钌合金催化剂在析氢反应中的研究进展

倪文若 李鸿鹏 张芸 田乙然 芮杰慧 童应成 皮晓琳 唐振艳

引用本文: 倪文若, 李鸿鹏, 张芸, 田乙然, 芮杰慧, 童应成, 皮晓琳, 唐振艳. 钌合金催化剂在析氢反应中的研究进展[J]. 无机化学学报, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188 shu
Citation:  Wenruo NI, Hongpeng LI, Yun ZHANG, Yiran TIAN, Jiehui RUI, Yingcheng TONG, Xiaolin PI, Zhenyan TANG. Research progress of ruthenium alloy catalysts in hydrogen evolution reaction[J]. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188 shu

钌合金催化剂在析氢反应中的研究进展

    通讯作者: 皮晓琳, E-mail:linlinp0602@163.com; 唐振艳, E-mail:tzy@ipm.com.cn
  • 基金项目:

    云南贵金属实验室科技计划项目 YPML-20240502093

    云南贵金属实验室科技计划项目 YPML-20240502078

摘要: 钌合金催化剂是一类重要的催化材料,得益于其独特的电子结构和表面特性,在多相催化、电催化、光催化等众多领域备受关注。通过与其他金属元素的高效结合,可显著改善钌基催化剂的催化性能,拓宽其应用范围。尤其是在析氢反应(HER)中,钌合金催化剂凭借催化活性高、成本效益低、稳定性和耐久性好等突出优势,成为驱动绿色氢能高效转化的研究焦点,其优异性能为可持续能源技术的突破带来了新的可能。本文围绕HER钌合金催化剂,着重从制备方法、组分设计、改性手段及性能研究4个核心维度切入,深入探讨了近年来有关HER钌合金催化剂的最新进展。同时,结合行业发展趋势对未来研究方向进行前瞻性展望,旨在为高性能HER钌合金催化剂的创新设计与工程化开发提供理论支撑与参考,助力推动该领域技术的快速发展。

English

  • 随着全球能源危机和环境问题日益严峻,开发高效、清洁的能源转换技术成为当务之急。燃料电池在解决能源危机和环境污染问题中扮演着重要角色,尤其是以铂(Pt)为主的催化剂一直是燃料电池的研究热点,如碳载铂镍(PtNi/C)合金[1]、铂钴(PtCo)合金[2]等。析氢反应(HER,hydrogen evolution reaction)作为电催化[3-5]和光催化[6-7]中水电解制氢的关键步骤,在氢能经济中至关重要,其反应效率和催化性能对氢能的大规模生产和应用起着决定性作用[8-10],在过去几十年里备受关注。HER中常用的铂基催化剂虽拥有出色的HER催化活性[11-12],但由于储量稀少、成本高昂,严重制约了其在工业规模析氢中的广泛应用。因此,开发高活性、高稳定性且低成本的非铂基催化剂,成为了氢能领域的研究热点[13-14]。钌(Ru)作为一种过渡金属,价格仅为Pt的一半,成本优势十分突出。且Ru具有适中的氢吸附能,氢吸附吉布斯自由能变化(ΔGH*)处于火山图顶端-0.15 eV区域附近,既能克服金(Au)等金属“过弱吸附”导致的反应启动困难,又可避免镍(Ni)等金属“过强吸附”导致的脱附瓶颈,有利于氢原子的吸附与脱附[15]。正因如此,钌基催化剂在HER中也展现出了卓越的性能,已经逐步发展成为铂基催化剂不可或缺的替代品。但是,单一的钌基催化剂性能较为局限,需不断优化其性能才能顺应需求的动态变化,而合金化则是实现这一目标的最优途径。

    合金化不仅可以改变钌基催化剂的表面电子云分布[16-17],增强其对反应物的吸附和解吸能力[18-19],还能提升催化剂的稳定性[20],抑制在反应过程中的活性组分流失和结构变化[21-22],借助协同效应和电子调控机制进一步调控Ru的电子结构,显著提升催化活性[23-26]。同时合金化还能凭借与其他金属(如Co、Ni、Fe等)产生协同效应[27-28],在减少Ru用量的基础上大幅提升催化性能,降低成本[29-30],使钌合金催化剂在HER中表现更为突出[31-32]。例如在RuCo合金中,Ru的加入增强了Co的电子转移能力,优化了中间体的吸收/解吸能力,降低了水解电离势垒,从而提高了催化效率[33]。此外,合金化也会使钌合金催化剂的制备工艺变得灵活多样,通过调整合金成分、制备方法和工艺参数,可以实现对催化剂微观结构和性能的精准调控[34-37],为满足不同场景下的析氢需求提供可能。钌合金催化剂在酸性和碱性环境中都表现出优异的析氢性能[38-39],适用性更广,同时它还具备出色的稳定性和抗中毒能力[40-41],在复杂的实际应用环境中具有更长的使用寿命[42],能在更低的过电位下驱动HER,提高能量效率,降低能耗。

    近年来,尽管钌合金催化剂在HER中的应用取得了显著的进展,但目前仍存在一些亟待解决的问题。例如,部分合金体系的催化活性仍有提升空间,催化剂在复杂工况下的长期稳定性和耐久性研究不够充分,对合金化过程中微观结构演变和催化机理的理解也不够深入。这些问题会严重阻碍钌合金催化剂工业化应用的步伐。因此,深入开展钌合金催化剂在HER中的研究,对于突破现有技术瓶颈,推动氢能产业的快速发展,具有重要的理论意义和实际应用价值。本文详细介绍了钌合金催化剂的特性、制备方法及其在HER中的性能表现,同时探讨了当前研究面临的挑战,并对未来发展方向进行了展望,为钌合金催化剂在清洁能源领域的应用提供参考。

    钌合金催化剂凭借其独特优势在电催化HER领域脱颖而出,Ru与Pt、Ni、Co、铱(Ir)、钼(Mo)、铁(Fe)等多种金属形成合金,能够显著提升催化活性、稳定性等。另外,合金化还能提高抗腐蚀和抗溶解能力,延长使用寿命,尤其在酸性或碱性电解液中,成为当前研究的热点[43]

    在材料科学研究领域,钌-贵金属合金催化剂的研究备受关注。将这些贵金属(Pt、Ir、Pd、Au和Rh等)与Ru进行精密合金化处理所得到的合金材料不仅能够继承各单一金属的优异性能,如高催化活性、良好的化学稳定性和独特的物理特性,还能通过元素间的协同效应有效克服单一金属在应用中存在的局限性,实现性能的显著提升与优化,在催化、电子、能源等众多领域展现出广阔的应用前景。

    1.1.1   PtRu合金

    作为HER基准催化剂,铂基催化剂在碱性介质中催化动力学过程易迟滞,这主要归因于在碱性条件下,Pt表面易发生OH*富集,占据活性位点,阻碍质子还原过程并抑制水分子吸附,最终导致催化效率降低。而Ru与Pt形成合金,可显著降低解离OH*的能垒,优化表面吸附状态,有效促进HER过程[44]。Pang等[45]采用激光辅助策略,将孤立Pt位点锚定在Ru主体上,制得的PtRu/mCNT在全pH范围内展现出优异的HER活性,在1 mol·L-1 KOH电解液、0.5 mol·L-1 H2SO4电解液和1 mol·L-1磷酸盐缓冲液(PBS)中,10 mA·m-2的电流密度下的过电位(η10)极低,仅分别为15、17和28 mV(图 1)。此外,Yang等[46]、Chen等[47]、Yan等[48]团队也深入揭示了PtRu合金在HER领域的卓越性能。

    图 1

    图 1.  (a) PtRu/mCNT催化剂的制备示意图; (b) 在10 mA·cm-2下PtRu/mCNT与其他HER电催化剂的过电位比较; (c) PtRu/mCNT(红色)与Pt/C(黑色)在不同pH电解液中经过3 000次循环前后的耐久性测试[45]
    Figure 1.  (a) Schematic illustration of the manufacture of the PtRu/mCNT catalyst; (b) Overpotential comparison of PtRu/mCNT and other HER electrocatalysts; (c) Durability testing of PtRu/mCNT (red) and Pt/C (black) in solutions with different pH values before and after 3 000 cycles[45]
    1.1.2   IrRu合金

    IrRu合金催化剂可有效解决碱性水电解过程中催化剂的失活与溶解问题,显著提升HER性能。在材料创新方面,Joo等[49]制备了具有仙人掌状结构的Cu2-xS@IrSy@IrRu纳米颗粒(CIS@IrRu NPs),得益于垂直峰状纳米结构带来的高活性位点密度,其表现出优异的HER性能,在0.1 mol·L-1 HClO4电解液中,20 mV过电位下的电流密度为28.3 mA·cm-2,且耐久性出色。在应用拓展方面,Yu等[50]开发的IrRu合金催化剂适用于海水电解HER。相比单一金属催化剂,其凭借更多的反应位点与优异的耐溶解性,在碱性海水中表现突出,η10为75 mV,与商业Pt/C的73 mV相近,且可在碱性海水中稳定运行100 h。密度泛函理论(DFT)计算表明,Ru和Ir原子顶部吸附的氢原子作为HER关键活性位点,解释了合金优异性能的本质原因。

    1.1.3   PdRu合金

    在电化学HER中,PdRu合金化是优化催化性能的有效策略,可削弱过强的Pd—H键相互作用。受先前工作的启发[51],Zhao等[52]在预处理活性炭表面合成了超细PdRu合金纳米颗粒(PdRu/C),其展现出优异的催化活性。PdRu/C在1 mol·L-1 KOH中的η10低至15.3 mV,且用于双电极水解时,仅分别需17.7和147.6 mV的过电位即可达到10和100 mA·cm-2的电流密度,显著优于传统水分解体系,体现出显著的节能优势。Liu等[53]通过原子层沉积(ALD)技术结合退火工艺在碳布基底上制备成PdRux合金纳米颗粒,其η10为35.6 mV,且在0.5 mol·L-1 H2SO4中持续运行40 h后,仍保持优异的催化稳定性。研究[54-56]表明,PdRu合金凭借其出色的活性与稳定性,成为极具潜力的HER催化材料。

    1.1.4   AuRu合金

    Au作为具有弱氢吸附能力的稳定金属,与Ru形成的合金催化剂已成为HER性能提升的重要研究方向。近年来,相关研究成果不断涌现[57],例如,Kwon等[58]采用静电纺丝-煅烧法制备了无载体的AuRu合金纳米纤维,其η10仅为43 mV,在0.5 mol·L-1 H2SO4中展现出优异的稳定性(10 000 s的HER过程中电位漂移仅10 mV)。DFT计算表明,AuRu(0001)晶面的ΔGH*低于Ru(0001)晶面,证实合金化能有效增强催化活性。Lee等[59]通过共电沉积法成功合成了MoOx掺杂量(原子分数)为10%的RuAu复合材料,其在0.5 mol·L-1 H2SO4中的η10为34.1 mV,稳定性优于Ru和未掺杂的RuAu。这些研究表明,AuRu合金在HER领域展现出优异的催化性能和稳定性,具有广阔的应用前景。

    1.1.5   RhRu合金

    RhRu合金通过表面电荷重分布调节了Ru的d能带中心,有效促进了水分子的吸附与解离。受先前工作的启发[60],Ding等[61]通过将RhRu二元合金原位限域于UiO-66-NH2金属有机框架内,制备的Rh50Ru50@UiO-66-NH2电催化剂在全pH体系中都表现出优异的HER性能,其在0.5 mol·L-1 H2SO4、1 mol·L-1 PBS和1 mol·L-1 KOH电解液中,η10分别为77、114和177 mV。Li等[62]合成的介孔RhRu纳米海绵催化剂的η10仅为25 mV,塔菲尔(Tafel)斜率为47.5 mV·dec–1,在1.0 mol·L-1 KOH中性能超越商用Pt/C催化剂,与经典的Pt/金属(氢)氧化物催化剂相当。类似工作层出不穷[63-64],说明RhRu合金在HER领域具有独特的活性与稳定性,是催化剂设计的重要方向。

    Ru与非贵金属的合金化是实现“降本增效”的有效策略,它不仅能通过协同效应大幅提高催化活性,更能引入双功能特性,从而实现综合性能的优化。1986年,日本旭化成[65]开发的RuZn催化剂的苯加氢收率达到50%。该催化剂已于1990年实现工业应用,这使Ru-非贵金属合金催化剂开始崭露头角。

    1.2.1   RuNi合金

    RuNi合金催化剂中的Ni具有较强的电子供给能力,可有效调控Ru的电子结构,提升催化活性,并增强催化剂的耐腐蚀性。Liu等[66]制备了负载于还原氧化石墨烯纸的超小RuNi合金纳米粒子(Ru-Ni/rGOP),其Ru-Ni(OH)2多位点表面显著加速了水解离与氢分子生成。自支撑Ru90Ni10/rGOP电极在1 000 mA·cm-2的电流密度下的过电位低至106 mV,且在1 mol·L-1 KOH中可稳定运行超1 000 h。Chen等[67]设计了原子有序的RuNi合金,该合金通过六方密堆积(hcp)结构实现了Ru壳层的均匀压缩应变,强化了Ru-Ni轨道耦合,显著提升了碱性HER性能。在1 mol·L-1 KOH中,该RuNi合金的η10低至23 mV,Tafel斜率仅25.9 mV·dec-1,经5 000次循环伏安法(CV)循环后性能几乎无衰减,远超30% Pt/C等传统催化剂(图 2)。DFT计算表明,压缩Ru壳层通过调节d带中心,削弱了H*/OH*的吸附能力并降低了水解离能垒,该双重机制协同提升了催化效率。近年来,Chen等[68]、Jiao等[69]、Wang等[70]、Huang等[71]团队持续创新,开发出系列高性能RuNi合金催化剂,这些催化剂的性能可与商用贵金属催化剂比肩。

    图 2

    图 2.  fcc-RuNi、f/h-RuNi、Pt/C和Ru/C的电催化HER性能: (a) 极化曲线; (b) Tafel曲线; (c) 过电位和Tafel斜率对比; (d) 在30 mV的过电位下的电流密度对比; (e) 周转频率(TOF); (f) TOF和质量活性对比; (g) fcc-RuNi的CV耐久性测试; (h) fcc-RuNi纳米颗粒与近期报道的钌基HER催化剂在10 mA·cm-2下的过电位对比[67]
    Figure 2.  Electrocatalytic HER performance of fcc-RuNi, f/h-RuNi, Pt/C, and Ru/C: (a) polarization curves; (b) Tafel curves; (c) comparison of overpotential and Tafel slope; (d) comparison of current density at 30 mV of overpotential; (e) turnover frequency (TOF); (f) comparison of TOF and mass activity; (g) CV durability test of fcc-RuNi; (h) comparison of overpotential between fcc-RuNi nanoparticles and recently reported ruthenium-based HER catalysts at 10 mA·cm-2 [67]

    Inset: comparison of overpotential before and after 5 000 cycles.

