Citation: Shuhao FENG, Feibing XIONG, Yaqing LIN, Han SU, Xu HAN. Preparation and luminescent properties of alkaline metal doped Cd3Al2Ge3O12: Pr3+ orange phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 284-296. doi: 10.11862/CJIC.20250171 shu

Preparation and luminescent properties of alkaline metal doped Cd3Al2Ge3O12: Pr3+ orange phosphors

  • Corresponding author: Feibing XIONG, fbxiong@xmut.edu.cn
  • Received Date: 24 May 2025
    Revised Date: 3 January 2026

Figures(20)

  • A series of Pr3+-doped Cd3Al2Ge3O12 orange phosphors was successfully synthesized using a high- temperature solid-state method, and alkali metal ions (Li+, Na+, K+) for charge compensation. Characterization methods, such as X-ray diffraction (XRD) and fluorescence spectroscopy, were used to study the crystal structure, luminescence properties, and thermal stability of the samples, respectively. The results showed that the doping of Pr3+ did not alter the crystal structure of the matrix, and co-doping with alkali metals did not cause phase heterogeneity. Under 450 nm excitation, the main peak of the emission spectrum was located at 613 nm; from the fluorescence emission spectra of Cd3-xAl2Ge3O12: xPr3+ (x=0.01-0.09) with different doping concentrations, it was found that the optimal doping concentration of Pr3+ was 0.03. The strategy of co-doping with alkali metal ions effectively improves the luminescent performance of the materials. Among them, the fluorescence intensity and lifetime of the Li+, Na+, and K+ co-doped phosphor series were significantly enhanced, surpassing the undoped samples. The enhancement effect of different alkali metal ion dopings follows the order of Li+, Na+, and K+, with the Li+ co-doped sample exhibiting the best luminescence intensity, which was 1.58 times that of the undoped system. Additionally, the thermal stability after charge compensation was investigated at 393 K, where the luminous intensity of the Li-compensated Cd2.94Al2Ge3O12: 0.03Pr3+, 0.03Li+ sample was 72.70% of that at 293 K. The CIE color coordinates confirmed that the emission of this phosphor was located in the orange region. Furthermore, the optimal sample was used to fabricate a white light-emitting diode, with CIE color coordinates of (0.368 2, 0.300 1), which lies within the white light circle.
  • 加载中
    1. [1]

      DU J, CLERCQ D Q O, POELMAN D. Temperature dependent persistent luminescence: Evaluating the optimum working temperature[J]. Sci. Rep., 2019, 9(1): 1-11  doi: 10.1038/s41598-018-37186-2

    2. [2]

      LIU C B, CHE G B, XU Z L, WANG Q W. Luminescence properties of a Tb3+ activated long-afterglow phosphor[J]. J. Alloy. Compd., 2008, 474(1): 250-253

    3. [3]

      LI X S, ZHAO L T. UV or blue light excited red persistent perovskite phosphor with millisecond lifetime for use in AC-LEDs[J]. Luminescence, 2020, 35(1): 138-143  doi: 10.1002/bio.3706

    4. [4]

      JONG S K, PYUNG E J, YUN H P, JUN C C, HONG L P, GWANG C K. White-light generation through ultraviolet-emitting diode and white-emitting phosphor[J]. Appl. Phys. Lett., 2004, 85(17): 3696  doi: 10.1063/1.1808501

    5. [5]

      JANG H S, BIN I W, LEE D C. Enhancement of red spectral emission intensity of Y3Al5O12: Ce³⁺ phosphor via Pr co-doping and Tb substitution for the application to white LEDs[J]. J. Lumines., 2007, 126(2): 371-377  doi: 10.1016/j.jlumin.2006.08.093

    6. [6]

      CHEN Z M, SARAKHA B R, MA M B. Effect of Zr substitution for rare earth on the thermal stability of melt-spun (Nd, Pr)-Fe-B powder and magnets[J]. IEEE Trans. Magn., 2002, 38(5): 2976-2978  doi: 10.1109/TMAG.2002.803098

    7. [7]

