Citation: Zehui JIA, Bin WEN, Shuting ZHANG, Zhengliang ZHAO, Hongfei HAN, Chuntao WANG, Caimei FAN. Mechanism of carbon quantum dots-modified BiOCl/diatomite composites for ciprofloxacin degradation under visible light irradiation[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 317-330. doi: 10.11862/CJIC.20250199 shu

Mechanism of carbon quantum dots-modified BiOCl/diatomite composites for ciprofloxacin degradation under visible light irradiation

Figures(10)

  • To enhance the visible-light-driven photocatalytic performance of bismuth oxychloride/diatomite (BiOCl/D) composite photocatalysts, carbon quantum dots (CQDs) were introduced, and ternary CQDs/BiOCl/D composites were successfully constructed via a mild hydrolysis method. The CQDs/BiOCl/D composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) etc. The visible light photocatalytic performance of catalysts was evaluated using the antibiotic ciprofloxacin (CIP) in water, while the effects of CQDs addition on the photocatalytic performance of composites were also investigated. The results showed that irregular BiOCl microspheres in the CQDs/BiOCl/D composites were constructed through multilayer nanosheets, with a diameter of approximately 1 μm. The predominant exposed facet of BiOCl in CQDs/BiOCl/D composites was the (001) plane, which was dispersed on the surface of diatomite. Due to the relatively low quantity, the CQDs in the CQDs/BiOCl/D composites could not be observed in the SEM and TEM images. When the addition of CQDs accounted for 3% of the total catalyst, the adsorption rate of 3%CQDs/BiOCl/D for CIP was 55.0% after 30 min of dark treatment, and the CIP degradation rate was 90.1% after 90 min of visible light irradiation. At the same time, it was found that the antibacterial activity of CIP could be ignored after 80 min of irradiation. The dominant active species in the photocatalytic reaction of 3%CQDs/BiOCl/D were confirmed to be holes (h+), hydroxyl radicals (·OH), and superoxide radical (·O2-) by trapping agent experiments and electron spin resonance (EPR). The degradation intermediates were identified, and the photodegradation pathways were speculated by ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Finally, the photocatalytic degradation mechanism of 3%CQDs/ BiOCl/D was proposed based on the upconversion fluorescence properties of CQDs, as well as the steady-state and time-resolved transient fluorescence spectra and their corresponding photoelectrochemical performance tests of the catalysts. The enhanced photocatalytic performance of 3%CQDs/BiOCl/D was attributed to the upconversion, reception, or transfer of electrons (e-) and the photothermal effect of CQDs, as well as the synergistic effect among CQDs, diatomite, and BiOCl.
  • 加载中
    1. [1]

      DONG J T, JI S N, ZHANG Y, JI M X, WANG B, LI Y J, CHEN Z G, XIA J X, LI H M. Construction of Z-Scheme MnO2/BiOBr heterojunction for photocatalytic ciprofloxacin removal and CO2 reduction[J]. Acta Phys. ‒Chim. Sin., 2023, 39(11): 81-94

    2. [2]

      SUN X F, ZHANG J Q, MA J Y, XIAN T, LIU G R, YANG H. Synthesis of strongly interactive FeWO4/BiOCl heterostructures for efficient photoreduction of CO2 and piezo-photodegradation of bisphenol A[J]. Chem. Eng. J., 2024, 496: 153961  doi: 10.1016/j.cej.2024.153961

    3. [3]

      LIU Q Y, YANG Y X, YUAN H M, DAI A B, NI C Y. Photocatalytic degradation of methoxychlor by diatomite@Bi2WO6 under visible irradiations[J]. J. Mol. Struct., 2023, 1275: 134597

    4. [4]

      YANG B, ZHANG Y L, GUO H G. Multi-spectroscopic investigation on mechanism of binding interaction between humic acid and ciprofloxacin[J]. Acta Chim. Sinica, 2021, 79(12): 1494-1501

    5. [5]

      ZHOU X S, LI X K, CHEN W R, LI L S. Efficient removal of typical perfluorinated compounds using NH2-MCM-41: Insights into adsorption mechanisms[J]. Chem. Eng. J., 2025, 513: 163108  doi: 10.1016/j.cej.2025.163108

    6. [6]

      RAJGURU P, DIHINGIA K D, KONWAR A, BORA P, BHUYAN C, SASTRY G N, HAZARIKA S. Carbon nanotube/Fe2O3 nanocomposites for optimizing membrane-based separation of antibiotics: Experimental and computational approach[J]. Mater. Today Commun., 2025, 44: 111951  doi: 10.1016/j.mtcomm.2025.111951