    1.2.2   RuCo合金

    RuCo合金催化剂也因优异的电催化性能而备受关注,Co与Ru的协同作用可优化电子结构,降低反应过电位,同时,其较大的比表面积为催化提供了丰富的活性位点。Kutyła等[72]通过电沉积法制备了RuCo@Ti2AlC,其在碱性环境下展现出更优的HER性能,在1 mol·L-1 KOH中,只需要95 mV的过电位即可达到10 mA·cm-2的电流密度,优于多数已报道的RuCo合金催化剂(图 3)。Liu等[73]通过室温还原和煅烧法制备了Ru-NiCo0.5-600℃和Ru-Ni0.75Co。其中,Ru-NiCo0.5-600℃合金在全pH体系中的性能均表现出色:在碱性、酸性和中性条件下,η10分别为42、77和93 mV。DFT计算表明,Ni是HER活性中心,Ru和Co分别主导H+与OH-吸附,且Ru位点的ΔGH*(0.07 eV)更接近理想值,揭示了多组分合金的协同催化机制。此外,Zou等[74]、Li等[75]团队在降低贵金属用量、提升催化效率方面取得了重要进展,进一步推动了RuCo合金催化剂的实用化进程。

    图 3

    图 3.  RuCo@Ti2AlC的合成过程、形貌表征及性能[72]
    Figure 3.  Synthesis process, morphology characterization, and performance of RuCo@Ti2AlC[72]
    1.2.3   RuMo合金

    RuMo合金催化剂凭借Mo的导电性和耐腐蚀性优势,有效提升了钌基催化剂的稳定性与催化效率[76]。Yang等[77]制备了N掺杂碳框架上负载Mo掺杂Ru纳米团簇催化剂(RuMo/NC),其在Ru含量(质量分数)低至0.4%的情况下还能在1 mol·L-1 KOH中展现出卓越性能(η10=24.2 mV)。DFT计算证实,Mo通过缓解吸附的羟基(OHad)对Ru的中毒效应显著提升催化活性。此外,Chen等[78]、Cechanaviciute等[79]团队在提高HER活性和稳定性方面均做出突出成果,共同推动了RuMo合金催化剂的发展与应用。

    1.2.4   RuFe合金

    RuFe合金催化剂通过Fe与Ru的合金化作用,有效调控了Ru的电子结构,显著提升了催化活性。Kang等[80]将Ru掺入Fe2P单晶中得到HER性能优异的Ru-Fe2P-211材料。在1 mol·L-1 KOH中,Ru作为电子掺杂剂能提升费米能级,降低水离解势垒,优化Volmer步骤电子转移,有效促进HER(图 4)。Wang等[81]制备了负载于泡沫铁的球形Ru/FeOx复合材料,其中,优化的Ru/FeOx-300在1 mol·L-1 PBS中的η10仅为30 mV,在中性介质中展现优异的HER性能。Lin等[82]通过自组装沉淀和原位热解法合成了木质素衍生碳包覆的Ru-FeNi合金异质结催化剂(Ru-FeNi@NLC),其在1 mol·L-1 KOH中的η10为36 mV。DFT计算表明,N掺杂碳层与异质结构协同优化了电子转移能,平衡了吸附/解吸过程中反应物和中间体的自由能,降低了决速步能垒,显著改善了动力学性能。Zhang等[83]开发了高密度Ni-Fe-Ru电极(合金粒径小于5 nm),其在1 mol·L-1 KOH中,500 mA·cm-2的电流密度下可稳定工作300 h,展现出较好的工业应用潜力。这些研究从不同维度上证实了RuFe合金体系在HER领域的高效性与实用性。

    图 4

    图 4.  (a) HER路径机制; (b) 三种单晶相应的能量壁垒; (c) 费米能级对HER过程中Volmer电子转移过程的影响; (d) Ru-Fe2P的(211)晶面反应路径的活性位点[80]
    Figure 4.  (a) HER path mechanisms; (b) Corresponding energy barriers for the three single crystals; (c) Influence of the Fermi level energyon electron transfer Volmer process during HER; (d) Active sites of reaction paths for the (211) plane of Ru-Fe2P[80]

    In panel d: the brown, purple, gray, red, and white balls represent the Fe, P, Ru, O, and H atoms, respectively.

    1.2.5   CuRu合金

    Ru和Cu的协同作用能优化催化剂对氢中间体的吸附和脱附性能,从而有效降低HER的过电位,加快反应速率。Zhao等[84]合成了均匀分散在炭黑上的CuRu合金纳米粒子(CuRu/CB)。其在1 mol·L-1 PBS和1 mol·L-1 KOH电解液中均表现出能与铂基催化剂相媲美的催化活性,电流密度分别达1.02和1.09 mA·cm-2,与Pt/C相当,且在1 mol·L-1 PBS中的HER性能优异。Wu等[85]通过脱合金工艺制备的三维纳米多孔CuRu合金Cu53Ru47在1 mol·L-1 PBS和1 mol·L-1 KOH电解液中的HER催化活性显著,起始过电位接近0 mV,Tafel斜率分别约为30和35 mV·dec-1,分别在约为15和41 mV的低过电位下就可以达到10 mA·cm-2的电流密度。DFT计算进一步揭示,Ru原子掺入Cu基质后,不仅加快了水吸附和活化步骤的反应速率,还优化了Cu和Ru活性位点上的氢键能,从而提升了HER的本征活性。

    钌高熵合金催化剂结合了高熵合金(HEA)的独特结构与Ru的高本征活性,在电解水制氢领域中展现出巨大潜力。它兼具出色的稳定性、抗腐蚀性及宽pH适应性,并能有效优化反应活性与位点数量,综合性能显著超越传统催化剂,但相关研究仍有待深入。Zhao等[86]通过快速微波辐射法合成了高度分散且尺寸小于2 nm的PtRuMoFeCoNi HEA量子点(HEA-QDs),该材料在0.5 mol·L-1 H2SO4中展现出优异的HER活性,η10仅为11 mV,显著优于Pt/C催化剂的18 mV(图 5)。HEA-QDs的质子交换膜水电解装置在超低贵金属负载量下就可实现高效运行,能耗与氢气生产成本显著优于行业目标,为开发低能耗、低成本氢能技术提供了新策略。Jin等[87]合成的PtRu2.9Fe0.15Co1.5Ni1.3 HEA在1 mol·L-1 KOH中表现出优异的碱性HER性能。此外,他们通过电化学诱导结构自重构合成了Co2RuO4 HEA,促进了水的吸附,减少了氢的吸附,从而加速了碱性HER过程。Zhao等[88]利用一步溶剂热法制备了大小均匀的PtPdRhRuCu HEA纳米颗粒,在1 mol·L-1 KOH中,其η10仅为23.3 mV,明显低于商业Pt/C的50.3 mV,质量活性更是商业Pt/C的7.9倍。Jiang等[89]通过湿化学法合成了4.75 nm尺寸均匀的FePtCoNiRu HEA纳米颗粒。在1 mol·L-1 KOH中,FePtCoNiRu HEA的η10为15.7 mV,Tafel斜率仅为21.99 mV·dec-1,可稳定工作30 h,优于商业Pt/C。Wang等[90]采用静电纺丝和原位磷化法制备了具有不同磷酸盐含量的自支撑三维纳米纤维FeCoNiMnRuP HEA磷化物(HEMP)。超低Ru负载量的HEMP-0.75催化剂在1 mol·L-1 KOH电解质中表现出最高的HER催化活性和稳定性,在10 mA·cm-2的电流密度下实现了26 mV的最小过电位,Tafel斜率仅50.9 mV·dec-1。Zou等[91]制备了一种负载在NiCoCuMo HEA上的新型Ru单原子催化剂(Ru1-NiCoCuMo HEAs)。在1 mol·L-1 KOH中,Ru1-NiCoCuMo HEAs在-150 mV过电位下表现出339 mA·mgRu-1的质量活性,比商用Ru催化剂高4.4倍。同时,使用Ru1-NiCoCuMo HEAs的电解槽在1.51 V下可实现100 mA·cm-2的电流密度,并在800 h内具有出色的稳定性。可见,钌高熵合金催化剂凭借抗烧结、抗腐蚀特性,可在恶劣电解环境中长效稳定运行,还能通过调整元素组成减少贵金属用量,进而降低成本,未来应用前景广阔。

    图 5

    图 5.  HEA-QDs/C及系列催化剂的HER性能: (a) 极化曲线; (b) Tafel斜率及对应的交换电流密度; (c) 过电位和Tafel斜率对比; (d) 不同过电位下的归一化质量活性(MA)和比活性(SA); (e) 加速耐久性测试(ADT); (f) 时间-电流响应曲线; (g) CV曲线; (h) 阿伦尼乌斯曲线; (i) 295~335 K温度范围内平衡电位下的艾林曲线[86]
    Figure 5.  Performance of HEA-QDs toward the HER: (a) polarization curves; (b) Tafel slope and corresponding exchange current density; (c) comparison of the overpotential and the Tafel slope; (d) normalized mass activity (MA) and specific activity (SA) at different overpotentials; (e) accelerated durability testing (ADT); (f) current-time response curves; (g) CV curves; (h) Arrhenius plots; (i) Eyring plots at the equilibrium potential in the temperature range of 295-335 K[86]

    Inset in panel a: TEM image of HEA-QDs/C; Inset in panel f: the testing device.

    钌单原子凭借其高原子利用率和催化活性,在水电解方面具有很大的潜力。但是,Ru聚合和分散不足等问题阻碍了它们的整体性能。Luo等[92]通过在氨气氛围中热退火构建了N掺杂PtRu单原子合金电催化剂,显著增强了Ru纳米颗粒的碱性HER性能,该催化剂的η10低至15 mV;在1 mol·L-1 KOH中,Tafel斜率为25 mV·dec-1(图 6)。DFT表明,掺杂N和Pt进入Ru晶格会促进Ru位点的水解离,而Ru表面的Pt则充当氢解吸位点。Yu等[93]通过一锅热解工艺合成了新型纳米RuIr@NrC复合材料,该材料兼具Ru/Ir单原子、精细合金化结构、多孔导电碳纳米片及丰富N掺杂剂,这赋予了其高本征活性、强电荷传输能力与理想的H⁺吸附强度。在1 mol·L-1 KOH中,RuIr@NrC的质量活性达6.97 A·mgnoble metal-1,约为Pt/C的10倍。Chen等[94]通过液体激光烧蚀技术制备了单原子RuAu合金,其在1 mol·L-1 KOH中性能表现卓越,η10低至24 mV,Tafel斜率仅为37 mV·dec-1,显著优于纯Au和Ru,而且经10 h稳定性测试后,电流密度仍保持初始值的92%,法拉第效率近乎100%。Ni等[95]利用模板辅助热解技术,将Ru-Mo单原子及亚纳米簇嵌入掺磷分级介孔碳骨架(PC)中制备得到Ru-Mo/PC。其中RuMo1.5/PC催化剂表现尤为突出,其在1 mol·L-1 KOH中的η10仅为17.9 mV,性能超越商用Pt/C催化剂,为高活性、原子级分散催化剂的设计提供了新思路。上述钌单原子基催化剂通过结构设计与调控,解决了Ru的聚合和分散问题,在碱性水电解中性能表现卓越。

    图 6

    图 6.  钌单原子合金及系列催化剂的HER性能: (a) 线性扫描极化曲线; (b) Tafel斜率[92]
    Figure 6.  HER properties of ruthenium monoatomic alloys and series catalysts: (a) linear sweep polarization curves; (b) Tafel slopes[92]