      XI Q, YIN T, ZHANG Y, YOU Z, ZHAO H C, WU Z P. A novel Dy3+ activated Ba4La6O(SiO4)6 phosphor with robust thermal stability for WLED applications[J]. J. Alloy. Compd., 2025, 1018: 179241

    8. [8]

      YE J X, SUN J J, ZHANG T X, GUO Z M. Fabrication and luminescence of Ca2LaTaO6: RE3+(RE=Sm, Eu and Pr) phosphors[J]. Chem. Phys. Lett., 2020, 758: 137923  doi: 10.1016/j.cplett.2020.137923

    9. [9]

      BOUTINAUD P, SARAKHA L, MAHIOU R. NaNbO3: Pr3+: A new red phosphor showing persistent luminescence[J]. J. Phys. ‒Condes. Matter, 2008, 21(2): 025901

    10. [10]

      ZHANG L L, ZHANG J H, ZHANG X, HAO Z H, PAN G H, WU H J. Site distortion in Li2SrSiO4: Influence on Pr3+ emission and application in wLED[J]. J. Lumines., 2016, 180: 158-162  doi: 10.1016/j.jlumin.2016.08.033

    11. [11]

      JIN Y H, HU Y H, CHEN R, FU Y R, JU G F, MU Z F, LIN J, WANG Z H, XUE F H, ZHANG Q. Synthesis and luminescence properties of a novel yellowish-pink emissive long persistent luminescence phosphor Cd2GeO4: Pr3+[J]. J. Alloy. Compd., 2015, 623: 255-260  doi: 10.1016/j.jallcom.2014.10.136

    12. [12]

      MING X X, MENG Z K, CAO J J, WANG Z B, ZHANG M J. Investigation on the luminescence properties and mechanism of a novel Pr3+-based red persistent luminescence phosphor Cd3Ga2Ge3O12: Pr3+[J]. New J. Chem., 2023, 47(29): 13929-13937  doi: 10.1039/D3NJ01931D

    13. [13]

      SAWADA K, NAKAMURA T, ADACHI S. Synthesis and properties of Ca3Ga2Ge3O12: Tb3+ garnet phosphor[J]. Ceram. Int., 2017, 43(16): 14225-14232  doi: 10.1016/j.ceramint.2017.07.170

    14. [14]

      XIA Z G, ANDRIES M. Ce3+-doped garnet phosphors: Composition modification, luminescence properties and applications[J]. Chem. Soc. Rev., 2017, 46(1): 275-299  doi: 10.1039/C6CS00551A

    15. [15]

      ZHANG J W, WANG Z J, HUO X X, WANG Y, LI P L. A multi-color persistent luminescent phosphor Ca3Al2Ge3O12: Re3+ (Re3+=Tb3+, Pr3+, Dy3+) for dynamic anti-counterfeiting[J]. J. Lumines., 2023, 254: 119518  doi: 10.1016/j.jlumin.2022.119518

    16. [16]

      ZHANG W T, CHENG L, ZHOU D S, ZHANG L, QIU K H. Luminescence enhancement of Cd2V2O7: Re3+ (Re=Pr, Sm) red phosphors through Li⁺ ions charge compensation[J]. Ceram. Int., 2018, 44(5): 5420-5425  doi: 10.1016/j.ceramint.2017.12.171

    17. [17]

      CAO R P, CHEN G, YU X G, CHAO C Y, CHEN K B, LIU P, JIANG S H. Luminescence properties of Ca3Ti2O7: Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor[J]. J. Solid State Chem., 2014, 220: 97-101  doi: 10.1016/j.jssc.2014.08.015

    18. [18]

      GAO M, XU X Y, LI Z W, DAI H, WANG C, XIN S G, ZHOU F G, ZHU G. Synthesis and luminescent properties of Sr2SnO4: Pr3+, M+ (M=Li, Na and K) phosphors with layered perovskite-related structure[J]. J. Lumines., 2020, 226: 117423  doi: 10.1016/j.jlumin.2020.117423

    19. [19]

      LI J, XU Y C, FAN H S, LU Y, LI L, ZHANG X Y. Preparation and luminescent properties of novel double perovskite Ca2GdSbO6: Sm3+ orange-red phosphor[J]. Chinese Joumal of Materials Research, 2024, 38(4): 288-296

    20. [20]

