, 134(38): 15790-15804  doi: 10.1021/ja304907c

    36. [36]

      LUO Z M, YANG D L, YANG C, WU X Y, HU Y L, ZHANG Y, YUWEN L H, YEOW E K L, WENG L X, HUANG W, WANG L H. Graphene quantum dots modified with adenine for efficient two-photon bioimaging and white light-activated antibacteria[J]. Appl. Surf. Sci., 2018, 434(15): 155-162

    37. [37]

      WANG L M, MA X X, ZHANG L L, WANG L W. Fe3O4 methylprednisolone plus calpain inhibitor protects against spinal cord ischemia-reperfusion injury in rats[J]. Mater. Express, 2020, 10(9): 1554-1559  doi: 10.1166/mex.2020.1781

    38. [38]

      WANG Y J, ZHANG Q R, ZHANG S C, QI J T, LI L. The superiority and feasibility of 2,3,5-triphenyltetrazolium chloride-stained brain tissues for molecular biology experiments based on microglial properties[J]. Anim. Models Exp. Med., 2023, 6(2): 111-119  doi: 10.1002/ame2.12312

    39. [39]

      JANYOU A, MOOHAMMADAREE A, JUMNONGPRAKHON P, TOCHARUS C, CHOKCHAISIRI R, SUKSAMRARN A, TOCHARUS J. Effects of isosakuranetin on cerebral infarction and blood brain barrier damage from cerebral ischemia/reperfusion injury in a rat model[J]. J. Biomol. Struct. Dyn., 2024, 42(2): 1064-1071  doi: 10.1080/07391102.2023.2205940

    40. [40]

      RAINA S, THAKUR A, SHARMA A, POOJA D, MINHAS A P. Bactericidal activity of Cannabis sativa phytochemicals from leaf extract and their derived carbon dots and Ag@carbon dots[J]. Mater. Lett., 2020, 262(1): 127122

    41. [41]

      WANG H B, ZHANG M L, MA Y R, WANG B, SHAO M W, HUANG H, LIU Y, KANG Z H. Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass: Artemisia argyi leaves[J]. J. Mater. Chem. B, 2020, 8(13): 2845-2851

    42. [42]

      OTIS G, BHATTACHARYA S, MALKA O, KOLUSHEVA S, BOLEL P, PORGADOR A, JELINEK R. Selective labeling and growth inhibition of Pseudomonas aeruginosa by aminoguanidine carbon dots[J]. ACS Infect. Dis., 2019, 5(2): 292-302  doi: 10.1021/acsinfecdis.8b00270

    43. [43]

      ROY A K, KIM S M, PAOPRASERT P, PARK S Y, IN I. Preparation of biocompatible and antibacterial carbon quantum dots derived from resorcinol and formaldehyde spheres[J]. RSC Adv., 2015, 5(40): 31677-31682  doi: 10.1039/C5RA01506E

    44. [44]

      YUAN F L, HE P, XI Z F, LI X H, LI Y C, ZHONG H Z, FAN L Z, YANG S H. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays[J]. Nano Res., 2019, 12(7): 1669-1674  doi: 10.1007/s12274-019-2420-x

    45. [45]

      PEI S, LU Z, SUN W, YAN K, ZHOU J, SUN C, HUANG J, LUO K, YANG X. Preparation, characterization, and antibacterial activity of rhodiola carbon dots[J]. Russ. J. Gen. Chem. 2024, 94(8): 1991-1996  doi: 10.1134/S1070363224080127

    46. [46]

      FAN K, TANG R, LI L J. Characterization, antioxidant activity of banana peel carbon dots and their antibacterial mechanism against Staphylococcus aureus[J]. J. Appl. Microbiol., 2025, 136(7): lxaf163  doi: 10.1093/jambio/lxaf163

    47. [47]

      GAO D G, ZHAO P, LYU B, LI Y J, HOU Y L, MA J Z. Carbon quantum dots decorated on ZnO nanoparticles: An efficient visible-light responsive antibacterial agents[J]. Appl. Organomet. Chem., 2020, 34(8): e5665  doi: 10.1002/aoc.5665

    48. [48]

      SARAVANAN A, DAS P, MARUTHAPANDI M, ARYAL S, MICHAELI S, MASTAI Y, LUONG J H T, GEDANKEN A. Heteroatom co-doping (N, NS, NB) on carbon dots and their antibacterial and antioxidant properties[J]. Surf. Interfaces, 2024, 46(3): 103857

    49. [49]

      MOHAMMADI S, PASHAEE A, AMINI N, MARZBAN N, PUTTAIAH S H, TANG V T, MALEKI A. Green carbon dots derived from honey, garlic, and carrot: Synthesis, characterization, and antibacterial properties[J]. Biomass Convers. Biorefin., 2025, 15(10): 14823-14837  doi: 10.1007/s13399-024-06349-9

    50. [50]

      PRAVEEN-KUMAR, TARAFDAR J C. 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes[J]. Biol. Fertil. Soils, 2003, 38(3): 186-189  doi: 10.1007/s00374-003-0600-y

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Zihe SONGJinjin ZHAONing RENJianjun ZHANG . Crystal structure, thermal analysis, and luminescence properties of six heterocyclic lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 181-192. doi: 10.11862/CJIC.20250126

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    7. [7]

      Qi Sun Hongshan Wang Linlin Liu Zuxin Chen Junjie Li Shilie Pan . A new selenide semiconductor NaMn3Ga3Se8 with strong second-harmonic generation and significant luminescence property. Chinese Journal of Structural Chemistry, 2025, 44(6): 100591-100591. doi: 10.1016/j.cjsc.2025.100591

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    11. [11]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    12. [12]

      Xiaonan LIHui HANYihan ZHANGJing XIONGTingting GUOJuanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376

    13. [13]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    14. [14]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    15. [15]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    16. [16]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    17. [17]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    18. [18]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    19. [19]

      Jianmin JiaoJiehao YuXueqi TianXiao-Yu Hu . TPE-embedded functional macrocycles: From structural design to photophysical property and application. Chinese Chemical Letters, 2025, 36(6): 111026-. doi: 10.1016/j.cclet.2025.111026

    20. [20]

      Youbo HUDonggang LIChanghua SUNZhenzhong LUSongjun GU . Coordination polymers based on anthracene- and pyrene-derived ligands: Crystal structure, fluorescent property, and framework isomerization. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1681-1688. doi: 10.11862/CJIC.20250004

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return