    钌金属间化合物是材料科学领域的一颗“新星”,它是一类将Ru的高熔点、强稳定性与其他金属元素的特性通过有序晶体结构紧密结合,从而形成一系列兼具结构与功能优势的化合物。Chen等[96]通过镁热还原反应合成了以(110)晶面为主要暴露晶面的RuSi金属间化合物纳米颗粒,其在0.5 mol·L-1 H2SO4中的η10为19 mV,Tafel斜率为28.9 mV·dec-1,HER活性与Pt相当,远优于单金属Ru。同时,其电化学表面积(ECSA)归一化活性也优于Ru和Pt,且具有良好的催化稳定性和结构稳定性,法拉第效率接近100%。DFT计算表明,RuSi中Ru顶位点因应变效应与配体效应的良好平衡,具有接近零的ΔGH*,这是其高活性的关键(图 7)。Zou等[97]选择性地合成了RuB2金属间化合物,其在0.5 mol·L-1 H2SO4中的η10仅为15.6 mV,表现出类Pt的HER活性,与商用20% Pt/C接近;其在1 mol·L-1 KOH中的η10为25.0 mV,活性优于Pt(86 mV)。此外,其在酸性和碱性条件下均展现出较好的稳定性,50 h内活性均无明显衰减,且催化前后晶体结构保持不变。Cai等[98]开发了一种准二维金属间化合物CeRuSi,其在1 mol·L-1 KOH中实现了28 mV的超低η10,并且具有长期稳定性。Zhang等[99]结合溶胶-凝胶法和退火处理,合成了负载于多孔碳上的有序Ru4Fe金属间化合物(Ru4Fe IMCs/C),其颗粒直径为15 nm,且在全pH下都表现出优异的析氢性能:在0.5 mol·L-1 H2SO4、1 mol·L-1 PBS和1 mol·L-1 KOH电解液中的η10分别为29、24和36 mV,优于20% Pt/C。Zhang等[100]通过高温固相合成法制备出Mo2Fe0.8Ru0.2P金属间化合物,其在1 mol·L-1 KOH中的η10仅为48 mV,在1.1 A·cm-2的高电流密度下长时间运行1 000 h后,活性衰减仍低于4%,可见该催化剂在工业催化应用方面的巨大潜力。同时,Yang等[101]也成功合成了具有独特体心立方(bcc)相的RuGa金属间化合物电催化剂,其在1 mol·L-1 KOH中只需18和72 mV的过电位即可分别提供10和100 mA·cm-2的电流密度,表现出显著的催化耐久性和对CO中毒的强耐受性。尽管室温脆性等挑战仍待攻克,但随着掺杂改性、复合设计等技术的发展,钌金属间化合物正逐步从实验室走向实际应用,为突破传统材料的性能瓶颈提供了全新可能。

    图 7

    图 7.  (a) RuSi、Ru、Pt和Si在0.5 mol·L-1 H2SO4溶液中的极化曲线; (b) RuSi、Ru和Pt在0.5 mol·L-1 H2SO4溶液中的ECSA及在0.1 mA·cm-2下所需的过电位; (c) RuSi、Ru和Pt的HER Tafel曲线; (d) RuSi(110)表面HER Tafel步骤的自由能图[96]
    Figure 7.  (a) Polarization curves of RuSi, Ru, Pt, and Si in 0.5  mol·L-1 H2SO4 solution; (b) ECSA of RuSi, Ru, and Pt in 0.5 mol·L-1 H2SO4 solution and the required overpotential at 0.1 mA·cm-2; (c) Tafel plots for HER over RuSi, Ru, and Pt; (d) Free energy diagrams of Tafel step of HER on the RuSi(110) surface[96]

    Inset: the optimized adsorption structures for the initial state, the transition state, and the final state from left to right.

    钌合金催化剂的制备方法对其性能有着重要影响,常见的制备方法包括共沉积法、溶胶-凝胶法、化学还原法、气相沉积法和电化学沉积法等,不同的合成方法对催化剂的结构、形态以及电催化性能有重要影响。

    共沉淀法是通过调控溶液pH、温度、还原剂种类及添加量等条件控制Ru与金属元素的共沉积过程,实现均匀合金纳米颗粒的制备,常用于合成高活性、高稳定性的钌合金催化剂。例如,Cai等[102]采用快速共沉淀法制备RuCo合金纳米片(RuCo ANSs),再经温和电化学还原法成功获得稳定性优异的RuCo合金催化剂。

    溶胶-凝胶法主要是通过先形成金属氧化物前驱体溶胶,再经还原法制备合金。该方法可控性强,能制备高比表面积的钌合金催化剂,适用于电催化反应。Qiu等[103]以淀粉-碳气凝胶为基材,通过冷冻干燥和高温退火法制备了负载RuCo合金的淀粉-碳气凝胶电催化剂(RuCo/SCA),该催化剂在碱性溶液和碱性盐水中展现出高效的电解析氢能力。Kim等[104]采用还原和互掺杂结合溶胶-凝胶法,在碱性和酸性溶液中制备了部分氧化的RuNi合金气凝胶,经超临界乙醇干燥后,350 ℃下氧化的RuNi-350@NF在酸碱介质中获得了优异的HER性能。

    化学还原法是制备钌合金催化剂的常用手段,其是通过氢气、硼氢化钠、柠檬酸等还原剂还原钌及其他金属前驱体。该方法操作简便,可灵活调控颗粒大小与组成,能在低温下制得均匀的合金催化剂,适合大规模生产,但需精准控制还原条件,防止颗粒团聚。Cui等[105]利用简单的液相还原法,制备出催化活性高、过电位低的CuRu合金。Wang等[106]采用一锅共还原法,在碳纳米管(CNT)上制备了由(111)晶面界定的Ru掺杂PtFeNiCuW均匀八面体晶体(Ru-PtFeNiCuW/CNTs)。作为宽pH范围内HER的电催化剂,其在过电位、Tafel斜率和交换电流密度等指标上显著提升了催化活性。

    气相沉积法是制备高纯度、高性能钌合金催化剂的关键技术,主要包括化学气相沉积(CVD)和物理气相沉积(PVD)。CVD利用化学反应在气相中生成合金颗粒并沉积于基底,适合制备复杂形状、多孔结构的催化剂,可精准控制钌合金薄膜或纳米结构。而PVD则通过物理蒸发过程,将钌与其他金属沉积在基底上,常用于薄膜和涂层催化剂的制备。二者虽能制得优质的催化剂,但设备复杂、成本较高。Wang等[107]结合CVD与液相还原法,先在CNT上负载CoN4单原子位点,再通过还原反应使Ru原子簇均匀分布,最终合成了Ru/CoSA/CNT催化剂。他们通过这种双重调控机制显著提高了催化剂的碱性HER性能。Wang等[108]通过水热和CVD法制备了Mo单原子修饰的Ru纳米粒子(MoRu-NG)。Mo单原子掺入改变了Ru的局部原子环境,增强了HER的催化活性和稳定性。Al-Odail等[109]通过PVD合成了RuAu合金,其中Ru90Au10活性高于纯Ru。Capozzoli等[110]以二氧化钛纳米管阵列(TNTA)为载体,通过PVD制备得到碱性条件下超低负载、高性能且稳定的HER钌合金催化剂。

    电化学沉积法是通过电解还原溶液中的金属离子,使其在电极表面生成钌合金催化剂。该方法可精准调控合金成分,灵活调节催化剂结构、形貌与表面状态,能形成均匀的合金薄膜,适用于制备高纯度、附着力良好的薄膜型催化剂,但存在设备成本高、难以规模化生产的问题。Lian等[111]采用电沉积法制备得到Ru0.250Ni合金,该催化剂η10低且稳定性优异。Ru的掺杂通过协同作用削弱了HER过程中H+与OH-的吸附竞争,其高自旋态还增强了合金对OH-的吸附能力,显著提升了HER性能。Kutyła等[112]研究了Ni与Ru在氯化物溶液中的电化学沉积,制得的Ni-Ru薄膜涂层在碱性溶液中展现出优异的析氢能力。

    乙二醇还原法借助乙二醇兼具的还原性与溶剂特性,凭借温和的反应条件、可控的颗粒尺寸及均匀的合金化程度而备受关注。Pang等[113]采用一种简单的乙二醇还原策略设计了镍钌纳米晶体(Ni-Ru NC),该纳米晶体具有暴露的高活性Ru(101)晶面,性能优于基准催化剂Pt/C。Huang等[114]采用微波辅助乙二醇还原法,合成了封装于N掺杂多孔碳十二面体中的RuPd合金纳米颗粒(RuxPd1-x@NPC),该催化剂在碱性和酸性条件下均表现出高质量活性和良好的长期稳定性,性能远超商用Pt/C催化剂。

    热解法兼具高效性与可控性,其通过对前驱体进行精准的热解工艺调控,不仅能够实现Ru与其他金属元素的均匀掺杂,更能有效控制合金的微观结构与相组成,为Ru合金的精准合成开辟了一条极具潜力的路径。Zhang等[115]通过简单的热解法合成了锚固在被少量N掺杂碳覆盖的WNO纳米线上的超小型Ru纳米团簇(Ru/WNO@C)。这项工作为高效稳定的碱性HER催化剂的设计与制备提供了新思路,协同实现了高效制氢与低能耗氯碱电解。Zhao等[116]采用一步热解法制备了双原子调谐的RuBi SAA/Bi@OG纳米结构。Ru纳米粒子表面的电子密度可以通过合金化的Bi单原子和相邻的Bi-O单点协同调节,从而实现了最佳的电荷再分布,表现出优异的碱性HER活性。

    近年来,研究人员开发了一系列新型制备技术以进一步提高钌合金催化剂的性能。例如,采用模板法[117]可以制备具有多孔结构的钌合金催化剂,增加活性位点数量;采用微波辅助合成法[48]则能够快速、均匀地制备纳米合金颗粒,提高催化剂的比表面积。这些新型制备技术为优化钌合金催化剂的性能提供了新的途径。

    在可持续能源发展进程中,高效的HER技术至关重要,其核心在于性能卓越的催化剂。钌合金催化剂近年来备受瞩目,其不仅具备优异电催化性能与稳定性,还为清洁能源转换开辟了新路径。但单一钌基催化剂面临成本高和结构稳定性欠佳等难题,因此当前研究聚焦于合金化策略,从表面修饰、形貌调控等多维度优化其性能,力求突破技术瓶颈。

    钌合金催化剂的表面修饰是提升HER性能的关键途径,其通过调节合金表面的结构、化学组成以及性质,提高催化剂的活性。2H-二硫化钼(2H-MoS2)的表面改性是提高HER催化性能的最有效方法之一[118],当Ru纳米粒子负载于硫空位修饰的MoS2(Sv-MoS2)表面形成Ru@Sv-MoS2时,二者间不仅能对MoS2的能带结构进行协同调控,还能够提高其电导率,使Ru@Sv-MoS2兼具优异的电催化活性和稳定性。此外,Zhou等[119]通过CV循环成功合成了新型固溶体RuSn合金纳米颗粒(NP)。实验表明,相较于单金属Ru NP,RuSn NP显示出更优的HER性能。其中,Ru0.94Sn0.06 NP/C和Ru0.87Sn0.13 NP/C在1 mol·L-1 KOH中的η10分别为43.41和33.19 mV,显著低于单金属Ru NP/C的53.53 mV和商用Pt NP/C的55.77 mV(图 8)。随着对钌合金催化剂表面修饰机制的深入研究,有望开发出更多性能优异、成本低廉的催化剂。

    图 8

    图 8.  (a) RuSn固溶体合金纳米颗粒的合成示意图; 系列催化剂的(b) 极化曲线、(c) 过电位和(d) 稳态Tafel斜率[119]
    Figure 8.  (a) Schematic diagram of the synthesis of RuSn solid solution alloy nanoparticles; (b) Polarization curves, (c) overpotentials, and (d) steady state Tafel slopes of series catalysts[119]

    调控催化剂的粒径与形貌(如纳米颗粒、纳米线、纳米片等),能够有效增大材料比表面积,提供更多的活性位点,进而提高催化反应的速率。Wang等[120]通过一步碳化法,成功合成负载在N掺杂碳纳米片上的Co-Ru纳米颗粒(Co-Ru/NCN)。CoRu合金均匀分布在超薄碳纳米片的表面,其独特的二维形态充分暴露了丰富的活性位点,超小纳米颗粒则实现了金属成分的高效利用。此外,Ru和Co之间的偶联效应使Co-Ru/NCN在1 mol·L-1 KOH和0.5 mol·L-1 H2SO4中均表现出优异的HER活性和稳定性。Kwon等[58]成功将RuO2还原为金属Ru,并实现了Au原子的均匀分散,最终形成均匀的AuRu合金纳米纤维。该材料在酸性环境中表现出优异的HER活性和长期稳定性,显著优于易失活的Ru-NF和Ru/C催化剂。DFT计算表明,其优异性能归因于Ru与Au的合金化效应及稳定的纳米纤维结构,凸显了其在解决酸性体系高效稳定双功能催化剂短缺问题方面的巨大潜力。

    空心钌合金纳米结构材料凭借其大的比表面积与内外表面协同效应,提供了丰富的表面活性位点,显著提升了催化活性。Liu等[121]合成了碳包覆的Ru-Cu-MoO2近空心八面体催化剂,其在1 mol·L-1 KOH和0.5 mol·L-1 H2SO4中的η10分别低至22和48 mV,尤其在碱性海水中表现出23 mV的优异性能。Jiang等[122]通过外延生长和原位DMF加氢的协同策略合成出核壳结构的PdH@Ru纳米竹,其η10为14 mV,超过了商用Pt/C和无氢的Pd@Ru纳米竹(图 9)。这种竹状空心结构有效优化了活性位点的电子结构与传质效率,为工业制氢提供了一种潜在的高效阴极电催化剂。从纳米颗粒与二维纳米片的巧妙结合,到纳米纤维形态的功能强化,再到空心结构对活性位点的极致挖掘,不仅突破了传统催化剂的性能瓶颈,更揭示了结构与催化活性间的深度关联。

    图 9

    图 9.  PdH@Ru纳米竹的表征与HER性能: (a) TEM图像; (b) HAADF-STEM图像及相关EDX结果; (c) HER性能对比[122]
    Figure 9.  Characterization and HER properties of PdH@Ru nano bamboo: (a) TEM image; (b) HAADF-STEM images and related EDX mapping results; (c) comparison of HER performance[122]