      LI Z H, HUA Y B, OU G C. Synthesis red-emitting Ca2LaNbO6: xSm3+ phosphors for good color-rendering-index white-LED devices[J]. Optik, 2021, 233: 166595  doi: 10.1016/j.ijleo.2021.166595

    21. [21]

      TUO J, YE Y, ZHAO H Q, WANG L X. Preparation and luminescent properties of Li+ and Na+ co-doped (YxGdyLu1-x-y)2O3: 0.5%Pr3 phosphor[J]. Chinese Optics, 2019, 12(6): 1279-1287

    22. [22]

      YIN M, WEN J, DUAN C K. Selection rules for energy level transitions in rare earth ion activated luminescent materials[J]. Chinese Journal of Luminescence, 2011, 32(7): 643-649

    23. [23]

      Liu F F, Zheng Q H, Song M J, Li R Q, Xia Z R, Tong Y, Zhou W W, Zhao W. Photoluminescence and temperature sensing properties of color-tunable CsLa(WO4)2: Pr3+ phosphors[J]. Chin. J. Luminescence, 2023, 44(09): 1570-1580

    24. [24]

      LI H M, PANG R, LUO Y Q, WU H Y, ZHANG S, JIANG L H, LI D, LI C Y, FENG J, ZHANG H J. Commendable Pr3+-activated Ba2Ga2GeO7 phosphor with high-brightness white long-persistent luminescence[J]. J. Mater. Chem. C, 2019, 7(22): 6698-6705  doi: 10.1039/C9TC01735F

    25. [25]

      FENG L, WANG Z B, CAO C, ZHANG T, ZHANG J C, CI Z P, ZHAO Z Y, WANG Y H. Warm-white persistent luminescence of Lu3Al2Ga3O12: Pr3+ phosphor[J]. J. Rare Earths, 2017, 35(1): 47-52  doi: 10.1016/S1002-0721(16)60172-2

    26. [26]

      CHAWLA S, KUMAR N, CHANDER H. Broad yellow orange emission from SrAl2O4: Pr3+ phosphor with blue excitation for application to white LEDs[J]. J. Lumines., 2008, 129(2): 114-118

    27. [27]

      BLASSE G. Energy transfer in oxidic phosphors[J]. Phys. Lett. A, 1968, 28(6): 444  doi: 10.1016/0375-9601(68)90486-6

    28. [28]

      ZHANG X, WANG X, CUI R R, YIN X X, ZHANG M, PI Y W, DENG C Y. Solid-state lighting and anti-counterfeiting applications based on double perovskite Ca2GdNbO6: Dy3+, Eu3+ phosphors[J]. J. Alloy. Compd., 2025, 1010: 178243

    29. [29]

      ZHANG M, CAO C Y, ZHANG C L, CHEN Z J, BAI B H, HUANG N H, XIE A. Synthesis and luminescent properties of Gd2[1-x(y)]Eu2x(y)WzMo1-zO6 red phosphors[J]. Chinese Journal of Luminescence, 2022, 43(7): 1086-1094

    30. [30]

      HUA Y B, RAN W G, YU J S. Excellent photoluminescence and cathodoluminescence properties in Eu3+-activated Sr2LaNbO6 materials for multifunctional applications[J]. Chem. Eng. J., 2021, 406: 127154  doi: 10.1016/j.cej.2020.127154

    31. [31]

      TANG A. Research on luminescence performance of red phosphor for white LED[M]. Beijing: Intellectual Property Press, 2016: 48

    32. [32]

      BAI X, YANG W B, XIONG F B, LI M M, HU Z K, GUO Y S, FU X Y. Study on luminescence properties of alkali metal ions co-doped Sr3Ga2Ge4O14: Dy3+[J]. Journal of Synthetic Crystals, 2024, 53(1): 97-106

    33. [33]

      LI W, LEE J. Microwave-assisted sol-gel synthesis and photoluminescence characterization of LaPO4: Eu3+, Li+ nano-phosphors[J]. J. Phys. Chem. C, 2008, 112(31): 11679-11684  doi: 10.1021/jp800101d

    34. [34]