    7. [7]

      WANG H, CHEN Y D, LIU X G, XU H L, YANG D H, HUA Y, DAI X H. Diatomite powder carrier improved nitrogen and phosphorus removal from real municipal wastewater: Insights into micro-granule formation and enhancement mechanism[J]. Chem. Eng. J., 2024, 484: 149482  doi: 10.1016/j.cej.2024.149482

    8. [8]

      ZHANG Q, ZHENG D, BAI B, MA Z Y, ZONG S C. Insight into antibiotic removal by advanced oxidation processes (AOPs): Performance, mechanism, degradation pathways, and ecotoxicity assessment[J]. Chem. Eng. J., 2024, 500: 157134  doi: 10.1016/j.cej.2024.157134

    9. [9]

      ZHAO Y X, HU H, ZHOU X, YANG S J, YANG Y. Preparation and photocatalytic degradation performance of MOF-808/BiOCl composites[J]. Chinese J. Inorg. Chem., 2023, 39(8): 1553-1563  doi: 10.11862/CJIC.2023.114

    10. [10]

      LIU C, REN Y H, WANG Z W, SHI Y Z, GUO B B, YU Y, WU L. Flowerlike BiOCl nanospheres fabricated by an in situ self-assembly strategy for efficiently enhancing photocatalysis[J]. J. Colloid Interface Sci., 2022, 607: 423-430  doi: 10.1016/j.jcis.2021.09.002

    11. [11]

      ZHANG Y J, XU Z F, WANG Q, HAO W C, ZHAI X P, FEI X, HUANG X J, BI Y P. Unveiling the activity origin of ultrathin BiOCl nanosheets for photocatalytic CO2 reduction[J]. Appl. Catal. B‒ Environ., 2021, 299: 120679  doi: 10.1016/j.apcatb.2021.120679

    12. [12]

      ZHANG J W, SHAN L W, XU H Y, LI X J, FANG Z L, WU H T, LI D, DONG L M, CHENG C, SURIYAPRAKASH J, ZHANG F M. Multiscale understand the tuning photocatalytic hydrogen evolution performances of BiOCl stemmed from engineered crystal facet[J]. Appl. Surf. Sci., 2024, 652: 159321  doi: 10.1016/j.apsusc.2024.159321

    13. [13]

      YU G L, SUN Q F, YANG Y, CHEN S, LONG Y N, LI Y F, GE S Y, ZHENG D. BiOCl-based composites for photocatalytic degradation of antibiotics: A review of synthesis method, modification, factors affecting photodegradation and toxicity assessment[J]. J. Alloy Compd., 2024, 981: 173733  doi: 10.1016/j.jallcom.2024.173733

    14. [14]

      YAN P C, WANG P, HUANG J, MO Z, XU L, CHEN Y, ZHANG Y, QI Z C, XU H, LI H N. Engineering multiple optimization strategy on bismuth oxyhalide photoactive materials for efficient photoelectrochemical applications[J]. Acta Phys. ‒Chim. Sin., 2025, 41(2): 100014

    15. [15]

      LI W J, ZHANG Y P, RAN W G, WANG Y H, TIAN F, ZHANG F Z, XU M, ZHANG D P, LI N, YAN T J. Spin polarization regulates photocatalytic CO2 into hydrocarbons by Co doped BiOCl[J]. Appl. Catal. B‒Environ., 2024, 351: 123978  doi: 10.1016/j.apcatb.2024.123978

    16. [16]

      DENG Y C, XU M Y, JIANG X Y, WANG J T, TREMBLAY P, ZHANG T. Versatile iodine-doped BiOCl with abundant oxygen vacancies and (110) crystal planes for enhanced pollutant photodegradation[J]. Environ. Res., 2023, 216: 114808  doi: 10.1016/j.envres.2022.114808

    17. [17]

      WANG F, GUO J C, HAN L H, SHEN H X, ZHU L L, CHEN S. Oxygen vacancy-engineered BiOCl nanoflake with silver decoration for enhanced photocatalytic CO2 reduction at solid-gas interface[J]. Chem. Eng. J., 2023, 478: 147365  doi: 10.1016/j.cej.2023.147365

    18. [18]