    合金中元素的电子效应和界面效应是影响钌基催化剂HER性能的关键因素。不同元素的电负性差异与电子供给能力,可调节Ru原子的电子密度,优化氢吸附/脱附行为。同时,调控合金中金属原子的配比与分布,借助其产生的界面效应优化催化反应路径。Hao等[123]通过在电纺碳纳米纤维中原位合成了FeCoNiXRu(X=Cu、Cr、Mn) HEA NP。在该体系中,不同混合元素之间电负性的差异引发了显著的电荷重新分布,从而形成了高活性的Co和Ru位点。这些位点具有优化的能垒,能够同时稳定OH*和H*反应中间体,显著提升碱性条件下的水解离效率。以FeCoNiMnRu NP为例,Co位点是最活跃的中心,水解离的能垒低至0.34 eV。后续H*转移至Ru位点,其ΔGH*低至-0.07 eV(图 10),这证实可通过调节合金电负性优化HER活性。Huang等[124]在磷化氢(PH3)气氛中对Ru纳米颗粒热退火并沉积低浓度Pt,制备出负载于CNT上的P掺杂RuPt合金催化剂,其中稀释的Pt原子通过Ru—P—Pt键分散在Ru表面。该催化剂在1 mol·L-1 KOH条件下展现出优异的HER活性,η10仅为17 mV,Tafel斜率为27 mV·dec-1,优于对照样品。Fang等[125]通过一步溶剂热法构建了亚稳态RuNi合金与六方密堆积(hcp)镍之间的稳定界面。DFT计算证实该独特界面的双位点结构可显著提升HER性能。这些研究揭示了电子效应和界面效应在钌基催化剂HER性能优化中的核心作用。随着对电子转移机制和界面化学本质的深入解析,有望通过元素的合理搭配与微观结构设计,开发出具有更优HER性能的钌基催化剂。

    图 10

    图 10.  (a) FeCoNiMnRu NP催化位点在水分子解离四个阶段的原子构型变化; (b) FeCoNiMnRu HEA NP表面不同催化位点的水分子解离反应能垒图; (c) FeCoNiMnRu HEA NP表面不同催化位点的ΔGH*变化曲线[123]
    Figure 10.  (a) Atomic configurations on catalytic sites of FeCoNiMnRu HEA at the four stages during H2O dissociation; (b) Reaction energy profile for water dissociation on various catalytic sites of the FeCoNiMnRu HEA NP surface; (c) ΔGH* change profiles on various catalytic sites of the FeCoNiMnRu HEA NP surface[123]

    组分调控是优化钌合金催化性能的核心手段,通过精准设计合金元素的种类与比例,可从电子结构、活性位点、表面性质等多维度提升催化剂的活性与稳定性。引入Ni、Co、Mo等电子性质不同的金属,能够调节Ru的d带电子分布;多元合金则可形成异质界面或双功能活性位点,同时改变表面氧化还原特性,增强酸碱环境下的抗腐蚀性。Li等[126]设计的NiCoRux/SP系列电催化剂显示,优化配比的NiCoRu0.2/SP在1 mol·L-1 KOH中的η10仅为59 mV。DFT计算表明,Ru-Ni/Co界面协同效应可加速水分解并优化氢中间体的吸附-解吸,但过量Ru会导致氢吸附过强,阻碍H2的释放。Xu等[127]将Ru与水解离高效材料Re合金化,制备得到Ru0.48Re0.52纳米粒子。得益于电子密度的重新分布,其展现出优于Pt的氢解吸性能。将其与还原氧化石墨烯(rGO)载体结合,可以防止纳米粒子的团聚,制备得到的Ru0.48Re0.52NPs@rGO在1 mol·L-1 KOH中,10和100 mA·cm-2的电流密度下的过电位分别低至14和74 mV(图 11),超越传统Pt/C催化剂。另一项研究中,Xu等[128]采用反溶剂结晶法制备了球形Pt23Ir42Ru35合金纳米粒子,该材料凭借多金属协同效应和小尺寸优势,显著提升了活性位点暴露度及离子/电子传输效率。其中,Ru元素通过改变电子结构促进了Pt、Ir间的电子转移,使Pt23Ir42Ru35/C在1 mol·L-1 KOH中的η10仅为26.6 mV,且耐久性长达50 h。这些研究表明,通过组分调控,钌合金催化剂有望突破传统贵金属局限,为高效低成本的HER技术开辟新路径,打破传统催化剂的性能与成本的双重限制。

    图 11

    图 11.  (a) Pt/C和Ru0.48Re0.52NPs@rGO的计时电流曲线; (b) Ru0.48Re0.52NPs@rGO循环后的极化曲线[127]
    Figure 11.  (a) Chronoamperometric plots of Pt/C and Ru0.48Re0.52NPs@rGO in 1 mol·L-1 KOH; (b) Polarization curves of Ru0.48Re0.52NPs@rGO after cycling[127]

    钌合金催化材料成为当前清洁能源转换领域的研究热点,但是单一成分的钌基催化剂具有略高的经济成本、有限的结构稳定性、选择性和抗中毒性,以及在高电流密度工况下易发生电化学腐蚀的缺点,因此,研究人员致力于通过合金化策略优化其组成与结构,从根本上突破以上技术瓶颈。例如,RuNi合金催化剂在碱性介质中表现出接近Pt的催化活性[129],而RuCo合金催化剂在酸性介质中则展现出优异的稳定性[130]。钌合金催化剂已在工业级电解槽中实现了高效的低成本制氢[131],并应用于开发新型燃料电池系统[132]。然而,在实际应用中,复杂体系的稳定性、抗中毒性和选择性难题,仍限制着其工业化进程。钌合金催化剂的优劣势对比如表 1所示。近年来,科研团队围绕这些核心问题开展研究,不断探索新路径,为钌合金催化剂的突破性发展带来希望。

    表 1

    表 1  钌合金催化剂的常见性能参数
    Table 1.  Common performance parameters of ruthenium alloy catalysts
    下载: 导出CSV
    Parameter Ruthenium-precious metal alloy Ruthenium-non precious metal alloy
    Activity (TOF / h-1) High (103-104) High (102-103)
    Selectivity / % > 95 70-90
    Stability Excellent Moderate
    Cost Extremely high Extremely low
    Anti moderate toxicity Strong Weak
    Industrial restrictions Extremely scarce resources Lack of stability

    图 12所示,选取部分具有代表性的催化剂[45, 67, 85-86, 92, 97, 101, 119, 121, 124, 127],对比其过电位发现:通过高熵合金构建多功能活性位点,利用合金化实现组分协同,以及借助金属间化合物的有序结构来调控ΔGH*,均是提升催化性能的有效策略。特殊形貌与高分散性催化剂的设计解决了活性位点不足的问题,电子与界面效应的调控优化了反应动力学性能,组分调控则从根源上实现了性能的多维度提升。

    图 12

    图 12.  部分催化剂及其过电位数据的比较[45, 67, 85, 86, 92, 97, 101, 119, 121, 124, 127]
    Figure 12.  Comparison of partial catalysts and their overpotential data[45, 67, 85, 86, 92, 97, 101, 119, 121, 124, 127]

    HER性能与电解液的pH密切相关,核心差异源于不同pH环境下的反应机理、动力学壁垒及催化剂与反应物种的相互作用不同。酸性介质中,H+浓度高,反应以H+直接参与为主,Volmer步骤动力学速率较快,反应壁垒主要来自H*的吸附-脱附平衡,多数钌合金催化剂表现出优异的活性,过电位普遍较低;碱性介质中,反应依赖水的解离提供的H+,水的解离是决速步,需克服更高的能垒,如Ru与Pt、Ni等形成合金,可促进水的解离并优化H*脱附,性能可接近酸性条件;中性介质中,H+和OH-浓度均较低,既缺乏酸性中的高H+供应,又缺乏碱性中的高OH-辅助水解离,反应动力学速率最慢,过电位通常最高。钌合金的组分、电子结构及表面性质决定其在不同pH环境中的性能,通过电子调控、双功能位点设计及表面改性,可拓宽pH适应性,助力全pH范围的高效析氢。

    钌合金催化剂在实际应用中面临稳定性不佳的难题,这是因为Ru的溶解、氧化和腐蚀易导致催化剂失活。为此,研究人员通过引入耐腐蚀金属、设计多孔结构及调控电极微环境等策略提升其稳定性。近年来,众多科研团队围绕其稳定性展开了深入研究,取得了一系列突破性成果。Zhang等[133]将超细CoRu合金纳米粒子嵌入到无杂原子石墨碳中制备得到Co1-xRux/GC。经10 000次CV循环后,该催化剂的XRD图中未出现新峰,稳定性可与商业Pt/C及多数无铂催化剂相媲美。Cai等[102]通过调控RuCo合金纳米片中Ru的4dz2轨道,优化了Ru—H吸附/解吸效率。该催化剂在10 mA·cm-2下循环10 000次后,过电位仅衰减2 mV,且电解液中的Ru溶出可忽略,这表明材料在复杂条件下性能稳定。Zhang等[134]合成的RuCoNi/CNFs以中空碳纳米纤维为载体,凭借三维多孔结构增强了传质与活性位点的暴露,其η10仅为47 mV,且经100 h连续运行后仍保持稳定,突出了其在大规模工业中的实际应用潜力。Park等[135]通过水热法在碳纸(CP)表面原位生长了具有特殊结构的Ru-Ni@Cu合金颗粒,其在Ru含量(质量分数)低至1.0%时也能展现出优异的HER性能。在1.0 mol·L-1 KOH中,Ru-Ni@Cu在100 mA·cm-2的电流密度下的过电位低至-0.15 V,与100% Pt/CP电极相当。同时,其稳定性出色,连续运行10 d后活性无明显下降,50 h的法拉第效率达到96.89%,经100和3 000次循环后,催化性能与结构依然保持稳定(图 13)。这些研究通过原子级结构调控与多尺度材料设计,为破解钌基催化剂稳定性难题提供了多元化路径。无论是利用合金化协同效应、构筑特殊纳米结构,还是强化载体-活性组分间的相互作用,均能有效抑制Ru的溶解、氧化与腐蚀。

    图 13

    图 13.  1% Ru-Ni@CuCP电极在第100和3 000次的线性扫描伏安法循环后的(a) XRD图和(b) SEM图像[135]
    Figure 13.  (a) XRD patterns and (b) SEM images of the 1% Ru-Ni@CuCP electrode after the 100 and 3 000 linear sweep voltammetry cycles[135]

    当然,抗中毒性和选择性也是Ru合金催化剂的重要性能指标。Tang等[136]通过分步煅烧策略,制备了N掺杂石墨化碳纳米片负载的RuCo催化剂(RuCo/SANC NS),其中,Co单原子锚定的超小RuCo簇凭借小尺寸效应产生大量配位不饱和Ru原子,这些Ru原子作为高活性位点使催化剂具有极高的选择性,HER质量活性为13.58 A·mg-1,是20% Pt/C的48.13倍。同时,Co的电子供给能有效削弱了Ru位点与CO的结合能,提升了催化剂的抗中毒能力。Huang等[137]报道的碳负载铱-钌纳米团簇(Ir-Ru@C)的η10仅为13 mV,超越了市售Pt/C。其电子与亲氧协同调控、优化了吸附氢原子(Had)和吸附羟基(OHad)的能力,提高了选择性和抗CO中毒能力,并且在0.103 V的过电位下运行10 h后,电流密度仅衰减7.0%,而商用Pt/C则下降了8.3%。可见,钌基催化剂通过多元合金设计、原子级结构调控及载体工程,在提升催化选择性方面潜力显著。

    本文较全面地综述了钌合金催化剂在HER中的制备方法及最新研究进展,深入剖析了具备的优势、面临的挑战以及未来的发展方向,旨在为相关研究提供有价值的参考。尽管钌合金催化剂在电催化HER领域已取得显著进展,但仍存在一些亟待攻克的挑战,比如成本高昂、稳定性欠佳等。未来研究可以从以下方向展开优化:(1) 积极探索更多低成本的合金元素来替代部分钌,以此降低催化剂的生产成本,提高其经济可行性;(2) 借助原子层级调控、表面工程等先进手段,对催化剂的结构和性能进行深度优化,实现精准的催化剂设计与性能调控;(3) 着力提高催化剂在高电流密度下的长期稳定性,有效减少催化剂的腐蚀和溶解现象,确保其在实际应用中的可靠性;(4) 深入研究钌合金催化剂在电催化HER中的反应机理,清晰揭示其催化活性与结构之间的内在联系,为催化剂的设计提供坚实的理论支撑。

    值得一提的是,钌合金催化剂在电催化HER中已展现了优异的催化性能,并且通过合金化改性和表面工程等策略,其催化活性和稳定性还有进一步的提升空间。随着研究的不断深入,钌合金催化剂在电催化水分解和氢气生产领域的应用前景越发广阔,未来研究应着重于开发新型钌合金体系、优化制备工艺,并积极探索其在工业级电解水制氢系统中的应用。随着清洁能源需求的不断增长,钌合金催化剂有望在蓬勃发展的氢能经济中发挥重要作用,为实现可持续发展目标贡献力量。


    1. [1]

      李鸿鹏. 碳载Pt基催化剂的制备、表征及氧还原催化性能研究[D]. 昆明: 昆明贵金属研究所, 2022.LI H P. Preparation, characterization, and oxygen reduction catalytic performance of carbon supported Pt based catalysts[D]. Kunming: Kunming Institute of Precious Metals, 2022.