      TUO J, WANG L X, YE Y, ZHAO H Q. Preparation and luminescence properties of Lu2O3: Pr3+ phosphors codoped with Li+, Na+, K+, Ca2+, Ba2+ ions[J]. Chinese Journal of Luminescence, 2018, 39(3): 307-314

    35. [35]

      FAN G D, HU R L, QIU X Y, TIAN Z C. The effect of alkali metal charge compensators on the luminescent properties of K1+xBa1-2xBP2O8: xEu3+ materials[J]. Journal of Shaanxi University Science & Technology, 2018, 36(1): 96-101

    36. [36]

      INOKUTI M, HIRAYAMA F. Influence of energy transfer by the exchange mechanism on donor luminescence[J]. J. Chem. Phys., 1965, 43(6): 1978-1989  doi: 10.1063/1.1697063

    37. [37]

      SUN M S, LÜ S C. Charge Compensation Enhances Emission of Sr(WO4)0.2(MoO4)0.8: Eu3+/Sm3+[J]. Natural Science Journal of Harbin Normal University, 2022, 38(2): 48-53

    38. [38]

      YANG W B, XIONG F B, YANG Y, ZHOU Q, XIE L C, LING S, LUO X. Low-heat quenching novel Sr3Ga2Ge4O14: Sm3+ orange-red phosphor[J]. Chinese Journal of Luminescence, 2022, 43(6): 879-890

    39. [39]

      ZHAO Y, WANG J X, LI Z H, LIU C L, ZHAO X S, ZHOU H W, JIANG X K. Preparation and luminescent properties of Gd3+ doped Sc2W3O12: Eu3+ red phosphors[J]. Chinese J. Inorg. Chem., 2025, 41(3): 461-468  doi: 10.11862/CJIC.20240316

    40. [40]

      LUO X, XIE L C, YANG W B, YANG Y, LIU L, XIONG F B. Synthesis and luminescent performance analysis of Pr3+-doped Sr2LaTaO6 red phosphors[J]. Journal of Xiamen University of Technology, 2022, 30(1): 65-72

    41. [41]

      MCCAMY C S. Correlated color temperature as an explicit function of chromaticity coordinates[J]. Color Res. Appl., 1992, 17(2): 142- 144  doi: 10.1002/col.5080170211

  • 加载中
    1. [1]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    4. [4]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    5. [5]

      Xiaokang JIANGJunliang MAYan ZHAOFeng GAOChangli LIUXingshen ZHAOHengwei ZHOU . Preparation and luminescent properties of Sm3+-doped La2MgZrO6 phosphors. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 263-270. doi: 10.11862/CJIC.20250236

    6. [6]

      Cuiping HEZhuxuan LIYuqing SUNJie LIUShicheng XUZhanchao WU . Ca2+ doping induced crystal phase transition and spectral regulation of Ba3P4O13: Eu2+ phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2299-2306. doi: 10.11862/CJIC.20250074

    7. [7]

      Nian LIUBiao ZHENGKun WANGChunbao ZHENGQingyan HANEnjie HESaidong XUE . Synthesis and spectroscopic performance of double perovskite Li0.5La0.5MgSrWO6∶Mn4+ phosphors for plant growth lighting. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 129-140. doi: 10.11862/CJIC.20250069

    8. [8]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    10. [10]

      Jiangyuan QiuTao YuJunxin ChenWenxuan LiXiaoxuan Zhangjinsheng LiRui GuoZaiyin HuangXuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-0. doi: 10.1016/j.actphy.2025.100157

    11. [11]

      Ruixin XUHongtuo LIChen SHIYanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055

    12. [12]

      Aoyun MengZhenhua LiGuoyuan XiongZhen LiJinfeng Zhang . S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides. Acta Physico-Chimica Sinica, 2026, 42(5): 100186-0. doi: 10.1016/j.actphy.2025.100186

    13. [13]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    16. [16]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    17. [17]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    18. [18]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    19. [19]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Haotian ZhangShengfa FengMufan CaoXiong Xiong LiuPengcheng YuanYaping WangMin GaoLong PanZhengming Sun . Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries. Chinese Chemical Letters, 2025, 36(8): 111096-. doi: 10.1016/j.cclet.2025.111096

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return