      SUN B J, HUANG C, YANG C Y, KE D, LIU Y, LU Q, LIU X F, XIONG X Y, CHEN Y Z, JIANG Q Q, HU J C, ZHOU T F. Atomic interfacial charge and energy transfer paths at MoS2/Pd bonded defect-rich BiOCl interfaces for efficient photocatalysis[J]. Appl. Catal. B‒Environ., 2024, 345: 123720

    19. [19]

      ZHANG X W, DUAN J J, TAN Y, DENG Y Q, LI C Q, SUN Z M. Insight into peroxymonosulfate assisted photocatalysis over Fe2O3 modified TiO2/diatomite composite for highly efficient removal of ciprofloxacin[J]. Sep. Purif. Technol., 2022, 293: 121123

    20. [20]

      YUAN F, YANG R F, LI C Q, ZHANG X W, SUN Z M. Enhanced visible-light properties of TiO2/diatomite composite over varied bismuth semiconductors modification for formaldehyde photodegradation: A comparative study[J]. Sep. Purif. Technol., 2022, 297: 121477  doi: 10.1016/j.seppur.2022.121477

    21. [21]

      LIAQUAT I, MUNIR R, ABBASI N A, SADIA B, MUNEER A, YOUNAS F, SARDAR M F, ZAHID M, NOREEN S. Exploring zeolite-based composites in adsorption and photocatalysis for toxic wastewater treatment: Preparation, mechanisms, and future perspectives[J]. Environ. Pollut., 2024, 349: 123922  doi: 10.1016/j.envpol.2024.123922

    22. [22]

      LAKSHMI S J S, JOEL C, BENNIE R B, RAJ A N P, KUMAR Y A, KHAN M S. Synergistic adsorption and photocatalytic degradation of tetracycline using a Z-scheme kaolin/g-C3N4/MoO3 nanocomposite: A sustainable approach for water treatment[J]. J. Environ. Manage., 2024, 360: 121086  doi: 10.1016/j.jenvman.2024.121086

    23. [23]

      SRIRAM G, KIGGA M, UTHAPPA U T, REGO R M, THENDRAL V, KUMERIA T, JUNG H, KURKRUI M D. Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review[J]. Adv. Colloid Interface Sci., 2020, 282: 102198  doi: 10.1016/j.cis.2020.102198

    24. [24]

      JIA Z H, LI T, ZHENG Z F, ZHANG J D, LIU J X, LI R, WANG Y W, ZHANG X C, WANG Y F, FAN C M. The BiOCl/diatomite composites for rapid photocatalytic degradation of ciprofloxacin: Efficiency, toxicity evaluation, mechanisms and pathways[J]. Chem. Eng. J., 2020, 380: 122422  doi: 10.1016/j.cej.2019.122422

    25. [25]

      QU Y N, LI X Y, ZHANG H L, HUANG R L, QI W, SU R X, HE Z M. Controllable synthesis of a sponge-like Z-scheme N, S-CQDs/Bi2MoO6@TiO2 film with enhanced photocatalytic and antimicrobial activity under visible/NIR light irradiation[J]. J. Hazard. Mater., 2022, 429: 128310  doi: 10.1016/j.jhazmat.2022.128310

    26. [26]

      MENG X Z, SHEN F, WANG D H, ZHANG S, HOU J, DING L, SUN J. Carbon dots-based hybrid materials: Synthesis, properties and applications in environmental pollution control[J]. Chem. Eng. J., 2025, 503: 158278  doi: 10.1016/j.cej.2024.158278

    27. [27]

      SI Q S, GUO W Q, WANG H Z, LIU B H, ZHENG S S, ZHAO Q, LUO H C, REN N Q, YU T. Difunctional carbon quantum dots/ g-C3N4 with in-plane electron buffer for intense tetracycline degradation under visible light: Tight adsorption and smooth electron transfer[J]. Appl. Catal. B‒Environ., 2021, 299: 120694

    28. [28]

      XU Z D, LI H, RAN Y, ZHONG J B, LI M J, ZHU Y B. Water hyacinth powder-assisted in-situ fabrication of visible light responsive CQDs/BiOCl heterojunctions with exceptional photocatalytic detoxification performance[J]. Ceram. Int., 2023, 49(17): 28988-29000  doi: 10.1016/j.ceramint.2023.06.170

    29. [29]

      JIA Z H, LV R, GUO L J, ZHANG J D, LI R, LIU J X, FAN C M. Rapid degradation of ciprofloxacin over BiOCl: Insight into the molecular structure transformation and antibacterial activity elimination[J]. Sep. Purif. Technol., 2021, 257: 117872  doi: 10.1016/j.seppur.2020.117872