    2. [2]

      李鸿鹏, 皮晓琳, 倪文若, 田乙然, 童应成, 袁藤瑞, 张振强. PtCo合金电催化剂在燃料电池氧还原催化中的研究现状与进展[J]. 稀有金属材料与工程, 2024, 53(10): 2987-3000.LI H P, PI X L, NI W R, TIAN Y R, TONG Y C, YUAN T R, ZHANG Z Q. Research status and progress of PtCo alloy electrocatalysts in oxygen reduction catalysis of fuel cells[J]. Rare Metal Mat. Eng., 2024, 53(10): 2987-3000

    3. [3]

      SHETTI R S, SREENIVASULU M, MATHI S, SHETTI N P. Highly efficient and low-cost CuFeCN as an OER and HER electrocatalyst for sustainable hydrogen production[J]. Energy Fuel, 2023, 37(21): 16588-16598 doi: 10.1021/acs.energyfuels.3c03233

    4. [4]

      CHUKWUNEKE C E, KAWASHIMA K, LI H, MARQUEZ, R A, SON Y J, SMITH L A, CELIO H, HENKELMAN G, MULLINS C B. Electrochemically engineered domain: Nickel-hydroxide/nickel nitride composite for alkaline HER electrocatalysis[J]. J. Mater. Chem. A, 2024, 12(3): 1654-1661 doi: 10.1039/D3TA06408E

    5. [5]

      陈煜, 唐亚文, 李钢, 刘长鹏, 高颖, 邢巍, 陆天虹. 一种制备碳载高合金化Pt-Ru催化剂的方法[J]. 无机化学学报, 2006, 22(1): 59-64.CHEN Y, TANG Y W, LI G, LIU C P, GAO Y, XING W, LU T H. A method for preparing carbon supported high alloy Pt Ru catalys[J]. Chinese J. Inorg. Chem., 2006, 22(1): 59-64

    6. [6]

      DAI S, MONTERO-LANZUELA E, TISSOT A, BALDOVÍ H G, GARCÍA H, NAVALÓN S, SERRE C. Room temperature design of Ce(Ⅳ)-MOFs: From photocatalytic HER and OER to overall water splitting under simulated sunlight irradiation[J]. Chem. Sci., 2023, 14(13): 3451-3461 doi: 10.1039/D2SC05161C

    7. [7]

      WANG J M, QIN Q, LI F Y, ANJARSARI Y, SUN W, AZZAHIIDAH R, ZOU J, XIANG K, MA H J, JIANG J Z, ARRAMEL. Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction[J]. Carbon Lett., 2023, 33(5): 1381-1394 doi: 10.1007/s42823-022-00401-2

    8. [8]

      DILLMAN K J, HEINONEN J. A 'just' hydrogen economy: A normative energy justice assessment of the hydrogen economy[J]. Renew. Sust. Energ. Rev., 2022, 167: 112648 doi: 10.1016/j.rser.2022.112648

    9. [9]

      HARICHANDAN S, KAR S K, RAI P K. A systematic and critical review of green hydrogen economy in India[J]. Int. J. Hydrog. Energy, 2023, 48(81): 31425-31442 doi: 10.1016/j.ijhydene.2023.04.316

    10. [10]

      KAR S K, HARICHANDAN S, ROY B. Bibliometric analysis of the research on hydrogen economy: An analysis of current findings and roadmap ahead[J]. Int. J. Hydrog. Energy, 2022, 47(20): 10803-10824 doi: 10.1016/j.ijhydene.2022.01.137

    11. [11]

      GOYAL A, LOUISIA S, MOERLAND P, KOPER M T. Cooperative effect of cations and catalyst structure in tuning alkaline hydrogen evolution on Pt electrodes[J]. J. Am. Chem. Soc., 2024, 146(11): 7305-7312 doi: 10.1021/jacs.3c11866

    12. [12]

      YU E, PAN Y. Enhancing the catalytic hydrogen evolution reaction (HER) of the defective borophene@Pt/Pd/MoS2 heterojunction[J]. Int. J. Hydrog. Energy, 2024, 50: 920-931 doi: 10.1016/j.ijhydene.2023.08.238

    13. [13]

      尉兵, 张建帆, 陈哲. 双金属纳米催化剂的精细调控在电催化二氧化碳还原中的研究进展[J]. 无机化学学报, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201CAPTAIN B, ZHANG J F, CHEN Z. Research progress on fine control of bimetallic nanocatalysts in electrocatalytic carbon dioxide reduction[J]. Chinese J. Inorg. Chem., 2025, 41(3): 425-439 doi: 10.11862/CJIC.20240201

    14. [14]

      皮晓琳, 李鸿鹏, 田乙然, 倪文若, 童应成, 袁藤瑞, 张振强. 铱纳米颗粒制备技术及应用研究进展[J]. 稀有金属, 2025, 49(1): 107-123.PI X L, LI H P, TIAN Y R, NI W R, TONG Y C, YUAN T R, ZHANG Z Q. Research progress on preparation technology and application of iridium nanoparticles[J]. Rare Metals, 2025, 49(1): 107-123

    15. [15]

      CAO X J, HUO J J, LI L, QU J P, ZHAO Y F, CHEN W H, LIU C T, LIU H, WANG G X. Recent advances in engineered Ru‐based electrocatalysts for the hydrogen/oxygen conversion reactions[J]. Adv. Energy Mater., 2022, 12(41): 2202119 doi: 10.1002/aenm.202202119

    16. [16]

      CHENG H W, WANG S, CHEN G Y, LIU, Z W, CARACCIOLO D, MADIOU M, SHAN S Y, ZHANG J C, HE H Y, CHE R C, ZHONG C J. Insights into heterogeneous catalysts under reaction conditions by in situ/operando electron microscopy[J]. Adv. Energy Mater., 2022, 12(38): 2202097 doi: 10.1002/aenm.202202097

    17. [17]

      LIU L Z, AKHOUNDZADEH H, LI M, HUANG H W. Alloy catalysts for electrocatalytic CO2 reduction[J]. Small Methods, 2023, 7(9): 2300482 doi: 10.1002/smtd.202300482

    18. [18]

      QIAO Y J, PENG M, LAN J, JIANG K, CHEN D C, TAN Y W. Active-site engineering in dealloyed nanoporous catalysts for electrocatalytic water splitting[J]. J. Mater. Chem. A, 2023, 11(2): 495-511 doi: 10.1039/D2TA07677B

    19. [19]

      LI H D, LAI J P, LI Z J, WANG L. Multi-sites electrocatalysis in high‐entropy alloys[J]. Adv. Funct. Mater., 2021, 31(47): 2106715 doi: 10.1002/adfm.202106715

    20. [20]

      OKATENKO V, LOIUDICE A, NEWTON M A, STOIAN D C, BLOKHINA A, CHEN A N, ROSSI K, BUONSANTI R. Alloying as a strategy to boost the stability of copper nanocatalysts during the electrochemical CO2 reduction reaction[J]. J. Am. Chem. Soc., 2023, 145(9): 5370-5383 doi: 10.1021/jacs.2c13437

    21. [21]

      SUN J L, TANG H J, WANG C L, HAN Z, LI S S. Effects of alloying elements and microstructure on stainless steel corrosion: A review[J]. Steel Res. Int., 2022, 93(5): 2100450 doi: 10.1002/srin.202100450

    22. [22]

      韩梦飞, 顾军, 薛盛鼎, 祝苏君, 黄润生. 燃料电池铂钴锰合金催化剂的制备及性能[J]. 无机化学学报, 2023, 39(7): 1253-1260. doi: 10.11862/CJIC.2023.105HAN M F, GU J, XUE S D, ZHU S J, HUANG R S. Preparation and properties of platinum cobalt manganese alloy catalysts for fuel cells[J]. Chinese J. Inorg. Chem., 2023, 39(7): 1253-1260 doi: 10.11862/CJIC.2023.105

    23. [23]

      WANG M Y, SONG R F, ZHANG Q, LI C Y, XU Z W, LIU G W, WAN N, LEI S Y. Synergy effect of Cu-Ru dual atoms anchored to N-doped phosphorene for nitrogen reduction reaction[J]. Fuel, 2022, 321: 124101 doi: 10.1016/j.fuel.2022.124101

    24. [24]

      JIA X Q, GAO F, YANG G P, WANG Y Y. Designing different heterometallic organic frameworks by heteroatom and second metal doping strategies for the electrocatalytic oxygen evolution reaction[J]. Inorg. Chem., 2024, 63(12): 5664-5671 doi: 10.1021/acs.inorgchem.4c00089

    25. [25]

      REN J T, CHEN L, WANG H Y, TIAN W W, ZHANG X, MA T Y, ZHOU Z, YUAN Z Y. Inducing electronic asymmetricity on Ru clusters to boost key reaction steps in basic hydrogen evolution[J]. Appl. Catal. B‒Environ., 2023, 327: 122466 doi: 10.1016/j.apcatb.2023.122466

    26. [26]

      董鹤楠, 戈阳阳, 魏新颖, 刘德培, 颜元东, 闫世成. 碳布负载高致密Sn/SnBi合金的电催化CO2还原性能[J]. 无机化学学报, 2022, 38(12): 2433-2442. doi: 10.11862/CJIC.2022.250DONG H N, GE Y Y, WEI X X, LIU D P, YAN Y D, YAN S C. Electrocatalytic CO2 reduction performance of high-density Sn/SnBi alloy loaded with carbon cloth[J]. Chinese J. Inorg. Chem., 2022, 38(12): 2433-2442 doi: 10.11862/CJIC.2022.250

    27. [27]

      WANG B, YAO Y F, YU X W, WANG C, WU C P, ZOU Z G. Understanding the enhanced catalytic activity of high entropy alloys: From theory to experiment[J]. J. Mater. Chem. A, 2021, 9(35): 19410-19438 doi: 10.1039/D1TA02718B

    28. [28]

      YANG C D, GAO Y, MA T, BAI M R, HE C, REN X C, LUO X L, WU C Z, LI S, CHENG C. Metal alloys-structured electrocatalysts: Metal-metal interactions, coordination microenvironments, and structural property-reactivity relationships[J]. Adv. Mater., 2023, 35(51): 2301836 doi: 10.1002/adma.202301836

    29. [29]

      BHAVISHA M, BALAMURUGAN S, GOPINATH C S, SAKTHIVEL A. The ex situ exsolved Ni-Ru alloy from nickel-ruthenium co-doped SrFeO3-δ perovskite as a potential catalyst for C=C and C=O hydrogenation. [J]. Sustain. Energy Fuels, 2024, 8(13): 2839-2849 doi: 10.1039/D4SE00170B

    30. [30]

      KHAN W U, ALASIRI H S, ALI S A, HOSSAIN M M. Recent advances in bimetallic catalysts for hydrogen production from ammonia[J]. Chem. Rec., 2022, 22(7): e202200030 doi: 10.1002/tcr.202200030

    31. [31]

      MOON J H, KIM S, KIM T, JEON Y S, KIM Y, AHN J P, KIM Y K. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires[J]. J. Mater. Sci. Technol., 2022, 105: 17-25 doi: 10.1016/j.jmst.2021.06.073

    32. [32]

      MAGNONE E, SHIN M C, LEE J I, PARK J H. Relationship between hydrogen permeability and the physical-chemical characteristics of metal alloy membranes[J]. J. Membr. Sci., 2023, 674: 121513 doi: 10.1016/j.memsci.2023.121513

    33. [33]

      MENG W X, PANG R, ZHANG D, YUAN J G, LU L, SHANG Y Y, ZHANG Y J, CAO A. Ruthenium-cobalt alloy nanoparticles uniformly dispersed on carbon nanotube films for high-performance electrocatalytic hydrogen evolution[J]. J. Colloid Interface Sci., 2025, 690: 137309 doi: 10.1016/j.jcis.2025.137309

    34. [34]

      LIU Y N, DING Y, YANG L, SUN R L, ZHANG T G, YANG X J. Research and progress of laser cladding on engineering alloys: A review[J]. J. Manuf. Process., 2021, 66: 341-363 doi: 10.1016/j.jmapro.2021.03.061

    35. [35]

      ARYA S, MAHAJAN P, MAHAJAN S, KHOSLA A, DATT R, GUPTA V, YOUNG S J, ORUGANTI S K. Influence of processing parameters to control morphology and optical properties of sol-gel synthesized ZnO nanoparticles[J]. ECS J. Solid State Sci. Technol., 2021, 10(2): 023002 doi: 10.1149/2162-8777/abe095

    36. [36]

      TOMAR B, SHIVA S, NATH T. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances[J]. Mater. Today Commun., 2022, 31: 103739 doi: 10.1016/j.mtcomm.2022.103739

    37. [37]

      BHOJAK V, JAIN J K, SINGHAL T S, SAXENA K K, PRAKASH C, AGRAWAL M K, MALIK V. Friction stir processing and cladding: An innovative surface engineering technique to tailor magnesium-based alloys for biomedical implants[J]. Surf. Rev. Lett., 2025, 32(6): 2340007 doi: 10.1142/S0218625X23400073

    38. [38]

      LI L Q, QIU H F, ZHU Y P, CHEN G, SHE S X, GUO X Y, LI H, LIU T C, ZHOU H M, ZHU Y, YANG M, XU B M, HUANG H T. Atomic ruthenium modification of nickel-cobalt alloy for enhanced alkaline hydrogen evolution[J]. Appl. Catal. B‒Environ., 2023, 331: 122710 doi: 10.1016/j.apcatb.2023.122710

    39. [39]

      CONG Y Y, WANG H B, LIU M L, TIAN J Y. Latest progresses of Ru-based catalysts for alkaline hydrogen oxidation reaction: From mechanism to application[J]. Appl. Catal. A‒Gen., 2024, 676: 119684 doi: 10.1016/j.apcata.2024.119684

    40. [40]

      WANG K, ZHOU T T, HE J, CAO Z, JIANG Z Y. Regulating the atomic ratio of Pt/Ru to enhance CO anti-poisoning of Pt based electrocatalysts toward methanol oxidation reaction[J]. Mol. Catal., 2024, 556: 113927

    41. [41]

      GOU W Y, WANG Y C, ZHANG M K, TAN X H, MA Y Y, QU Y Q. A review on fundamentals for designing stable ruthenium-based catalysts for the hydrogen and oxygen evolution reactions[J]. Chin. J. Catal., 2024, 60: 68-106 doi: 10.1016/S1872-2067(24)60013-6

    42. [42]

      YANG Y J, WU D X, YU Y H, LI J, RAO P, JIA C M, LIU Z X, CHEN Q, HUANG W, LUO J M, SHEN Y J, TIAN X L. Bridge the activity and durability of ruthenium for hydrogen evolution reaction with the RuOC link[J]. Chem. Eng. J., 2022, 433: 134421 doi: 10.1016/j.cej.2021.134421

    43. [43]

      LUO W j, WANG Y j, CHENG C W. Ru-based electrocatalysts for hydrogen evolution reaction: Recent research advances and perspectives[J]. Mater. Today Phys., 2020, 15: 100274 doi: 10.1016/j.mtphys.2020.100274

    44. [44]

      ZHOU B W, WANG J P, GUO L F, LI H D, XIAO W P, XU G R, CHEN D H, LI C X, DU Y M, DING H, ZHANG Y H, WU Z X, WANG L. Microwave‐assisted PtRu alloying on defective tungsten oxide: A pathway to improved hydroxyl dynamics for highly‐efficient hydrogen evolution reaction[J]. Adv. Energy Mater., 2024, 14(48): 2402372 doi: 10.1002/aenm.202402372

    45. [45]

      PANG B B, LIU X K, LIU T Y, CHEN T, SHEN X Y, ZHANG W, WANG S C, LIU T, LIU D, DING T, LIAO Z L, LI Y F, LIANG C H, YAO T. Laser-assisted high-performance PtRu alloy for pH-universal hydrogen evolution[J]. Energy Environ. Sci., 2022, 15(1): 102-108 doi: 10.1039/D1EE02518J

    46. [46]

      YANG Z P, YANG D D, WANG Y, LONG Y, HUANG W C, FAN G Y. Strong electrostatic adsorption-engaged fabrication of sub-3.0 nm PtRu alloy nanoparticles as synergistic electrocatalysts toward hydrogen evolution[J]. Nanoscale, 2021, 13(22): 10044-10050 doi: 10.1039/D1NR00936B

    47. [47]

      CHEN Y J, LI J, WANG N, ZHOU Y N, ZHENG J, CHU W. Plasma-assisted highly dispersed Pt single atoms on Ru nanoclusters electrocatalyst for pH-universal hydrogen evolution[J]. Chem. Eng. J., 2022, 448: 137611 doi: 10.1016/j.cej.2022.137611

    48. [48]

      YAN J J, WU R D, JIN G Q, JIA L T, FENG G, TONG X L. The hybrid Pt nanoclusters/Ru nanowires catalysts accelerating alkaline hydrogen evolution reaction[J]. Adv. Powder Mater., 2024, 3(5): 100214 doi: 10.1016/j.apmate.2024.100214

    49. [49]

      JOO J, JIN H, OH A, KIM B, LEE J, BAIK H, LEE J, BAIK H, JOO S H, LEE K. An IrRu alloy nanocactus on Cu2-xS@IrSy as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes[J]. J. Mater. Chem. A, 2018, 6(33): 16130-16138 doi: 10.1039/C8TA04886J

    50. [50]

      YU Y H, XU H Z, XIONG X Q, CHEN X W, XIAO Y T, WANG H, WU D X, HUA Y J, TIAN X L, LI J. Ultra‐thin RuIr alloy as durable electrocatalyst for seawater hydrogen evolution reaction[J]. Small, 2024, 20(46): 2405784 doi: 10.1002/smll.202405784

    51. [51]

      QIN X P, ZHANG L L, XU G L, ZHU S Q, WANG Q, GU M, ZHANG X Y, SUN C J, BALBUENA P B, AMINE K, SHAO M. The role of Ru in improving the activity of Pd toward hydrogen evolution and oxidation reactions in alkaline solutions[J]. ACS Catal., 2019, 9(10): 9614-9621 doi: 10.1021/acscatal.9b01744

    52. [52]

      ZHAO S M, ZHANG Y K, LI H B, ZENG S Y, LI R, YAO Q X, CHEN H Y, ZHENG Y, QU K G. Regulating Ru active sites by Pd alloying to significantly enhance hydrazine oxidation for energy-saving hydrogen production[J]. J. Mater. Chem. A, 2023, 11(25): 13783-13792 doi: 10.1039/D3TA02238B

    53. [53]

      LIU Y, ZI T Q, HUANG Y, ZHANG S, SYED J A S, GAO L, LI A D. Atomic layer deposition of PdRux alloy nanoparticles for hydrogen evolution reaction electrocatalysis in acidic media[J]. ACS Appl. Nano Mater., 2025, 8(17): 8807-8815 doi: 10.1021/acsanm.5c00794

    54. [54]

      BARMAN B K, SARKAR B, NANDA K N. Pd-coated Ru nanocrystals supported on N-doped graphene as HER and ORR electrocatalysts[J]. Chem. Commun., 2019, 55(92): 13928-13931 doi: 10.1039/C9CC06208D

    55. [55]

      LUO Y Q, LUO X, WU G, LI Z J, WANG G Z, JIANG B, HU Y M, CHAO T T, ZHU J F, WU Y, HONG X, LI Y D. Mesoporous Pd@Ru core-shell nanorods for hydrogen evolution reaction in alkaline solution[J]. ACS Appl. Mater. Interfaces, 2018, 10(40): 34147-34152 doi: 10.1021/acsami.8b09988

    56. [56]

      KWEON Y, NOH S, SHIM J H. Low content Ru-incorporated Pd nanowires for bifunctional electrocatalysis[J]. RSC Adv., 2021, 11(46): 28775-28784 doi: 10.1039/D1RA05577A

    57. [57]

      LEE H J, KIM J, MA A, LEE S, LEE J, PARK H Y, CHO S K. Trimetallic RuAuMo thin-film electrocatalyst synthesized via co-sputtering for proton exchange membrane water electrolysis[J]. J. Electrochem. Sci. Technol., 2024, 16(2): 171-179

    58. [58]

      KWON T, YU A, KIM S J, KIM M H, LEE C, LEE Y. Au-Ru alloy nanofibers as a highly stable and active bifunctional electrocatalyst for acidic water splitting[J]. Appl. Surf. Sci., 2021, 563: 150293 doi: 10.1016/j.apsusc.2021.150293

    59. [59]

      LEE J, OH J, KIM J, PARK H Y, YOO S J, LIM H K, JANG J H, PARK H S, CHO S K. A MoOx-incorporated RuAu composite electrocatalyst for the hydrogen evolution reaction in proton exchange membrane water electrolysis[J]. J. Mater. Chem. A, 2025, 13(25): DOI: 10.1039/d5ta01235j

    60. [60]

      RAKAP M. PVP-stabilized Ru-Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J. Alloy. Compd., 2015, 649: 1025-1030 doi: 10.1016/j.jallcom.2015.07.249

    61. [61]

      DING Z Q, WANG K, MAI Z Q, HE G Q, LIU Z, TANG Z H. RhRu alloyed nanoparticles confined within metal organic frameworks for electrochemical hydrogen evolution at all pH values[J]. Int. J. Hydrog. Energy, 2019, 44(45): 24680-24689 doi: 10.1016/j.ijhydene.2019.07.244

    62. [62]

      LI Y, GUO Y, YANG S F, LI Q B, CHEN S, LU B Y, ZOU H B, LIU X C, TONG X L, YANG H Q. Mesoporous RhRu nanosponges with enhanced water dissociation toward efficient alkaline hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2021, 13(4): 5052-5060 doi: 10.1021/acsami.0c19571

    63. [63]

      HU T P, ZHANG D S, HE N N, WEI S X, KANG X Y, ZHANG W, CAI Y Y, YE Y X, LI P F, LIANG C H. Laser ultrafast confined alloying of sub‐5 nm RuM (M=Cu, Rh, and Pd) particles on carbon nanotubes for hydrogen evolution reaction[J]. Adv. Sci., 2025, 12(19): 2415065 doi: 10.1002/advs.202415065

    64. [64]

      CAO Y X, YU X M, WANG T F, LI J H, LI N, GE A B, YING J, YU T W. Zeolite‐templated carbons supported Rh and Ru electrocatalysts for highly active hydrogen evolution reaction[J]. Chem‒Asian J., 2024, 19(14): e202400342

    65. [65]

      NIWA S I, MIZUKAMI F, ISOYAMA S, TSUCHIYA T, SHIMIZU K, IMAI S, IMAMURA J. Partial hydrogenation of benzene with ruthenium catalysts prepared by a chemical mixing procedure: Preparation and properties of the catalysts[J]. J. Chem. Technol. Biotechnol., 1986, 36(5): 236-246 doi: 10.1002/jctb.280360506

    66. [66]

      LIU Y, SHI H, DAI T Y, ZENG S P, HAN G F, WANG T H, WEN Z, LANG X Y, JIANG Q. In situ engineering multifunctional active sites of ruthenium-nickel alloys for pH-universal ampere-level current-density hydrogen evolution[J]. Small, 2024, 20(34): 2311509 doi: 10.1002/smll.202311509

    67. [67]

      CHEN K, LIU Z Y, ZHU S Y, LIU Y, LIU Y, WANG L R, XIA T Y, ZHAO Z L, GAO H, CHENG S B, GUO H Z. Ruthenium-nickel nanoparticles with unconventional face‐centered cubic crystal phase for highly active electrocatalytic hydrogen evolution[J]. Adv. Funct. Mater., 2024, 34(44): 2406259 doi: 10.1002/adfm.202406259

    68. [68]

      CHEN P, CHEN D W, CHEN J, HU T, LIN J W, XU L. Polysaccharide derived Ru/Ni HER catalysts for long-run anion exchange membrane water electrolysis[J]. Int. J. Hydrog. Energy, 2024, 96: 210-216 doi: 10.1016/j.ijhydene.2024.11.336

    69. [69]

      JIAO P G, CHEN S, WU W L, LI Z W, XU P, GOMAA H, AN C H, QIN C L, DENG Q B, HU N. Atomically dispersed Ni on nitrogen-doped carbon substrate enhances basic HER performance of Ru clusters[J]. ChemistrySelect, 2024, 9(25): e202400490 doi: 10.1002/slct.202400490

    70. [70]

      WANG R N, CHEN Q, LIU X Z, HU Y B, CAO L X, DONG B H. Synergistic effects of dual-doping with Ni and Ru in monolayer VS2 nanosheet: Unleashing enhanced performance for acidic HER through defects and strain[J]. Small, 2024, 20(30): 2311217 doi: 10.1002/smll.202311217

    71. [71]

      HUANG T T, XIAO J, LIU X Y, HE J S, JIANG J H, XU G C, ZHANG L. Engineering Ru and Ni sites relay catalysis and strong metal-support interaction for synergetic enhanced electrocatalytic hydrogen evolution performance[J]. Chem. Eng. J., 2025, 509: 161348 doi: 10.1016/j.cej.2025.161348

    72. [72]

      KUTYŁA D, PAJIĆ M N K, LAČNJEVAC U Č, MARZEC M M, ELEZOVIĆ N R, ŻABIŃSKI P. Ru-Co alloy coatings electrodeposited on a MAX phase substrate as efficient catalysts for the hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2024, 56: 28-40 doi: 10.1016/j.ijhydene.2023.11.296

    73. [73]

      LIU H, JIANG Y, MAO Y N, JIANG Y, SHEN W, LI M, HE R X. The role of various components in Ru-NiCo alloys in boosting the performance of overall water splitting[J]. J. Colloid Interface Sci., 2023, 633: 189-198 doi: 10.1016/j.jcis.2022.11.091

    74. [74]

      ZOU Q, ZHU Y J, ZHANG R, GUAN J B, WANG L N, GUO B C, ZHANG M. Construction of Ru-doped Co nanoparticles loaded on carbon nanosheets in-situ grown on carbon nanofibers as self-supported catalysts for efficient hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2024, 85: 758-765 doi: 10.1016/j.ijhydene.2024.08.394

    75. [75]

      LI M Y, HUO H S, CHEN W Q, HOU H W, YU Y Y, QIAN G F, MIN D Y. Regulating lattice tensile strain of Ru-Co bimetallic nanoparticles on carbonized wood for boosting its hydrogen evolution reaction[J]. Fuel, 2024, 368: 131644 doi: 10.1016/j.fuel.2024.131644

    76. [76]

      李英杰, 王鑫, 周昱成. NiFe水滑石纳米片阵列负载Ru用于提升碱性电催化析氢和析氧性能[J]. 无机化学学报, 2023, 39(10): 1905-1913.LI Y J, WANG X, ZHOU Y C. NiFe hydrotalcite nanosheet array loaded with Ru for enhancing alkaline electrocatalytic hydrogen and oxygen evolution performance[J]. Chinese J. Inorg. Chem., 2023, 39(10): 1905-1913

    77. [77]

      YANG H B, MA D W, LI Y, ZHAO Q H, PAN F, ZHENG S S, LOU Z. Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading[J]. Chin. J. Struct. Chem., 2023, 42(11): 100031

    78. [78]

      CHEN Z G, ZENG H Y, ZHANG C Y, CAI H, JIANG Y P, HU J Y, WANG H Y, WNAG J, CUI Y. Ru-Mo solid-solution catalyst for hydrogen evolution in alkaline electrolyte[J]. Nano Res., 2025, 18(5): 94907346 doi: 10.26599/NR.2025.94907346

    79. [79]

      CECHANAVICIUTE I A, ANTONY R P, BANKO L, QUAST T, POKHAREL S, LUDWLG A, KRYSIAK O A, SCHUHMANN W. Discovery of highly active noble-metal-lean Mo-Ru electrocatalysts for hydrogen evolution[J]. ChemElectroChem, 2025, 12(5): e202400631 doi: 10.1002/celc.202400631

    80. [80]

      KANG Y, HAN Y J, CHEN H D, BORRMANN, H, ADLER P, POHL D, HANTUSCH M, KöNIG M, HE Y K, MA Y F, WANG X D, FELSER C. Ruthenium-alloyed iron phosphide single crystal with increased fermi level for efficient hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2022, 14(50): 55587-55593 doi: 10.1021/acsami.2c16419

    81. [81]

      WANG X Q, CAO Y Y, ZHOU L N, YU Z, YE R R, LI D, GUO B A, LIU X X, ZHOU L J, ZHAO Z. Spherical Ru/FeOx composite as a bifunctional electrocatalyst for overall water splitting in neutral media[J]. J. Alloy. Compd., 2025, 1010: 177417