    30. [30]

      CHEN J, REN Q F, DING Y, XIONG C Y, GUO W M. Synthesis of bifunctional composites Ag/BiOCl/diatomite: Degradation of tetracycline and evaluation of antimicrobial activity[J]. J. Environ. Chem. Eng., 2021, 9(6): 106476  doi: 10.1016/j.jece.2021.106476

    31. [31]

      TUNA Ö, MERT H H, MERT M S, BILGIN S E. Tubular graphitic carbon nitride-anchored on porous diatomite for enhanced solar energy efficiency in photocatalytic remediation and energy storage performance[J]. J. Environ. Manage., 2024, 366: 121891  doi: 10.1016/j.jenvman.2024.121891

    32. [32]

      WANG C, YAN W C, RAN X, PU Z W, SHI W D. Experimental and numerical study of photocatalysis in Taylor photoreactors with carbon-quantum-dots/BiOCl as catalysts[J]. Chem. Eng. Sci., 2024, 294: 120114  doi: 10.1016/j.ces.2024.120114

    33. [33]

      HE Z J, LIANG R W, ZHOU C, YAN G Y, WU L. Carbon quantum dots (CQDs)/noble metal co-decorated MIL-53(Fe) as difunctional photocatalysts for the simultaneous removal of Cr􀃱 and dyes[J]. Sep. Purif. Technol., 2021, 255: 117725  doi: 10.1016/j.seppur.2020.117725

    34. [34]

      ZHOU Q, HUANG W Y, XU C, LIU X, YANG K, LI D, HOU Y, DIONYSIOU D D. Novel hierarchical carbon quantum dots-decorated BiOCl nanosheet/carbonized eggshell membrane composites for improved removal of organic contaminants from water via synergistic adsorption and photocatalysis[J]. Chem. Eng. J., 2021, 420: 129582  doi: 10.1016/j.cej.2021.129582

    35. [35]

      LAI C X, ZHONG J B, CHEN J F, ZHU Y B. Mint powder assisted synthesis of CQDs/BiOCl with tunable OVs and improved photocatalytic property[J]. J. Ind. Eng. Chem., 2023, 128: 306-316  doi: 10.1016/j.jiec.2023.07.063

    36. [36]

      LI F, LIU G Y, LIU F Q, WU J Y, YANG S Q. Synergetic effect of CQD and oxygen vacancy to TiO2 photocatalyst for boosting visible photocatalytic NO removal[J]. J. Hazard. Mater., 2023, 452: 131237  doi: 10.1016/j.jhazmat.2023.131237

    37. [37]

      WANG N, LIN J Y, LI Y, LI T, CHEN Y M, LI J, SHUAI S Y, CHEN L, CHU Z Y. One-pot synthesis of high performance CQDs/TiO2 nanocomposites without carbon source addition[J]. J. Water Process Eng., 2024, 65: 105833  doi: 10.1016/j.jwpe.2024.105833

    38. [38]

      LIU J X, JI L L, HE Q R, ZANG S H, SUN J X, YANG H, DONG T, LIU T X, WU H H, CHEN X Y, ZHONG Z B, DENG X. Algal carbon quantum dots/Bi2MoO6 S-scheme heterojunction with enhanced visible-light photocatalytic degradation for ciprofloxacin[J]. Sep. Purif. Technol., 2025, 363: 132196  doi: 10.1016/j.seppur.2025.132196

    39. [39]

      ZHAO B X, XING Y X, XUE Y R, CHEN N, SUN C J, LI M F, SHI H X, MA B R, WANG S X, TANG Y Z, LIU J. Efficient degradation of dye wastewater with a novel tribocatalytic process initiated by CQDs-Bi2MoO6 catalyst: Preparation, degradation, kinetics, DFT calculations and mechanism[J]. Chem. Eng. J., 2025, 511: 161852  doi: 10.1016/j.cej.2025.161852

    40. [40]

      CAO P, ZHANG Z C, BAI X, HE Y F, SONG P F, WANG R M. Complecting the BiOCl nano-roundels based hollow microbasket induced by chitosan for dramatically enhancing photocatalytic activity[J]. J. Mol. Struct., 2022, 1254: 132339

    41. [41]