    82. [82]

      LIN X L, LIU J L, QIU X Q, LIU B W, WANG X F, CHEN LH, QIN Y L. Ru-FeNi alloy heterojunctions on lignin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting[J]. Angew. Chem. ‒Int. Edit., 2023, 135(33): e202306333 doi: 10.1002/ange.202306333

    83. [83]

      ZHANG J Y, YANG M Y, HUANG T, SUN J W, HU W Y, LI Y Y, YANG F Y, OUYANG M. Efficient synthesis strategy and synergistic effect of Ni-Fe-Ru electrode for boosting alkaline water electrolysis[J]. Chem. Eng. J., 2024, 493: 152547 doi: 10.1016/j.cej.2024.152547

    84. [84]

      ZHAO J K, PAN T, SUN J K, GAO H T, GUO J X. Cu-Ru nanoalloys on carbon black for efficient production of hydrogen in neutral and alkaline conditions[J]. Mater. Lett., 2020, 262: 127041 doi: 10.1016/j.matlet.2019.127041

    85. [85]

      WU Q L, LUO M, HAN J H, PENG W, ZHAO Y, CHEN D H, PENG M, LIU J, GROOT F M F, TAN Y W. Identifying electrocatalytic sites of the nanoporous copper-ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte[J]. ACS Energy Lett., 2019, 5(1): 192-199

    86. [86]

      ZHAO H, LIU M Y, WANG Q S, LI Y Z, CHEN Y B, ZHU Y P, YUE Z Y, LI j, WANG G L, ZOU Z Q, CHENG Q Q, YANG H. Strong transboundary electron transfer of high-entropy quantum-dots driving rapid hydrogen evolution kinetics[J]. Energy Environ. Sci., 2024, 17(18): 6594-6605 doi: 10.1039/D4EE01825G

    87. [87]

      JIN Y, FAN X, LI Q M, GUO M R, BAI J D, LIN H P, PI Y C, CAO S, HOU C C, BAI S X. Self‐reconstruction of high entropy alloys for efficient alkaline hydrogen evolution[J]. Small, 2025: 2408165

    88. [88]

      ZHAO G, LU K, LI Y N, LU F G, GAO P, NAN B, CHEN L N, ZHANG Y X, XU P T, LIU X, CHEN L W. An efficient and stable high-entropy alloy electrocatalyst for hydrogen evolution reaction[J]. Chin. J. Catal., 2024, 62: 156-165 doi: 10.1016/S1872-2067(24)60067-7

    89. [89]

      JIANG X, ZHAO D, WANG Q S, ZHANG L, WEN M, ZHANG K H, CUI T, PEI W L. Ruthenium-mediated synthesis of ultrafine FePtCoNiRu high-entropy alloy nanoparticles for enhanced hydrogen evolution catalysis[J]. J. Alloy. Compd., 2025: 180933

    90. [90]

      WANG P, ZHENG J, LI X H, CUI W B, LIU J H, WAN Y, ZAHNG J, YAMAUCHI Y, WANG Z L, NIU M, LONG Y Z. Carbon nanofiber catalysts containing high-entropy metal phosphides with low-content Ru for highly efficient hydrogen evolution reaction[J]. Rare Metals, 2025, 44(1): 324-335 doi: 10.1007/s12598-024-02912-5

    91. [91]

      ZOU Y Z, ZHAO H, ZHANG W D, GONG Q N, LIU J Y, YANG X P, WANG J, YAN X D. High entropy alloy supported ruthenium single-atoms for enhanced electrochemical hydrogen evolution reaction[J]. Chem. Eng. J., 2025: 164784

    92. [92]

      LUO M, CAI J Y, ZOU J S, JIANG Z, WANG G M, KANG X W. Promoted alkaline hydrogen evolution by an N-doped Pt-Ru single atom alloy[J]. J. Mater. Chem. A, 2021, 9(26): 14941-14947 doi: 10.1039/D1TA03593B

    93. [93]

      YU J, DAI Y W, WU X H, ZHANG Z B, HE Q J, CHENG C, WU Z, SHAO Z P, NI M. Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts[J]. Chem. Eng. J., 2021, 417: 128105 doi: 10.1016/j.cej.2020.128105

    94. [94]

      CHEN C H, WU D Y, LI Z, ZHANG R, KUAI C G, ZHAO X R, DONG C K, QIAO S Z, LIU H, DU X W. Ruthenium‐based single‐ atom alloy with high electrocatalytic activity for hydrogen evolution[J]. Adv. Energy Mater., 2019, 9(20): 1803913 doi: 10.1002/aenm.201803913

    95. [95]

      NI L W, ZHANG Z, ZHAO Z, LI H. Hierarchical macro-mesoporous electrocatalysts with dual-active sites of Ru single atoms and monodispersed Ru-Mo nanoclusters for efficient hydrogen evolution[J]. Mater. Today Chem., 2022, 26: 101046 doi: 10.1016/j.mtchem.2022.101046

    96. [96]

      CHEN H, AI X, LIU W, XIE Z B, FENG W Q, CHEN W, ZOU X X. Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt-like electrocatalytic activity[J]. Angew. Chem. ‒Int. Edit., 2019, 131(33): 11531-11535 doi: 10.1002/ange.201906394

    97. [97]

      ZOU X, WANG L N, AI X, CHEN H, ZOU X X. Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium-boron intermetallics[J]. Chem. Commun., 2020, 56(20): 3061-3064 doi: 10.1039/D0CC00070A

    98. [98]

      CAI W Z, ZHOU C, HU X M, JIAO T W, LIU Y J, LI L, LI J, KITANO M, HOSONO H, WU J Z. Quasi-two-dimensional intermetallic electride cerusi for efficient alkaline hydrogen evolution[J]. ACS Catal., 2023, 13(7): 4752-4759 doi: 10.1021/acscatal.2c06382

    99. [99]

      ZHANG W, XU G R, SUN T T, LI J Y, MIAO Y, WU Z X, ZHANG Y, WANG L. Electron‐rich Ru atoms in loaded Ru4Fe intermetallic compounds/C modulate the kinetics of neutral hydrogen evolution[J]. Adv. Funct. Mater., 2025, 35(34): 2501508 doi: 10.1002/adfm.202501508

    100. [100]

      ZHANG P, XU S Y, LI H, CUI C L, HUANG S Y, LI Z Y, SONG H J, MAO L R, CHUNG C H, PARK H S, LEE J Y, KIM J M, YOO P J. Multi-metal synergistic integration for electronic structure regulation in schreibersite-type Mo2Fe0.8Ru0.2P electrocatalysts: Exceptional enhancement of activity and stability for alkaline hydrogen evolution reaction[J]. J. Energy Chem., 2025, 108: 665-674 doi: 10.1016/j.jechem.2025.04.020

    101. [101]

      YANG C, AN L L, MI Z S, WANG G Z, ZHANG C H, KONG W J, YANG J H, XIAO L, ZHUANG L, WANG D. Unconventional-phase engineering of RuGa intermetallics for boosting alkaline hydrogen-electrode reactions[J]. J. Mater. Chem. A, 2025, 13(10): 7158-7167 doi: 10.1039/D4TA08846H

    102. [102]

      CAI C, LIU K, ZHU Y M, LI P C, WANG Q, LIU B, CHEN S Y, LI H J W, ZHU L, LI H M, FU J W, CHEN Y, PENSA E, HU J H, LU Y R, CHAN T S, CORTéS E, LIU M. Optimizing hydrogen binding on Ru sites with RuCo alloy nanosheets for efficient alkaline hydrogen evolution[J]. Angew. Chem. ‒Int. Edit., 2022, 61(4): e202113664 doi: 10.1002/anie.202113664

    103. [103]

      QIU X L, MA G R, GAO S S, LANG X K, MENG X M, CHEN F S, SONG X M. RuCo alloy-loaded starch-based carbon aerogel: A self-supported electrocatalyst for efficient hydrogen evolution in alkaline saline water[J]. J. Electroanal. Chem., 2025, 984: 119073 doi: 10.1016/j.jelechem.2025.119073

    104. [104]

      KIM T, JUNG H, CHOI H, LEE W, PATIL U M, PARALE V G, KIM Y, KIM J, KIM S H, PARK H H. Partially oxidized inter-doped RuNi alloy aerogel for the hydrogen evolution reaction in both alkaline and acidic media[J]. Mater. Horiz., 2024, 11(17): 4123-4132 doi: 10.1039/D4MH00242C

    105. [105]

      CUI Z, DUAN S Q, YAO S S, PAN T, DAI D M, GAO H T. Investigation of the electrocatalytic activity of CuRu alloy and its mechanism for hydrogen evolution reaction[J]. ChemElectroChem, 2021, 8(4): 705-711 doi: 10.1002/celc.202100044

    106. [106]

      WANG C H, ZHANG J, MIAO K H, LONG M R, LAI S Y, ZHAO S Y, KANG X W. Octahedral nanocrystals of Ru‐doped PtFeNiCuW/CNTs high-entropy alloy: High performance toward pH‐universal hydrogen evolution reaction[J]. Adv. Mater., 2024, 36(33): 2400433 doi: 10.1002/adma.202400433

    107. [107]

      WANG D, LIU W, WANG H N, LU S F, LI Y Q, GUO S J, XIANG Y. Dual modulation of hydroxyl action on ruthenium surface by single-atom supports for alkaline H2 evolution[J]. Adv. Funct. Mater., 2025, 35(13): 2417976 doi: 10.1002/adfm.202417976

    108. [108]

      WANG S H, QIN J N, ZHANG Y, CHEN S, YAN W J, ZHOU H Q, FAN X J. Mo single atoms modified Ru nanoparticles assemblies for hydrogen evolution reaction in seawater electrocatalysis[J]. Catalysts, 2025, 15: 475 doi: 10.3390/catal15050475

    109. [109]

      AL-ODAIL F. High-throughput synthesis and screening of binary alloys for hydrogen evolution and oxidation reactions[D]. Southampton: University of Southampton, 2010.

    110. [110]

      CAPOZZOLI L, CAPRÌ A, BAGLIO V, BERRETTI E, EVANGELISTI C, FILIPPI J, GATTO I, LAVACCHI A, PAGLIARO M, VIZZA F. Ruthenium-loaded titania nanotube arrays as catalysts for the hydrogen evolution reaction in alkaline membrane electrolysis[J]. J. Power Sources, 2023, 562: 232747 doi: 10.1016/j.jpowsour.2023.232747

    111. [111]

      LIAN W, CHEN F, WU J, MO H Y, ZHU Q Y, ZHANG X, SONG S X, JIA F. Electronic structure engineering of RuNi alloys decrypts hydrogen and hydroxyl active site separation and enhancement for efficient alkaline hydrogen evolution[J]. Small, 2025, 21(7): 2406209 doi: 10.1002/smll.202406209

    112. [112]

      KUTYłA D, KOŁCZYK-SIEDLECKA K, KWIECIŃSKA A, SKIBIŃSKA K, KOWALIK R, ŻABIńSKI P. Preparation and characterization of electrodeposited Ni-Ru alloys: Morphological and catalytic study[J]. J. Solid State Electrochem., 2019, 23: 3089-3097 doi: 10.1007/s10008-019-04374-7

    113. [113]

      PANG Q Q, BAI X, DU X, ZHANG S, LIU Z Y, YUE X Z. Facet modulation of nickel-ruthenium nanocrystals for efficient electrocatalytic hydrogen evolution[J]. J. Colloid Interface Sci., 2023, 633: 275-283 doi: 10.1016/j.jcis.2022.11.082

    114. [114]

      HUANG J L, DU C C, DAI Q, ZHANG X H, TANG J, WANG B, ZHOU H H, SHEN Q H, CHEN J H. Facile and rapid synthesis of ultrafine RuPd alloy anchored in N-doped porous carbon for superior HER electrocatalysis in both alkaline and acidic media[J]. J. Alloy. Compd., 2022, 917: 165447 doi: 10.1016/j.jallcom.2022.165447

    115. [115]

      ZHANG L N, LANG Z L, WANG Y H, TAN H Q, ZANG H Y, KANG Z H, LI Y G. Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis[J]. Energy Environ. Sci., 2019, 12(8): 2569-2580 doi: 10.1039/C9EE01647C

    116. [116]

      ZHAO X L, WU G, ZHENG X S, JIANG P, YI J D, ZHOU H, GAO X P, YU Z Q, WU Y. A double atomic-tuned RuBi SAA/Bi@OG nanostructure with optimum charge redistribution for efficient hydrogen evolution[J]. Angew. Chem. ‒Int. Edit., 2023, 62(12): e202300879 doi: 10.1002/anie.202300879

    117. [117]

      MENG T, CHEN Y T, XING Z C, YANG X R. Tuning phase structure of nickel-ruthenium alloys via MOFs in situ hydrolysis toward enhanced hydrogen evolution performance in alkaline[J]. Small Methods, 2022, 6(2): 2101188 doi: 10.1002/smtd.202101188

    118. [118]

      LIN T Z, XU R X, BO T T, HU Y G, LIU Y Y, ZHOU W. Improved HER activity of Ru nanoparticles decorated MoS2 with S defect[J]. Appl. Surf. Sci., 2024, 671: 160704 doi: 10.1016/j.apsusc.2024.160704

    119. [119]

      ZHOU X, MUKOYOSHI M, KUSADA K, YAMAMOTO T, TORIYAMA T, MURAKAMI Y, KAWAGUCHI S, KUBOTA Y, SEO O, SAKATA O, INA T, KITAGAWA H. First synthesis of RuSn solid-solution alloy nanoparticles and their enhanced hydrogen evolution reaction activity[J]. Chem. Sci., 2024, 15(20): 7560-7567 doi: 10.1039/D3SC06786F

    120. [120]