      WANG C C, RONG K, LIU Y P, YANG F, LI S J. Carbon quantum dots-modified tetra (4-carboxyphenyl) porphyrin/BiOBr S-scheme heterojunction for efficient photocatalytic antibiotic degradation[J]. Sci. China‒Mater., 2024, 67(2): 562-572

    42. [42]

      LIU H, LI J Z, LI P, ZHANG G Z, XU X, ZHANG H, QIU L F, QI H, DUO S W. In-situ construction of 2D/3D ZnIn2S4/TiO2 with enhanced photocatalytic performance[J]. Acta Chim. Sinica, 2021, 79(10): 1293-1301

    43. [43]

      HU G W, WANG X H, YUAN Z P, XINBA Y, WULIJI H. Effect of Ag doping on the photocatalytic performance of bismuth ferrite-based compounds[J]. Acta Chim. Sinica, 2025, 83: 1-10

    44. [44]

      YING X W, FU J J, ZENG M, LIU W, ZHANG T Y, SHEN P K, ZHANG X Y. BiOCl-Fe2O3@TiO2 mesoporous composite for photoelectrochemical synthesis of ammonia[J]. Acta Chim. Sinica, 2022, 80(4): 503-509

    45. [45]

      ZHOU X, ZHANG Z, CHEN P, YANG S J, YANG Y. Preparation and photocatalytic degradation performance of Br-doped Bi2WO6 microsphere[J]. Chinese J. Inorg. Chem., 2022, 38(9): 1716-1728  doi: 10.11862/CJIC.2022.177

    46. [46]

      DAI X, HUANG C F, YANG S, ZHOU Y W, ZOU L, AN X, ZHANG S S, SONG Y X, ZHOU Y B, MA L, TIAN C C. Regulating oxygen vacancy of perovskites via A-site substitution to promote activity for photocatalytic HCHO oxidation under visible light[J]. Sep. Purif. Technol., 2025, 376: 133919  doi: 10.1016/j.seppur.2025.133919

    47. [47]

      HUANG X Z, XU L H, YANG Y, WANG L M, LIU Z Y, WANG Z J. Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr[J]. Chinese J. Inorg. Chem., 2025, 41(2): 284-292

    48. [48]

      ZHANG L L, LI R, CUI L Y, SUN Z J, GUO L J, ZHANG X C, WANG Y F, WANG Y W, YU Z B, LEI T, JIAN X, GAO X M, FAN C M, LIU J X. Boosting photocatalytic ammonia synthesis performance over OVs-rich Ru/W18O49: Insights into the roles of oxygen vacancies in enhanced hydrogen spillover effect[J]. Chem. Eng. J., 2023, 461: 141892  doi: 10.1016/j.cej.2023.141892

    49. [49]

      CHANG K, HAI X, PANG H, ZHANG H B, SHI L, LIU G G, LIU H M, ZHAO G X, LI M, YE J H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution[J]. Adv. Mater. 2016, 28: 10033-10041

    50. [50]

      MA Z Y, KUANG X J, PENG S Q, LI Y X. Manipulating precursor to anchor Mo3S9 cluster onto carbon nitride for photocatalytic H2 production[J]. Adv. Funct. Mater. 2025, 35, 2425117

    51. [51]

      WANG G J, CHEN Y H, ZHANG X Q, ZHANG J S, XU J M, WANG J. Magnetic and photoelectrocatalytic properties of BiVO4 surface heterojunctions controlled by oxygen vacancies[J]. Acta Chim. Sinica, 2024, 82(4): 409-415

  • 加载中
    1. [1]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    2. [2]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    3. [3]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    4. [4]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Min WANGDehua XINWei ZHANGHaiying YANGYuchun WANGZhaorong LIUMeng SHILe SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    8. [8]

      Xiaofei ZhangShanhao XuZhiyuan WangLong HeTiangcheng HuangYongming XuYucui BianYike LiHaijun ChenZhongjun Li . Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light. Acta Physico-Chimica Sinica, 2026, 42(5): 100202-0. doi: 10.1016/j.actphy.2025.100202

    9. [9]

      Qi WANGYing CHENGYuyan WANGYibing XIAOHaozhe LUYansong ZHANGShengling LIJiazi TANTAINa SUNLifeng DINGJinqin GUOPeng JIN . "Shining dot" in vinegar—Extraction of carbon quantum dots and the fluorescence properties analysis. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 87-96. doi: 10.11862/CJIC.20250127

    10. [10]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    11. [11]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    12. [12]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    15. [15]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    16. [16]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    17. [17]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    18. [18]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    19. [19]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return