      WANG H Z, YANG P F, SUN X Y, XIAO W P, WANG X P, TIAN M G, XU G R, LI Z J, ZHANG Y B, LIU F S, WANG L, WU Z X. Co-Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction[J]. J. Energy Chem., 2023, 87: 286-294 doi: 10.1016/j.jechem.2023.08.039

    121. [121]

      LIU Q, ZHANG C T, WANG P Y, CHEN D, XIAO M J, CHEN L, LIU S L, YU J, MU S. Nearly hollow Ru-Cu-MoO2 octahedrons consisting of clusters and nanocrystals for high efficiency hydrogen evolution reaction[J]. J. Mater. Chem. A, 2022, 10(23): 12341-12349 doi: 10.1039/D2TA01699K

    122. [122]

      JIANG X, WANG Y F, DING J Q, WANG C K, TANG Y W, CAO Y N, WANG W C, FU G T. Epitaxial growth of PdH@Ru hollow nanobamboos for efficient hydrogen evolution in anion exchange membrane electrolyzer[J]. Adv. Funct. Mater., 2025, 35(5): 2414593 doi: 10.1002/adfm.202414593

    123. [123]

      HAO J C, ZHUANG Z C, CAO K C, GAO G H, WANG C, LAI F L, LU S L, MA P M, DONG W F, LIU T X, DU M L, ZHU H. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts[J]. Nat. Commun., 2022, 13(1): 2662 doi: 10.1038/s41467-022-30379-4

    124. [124]

      HUANG R Q, LIAO W P, YAN M X, LIU S, LI Y M, KANG X W. P-doped Ru-Pt alloy catalyst toward high performance alkaline hydrogen evolution reaction[J]. J. Electrochem., 2023, 29(5): 2203081

    125. [125]

      FANG M M, JI Y J, GENG S Z, SU J Q, LI Y Y, SHAO Q, LU J M. Metastable metal-alloy interface in RuNi nanoplates boosts highly efficient hydrogen electrocatalysis[J]. ACS Appl. Nano Mater., 2022, 5(12): 17496-17502 doi: 10.1021/acsanm.2c04789

    126. [126]

      LI L Q. Design of efficient ruthenium-based catalysts and study on their catalytic mechanism towards water splitting[D]. Hong Kong: The Hong Kong Polytechnic University, 2024.

    127. [127]

      XU S Y, ZHANG P, LI Z Y, CHUNG C H, MOON M W, KIM J M, YOO P J. Alloyed Ru0.48Re0.52 nanocatalysts with electronic structure regulation for intensified alkaline hydrogen evolution reaction[J]. Appl. Surf. Sci., 2023, 638: 157971 doi: 10.1016/j.apsusc.2023.157971

    128. [128]

      XU X M, YU T. Platinum-iridium-ruthenium trimetallic alloy nanoparticles as catalysts for oxygen and hydrogen evolution[J]. ACS Appl. Nano Mater., 2025, 8(8): 3899-3904 doi: 10.1021/acsanm.4c06609

    129. [129]

      CHEN G Z, DESINAN S, ROSEI R, ROSEI F, MA D L. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane[J]. Chem. ‒Eur. J., 2012, 18(25): 7925-7930 doi: 10.1002/chem.201200292

    130. [130]

      KANG J, KWON T, SHIN S, OH H, LEE Y, KIM M H. Bimetallic cobalt-rich Co0.63Ru0.37 nanoalloys encapsulated in carbon nanofibers expediting oxygen evolution reaction under acidic solution[J]. J. Alloy. Compd., 2023, 965: 171318 doi: 10.1016/j.jallcom.2023.171318

    131. [131]

      WANG Y Q, LI F, ZHAO L Y, WANG Y C, YANG G, TIAN J Y, HENG S B, SUN X W, ZHAO J X, CHEN M H, CHEN Q G. Strategies for industrial-grade seawater electrolysis: From electrocatalysts and device design to techno-economic analysis[J]. Nanoscale, 2025, 17(18): 11101-11132 doi: 10.1039/D4NR05520A

    132. [132]

      LEE S W, LEE B, BAIK C, KIM T Y, PAK C. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells[J]. J. Mater. Sci. Technol., 2021, 60: 105-112 doi: 10.1016/j.jmst.2020.05.020

    133. [133]

      ZHANG S, RUI Y, ZHANG X, SA R J, ZHOU F, WANG R H, LI X J. Ultrafine cobalt-ruthenium alloy nanoparticles induced by confinement effect for upgrading hydrogen evolution reaction in all-pH range[J]. Chem. Eng. J., 2021, 417: 128047 doi: 10.1016/j.cej.2020.128047

    134. [134]

      ZHANG R, ZHU Y J, GUAN J B, ZOU Q, GENG M M, GUO B C, WANG L N, ZHANG M. N-doped hollow nanofibers loaded with RuCoNi ternary alloy as an efficient catalyst for hydrogen evolution reaction[J]. J. Alloy. Compd., 2024, 1003: 175352

    135. [135]

      PARK B H, CHA M, KIM S, KIM T, JOO S W, JUNG O S, KANG M. Synergistic Ru-Ni-Cu interface for stable hydrogen evolution on 1% Ru-Ni@Cu alloy grown directly on carbon paper electrode[J]. J. Alloy. Compd., 2022, 913: 165315 doi: 10.1016/j.jallcom.2022.165315

    136. [136]

      TANG W, ZHANG L, HUANG H, LUO Y, DONG C, ZHOU D, LI A, DONG W, WANG G, HE Y. RuCo clusters stabilized by Co single atoms: Alloying effect and small size effect facilitate hydrogen electrocatalysis kinetics[J]. Mater. Today Chem., 2023, 33: 101666 doi: 10.1016/j.mtchem.2023.101666

    137. [137]

      HUANG M J, YANG H Y, XIA X, PENG C. Highly active and robust Ir-Ru electrocatalyst for alkaline HER/HOR: Combined electronic and oxophilic effect[J]. Appl. Catal. B‒Environ., 2024, 358: 124422 doi: 10.1016/j.apcatb.2024.124422

  • 图 1  (a) PtRu/mCNT催化剂的制备示意图; (b) 在10 mA·cm-2下PtRu/mCNT与其他HER电催化剂的过电位比较; (c) PtRu/mCNT(红色)与Pt/C(黑色)在不同pH电解液中经过3 000次循环前后的耐久性测试[45]

    Figure 1  (a) Schematic illustration of the manufacture of the PtRu/mCNT catalyst; (b) Overpotential comparison of PtRu/mCNT and other HER electrocatalysts; (c) Durability testing of PtRu/mCNT (red) and Pt/C (black) in solutions with different pH values before and after 3 000 cycles[45]

    图 2  fcc-RuNi、f/h-RuNi、Pt/C和Ru/C的电催化HER性能: (a) 极化曲线; (b) Tafel曲线; (c) 过电位和Tafel斜率对比; (d) 在30 mV的过电位下的电流密度对比; (e) 周转频率(TOF); (f) TOF和质量活性对比; (g) fcc-RuNi的CV耐久性测试; (h) fcc-RuNi纳米颗粒与近期报道的钌基HER催化剂在10 mA·cm-2下的过电位对比[67]

    Figure 2  Electrocatalytic HER performance of fcc-RuNi, f/h-RuNi, Pt/C, and Ru/C: (a) polarization curves; (b) Tafel curves; (c) comparison of overpotential and Tafel slope; (d) comparison of current density at 30 mV of overpotential; (e) turnover frequency (TOF); (f) comparison of TOF and mass activity; (g) CV durability test of fcc-RuNi; (h) comparison of overpotential between fcc-RuNi nanoparticles and recently reported ruthenium-based HER catalysts at 10 mA·cm-2 [67]

    Inset: comparison of overpotential before and after 5 000 cycles.

    图 3  RuCo@Ti2AlC的合成过程、形貌表征及性能[72]

    Figure 3  Synthesis process, morphology characterization, and performance of RuCo@Ti2AlC[72]

    图 4  (a) HER路径机制; (b) 三种单晶相应的能量壁垒; (c) 费米能级对HER过程中Volmer电子转移过程的影响; (d) Ru-Fe2P的(211)晶面反应路径的活性位点[80]

    Figure 4  (a) HER path mechanisms; (b) Corresponding energy barriers for the three single crystals; (c) Influence of the Fermi level energyon electron transfer Volmer process during HER; (d) Active sites of reaction paths for the (211) plane of Ru-Fe2P[80]

    In panel d: the brown, purple, gray, red, and white balls represent the Fe, P, Ru, O, and H atoms, respectively.

    图 5  HEA-QDs/C及系列催化剂的HER性能: (a) 极化曲线; (b) Tafel斜率及对应的交换电流密度; (c) 过电位和Tafel斜率对比; (d) 不同过电位下的归一化质量活性(MA)和比活性(SA); (e) 加速耐久性测试(ADT); (f) 时间-电流响应曲线; (g) CV曲线; (h) 阿伦尼乌斯曲线; (i) 295~335 K温度范围内平衡电位下的艾林曲线[86]

    Figure 5  Performance of HEA-QDs toward the HER: (a) polarization curves; (b) Tafel slope and corresponding exchange current density; (c) comparison of the overpotential and the Tafel slope; (d) normalized mass activity (MA) and specific activity (SA) at different overpotentials; (e) accelerated durability testing (ADT); (f) current-time response curves; (g) CV curves; (h) Arrhenius plots; (i) Eyring plots at the equilibrium potential in the temperature range of 295-335 K[86]

    Inset in panel a: TEM image of HEA-QDs/C; Inset in panel f: the testing device.

    图 6  钌单原子合金及系列催化剂的HER性能: (a) 线性扫描极化曲线; (b) Tafel斜率[92]

    Figure 6  HER properties of ruthenium monoatomic alloys and series catalysts: (a) linear sweep polarization curves; (b) Tafel slopes[92]

    图 7  (a) RuSi、Ru、Pt和Si在0.5 mol·L-1 H2SO4溶液中的极化曲线; (b) RuSi、Ru和Pt在0.5 mol·L-1 H2SO4溶液中的ECSA及在0.1 mA·cm-2下所需的过电位; (c) RuSi、Ru和Pt的HER Tafel曲线; (d) RuSi(110)表面HER Tafel步骤的自由能图[96]

    Figure 7  (a) Polarization curves of RuSi, Ru, Pt, and Si in 0.5  mol·L-1 H2SO4 solution; (b) ECSA of RuSi, Ru, and Pt in 0.5 mol·L-1 H2SO4 solution and the required overpotential at 0.1 mA·cm-2; (c) Tafel plots for HER over RuSi, Ru, and Pt; (d) Free energy diagrams of Tafel step of HER on the RuSi(110) surface[96]

    Inset: the optimized adsorption structures for the initial state, the transition state, and the final state from left to right.

    图 8  (a) RuSn固溶体合金纳米颗粒的合成示意图; 系列催化剂的(b) 极化曲线、(c) 过电位和(d) 稳态Tafel斜率[119]

    Figure 8  (a) Schematic diagram of the synthesis of RuSn solid solution alloy nanoparticles; (b) Polarization curves, (c) overpotentials, and (d) steady state Tafel slopes of series catalysts[119]

    图 9  PdH@Ru纳米竹的表征与HER性能: (a) TEM图像; (b) HAADF-STEM图像及相关EDX结果; (c) HER性能对比[122]

    Figure 9  Characterization and HER properties of PdH@Ru nano bamboo: (a) TEM image; (b) HAADF-STEM images and related EDX mapping results; (c) comparison of HER performance[122]

    图 10  (a) FeCoNiMnRu NP催化位点在水分子解离四个阶段的原子构型变化; (b) FeCoNiMnRu HEA NP表面不同催化位点的水分子解离反应能垒图; (c) FeCoNiMnRu HEA NP表面不同催化位点的ΔGH*变化曲线[123]

    Figure 10  (a) Atomic configurations on catalytic sites of FeCoNiMnRu HEA at the four stages during H2O dissociation; (b) Reaction energy profile for water dissociation on various catalytic sites of the FeCoNiMnRu HEA NP surface; (c) ΔGH* change profiles on various catalytic sites of the FeCoNiMnRu HEA NP surface[123]

    图 11  (a) Pt/C和Ru0.48Re0.52NPs@rGO的计时电流曲线; (b) Ru0.48Re0.52NPs@rGO循环后的极化曲线[127]

    Figure 11  (a) Chronoamperometric plots of Pt/C and Ru0.48Re0.52NPs@rGO in 1 mol·L-1 KOH; (b) Polarization curves of Ru0.48Re0.52NPs@rGO after cycling[127]

    图 12  部分催化剂及其过电位数据的比较[45, 67, 85, 86, 92, 97, 101, 119, 121, 124, 127]

    Figure 12  Comparison of partial catalysts and their overpotential data[45, 67, 85, 86, 92, 97, 101, 119, 121, 124, 127]

    图 13  1% Ru-Ni@CuCP电极在第100和3 000次的线性扫描伏安法循环后的(a) XRD图和(b) SEM图像[135]

    Figure 13  (a) XRD patterns and (b) SEM images of the 1% Ru-Ni@CuCP electrode after the 100 and 3 000 linear sweep voltammetry cycles[135]

    表 1  钌合金催化剂的常见性能参数

    Table 1.  Common performance parameters of ruthenium alloy catalysts

    Parameter Ruthenium-precious metal alloy Ruthenium-non precious metal alloy
    Activity (TOF / h-1) High (103-104) High (102-103)
    Selectivity / % > 95 70-90
    Stability Excellent Moderate
    Cost Extremely high Extremely low
    Anti moderate toxicity Strong Weak
    Industrial restrictions Extremely scarce resources Lack of stability
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  15
  • HTML全文浏览量:  5
文章相关
  • 发布日期:  2026-01-10
  • 收稿日期:  2025-06-06
  • 修回日期:  2025-11-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章