Citation: Xiaohang JIN, Qi LIU, Jianping LANG. Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125 shu

Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters

Figures(5)

  • The cluster precursor [Ag9(Tab) 8(MeCN)8]2(PF6)18·4MeCN (Ag18, Tab=4-(trimethylammonio)benzenethio- late), MeCN=acetonitrile) was subjected to solid-state grinding reactions with two phosphine ligands, triphenylphos- phine (L1) and diphenyl- 2-pyridylphosphine (L2), respectively. The obtained solid powders were dissolved in DMF/ EtOH solvents, followed by centrifugal separation. Two silver thiolate clusters protected by phosphine ligands were obtained from the supernatant through Et2O diffusion crystallization: [Ag7(Tab)6(L1)6Cl] (PF6)6·8DMF (1) and [Ag17(Tab)20(L2) 2](PF 6)17·32DMF (2). Both compounds were thoroughly characterized via single-crystal X-ray diffrac- tion, powder X -ray diffraction, infrared spectroscopy, ultraviolet- visible spectroscopy, thermogravimetric, and ele- mental analysis. Single-crystal X-ray diffraction analysis revealed that both clusters are stabilized by a combination of phosphine and Tab ligands, with the diphenyl-2-pyridylphosphine ligand in 2 exhibiting simultaneous coordina- tion through both phosphorus and nitrogen atoms. Z-scan measurements demonstrated that both compounds in solu- tion exhibit notable third-order nonlinear optical responses.
  • 加载中
    1. [1]

      YIN B Q, LUO Z X. Coinage metal clusters: From superatom chemistry to genetic materials[J]. Coord. Chem. Rev., 2021,429213643.

    2. [2]

      ZHANG S S, HAVENRIDGE S, ZHANG C K, WANG Z, FENG L, GAO Z Y, AIKENS C M, TUNG C H, SUN D. Sulfide boosting nearunity photoluminescence quantum yield of silver nanocluster[J]. J. Am. Chem. Soc., 2022,144(40):18305-18314.

    3. [3]

      YAN J Z, ZHANG J, CHEN X M, MALOLA S, ZHOU B, SELENIUS E, ZHANG X M, YUAN P, DENG G C, LIU K L, SU H F, TEO B K, HÄKKINEN H, ZHENG L S, ZHENG N F. Thiol-stabilized atomically precise, superatomic silver nanoparticles for catalysing cycloisomerization of alkynyl amines[J]. Natl. Sci. Rev., 2018,5(5):694-702.

    4. [4]

      WANG X Y, MENG W, XIE H P, SONG D N, DU M H, CHEN J X, BRAUNSTEIN P, LANG J P. Zwitterionic thiolate - protected Ag22(0/ Ⅰ) and Ag20 clusters: Assembly, structural characterization, and antibacterial activity[J]. Inorg. Chem., 2024,63(28):13014-13021.

    5. [5]

      WANG Z, ZHU Y J, HAN B L, LI Y Z, TUNG C H, SUN D. A route to metalloligands consolidated silver nanoclusters by grafting thiacalixarene onto polyoxovanadates[J]. Nat. Commun., 2023,14(1)5295.

    6. [6]

      HE W M, ZHOU Z, HAN Z, LI S, ZHOU Z, MA L M, ZANG S Q. Ultrafast size expansion and turn-on luminescence of atomically precise silver clusters by hydrogen sulfide[J]. Angew. Chem.-Int. Edit., 2021,60(15):8505-8509.

    7. [7]

      WEI X, LI H Q, LI H, ZUO Z W, SONG F Q, KANG X, ZHU M Z. Slice visualization for imaging nanocluster transformations[J]. J. Am. Chem. Soc., 2023,145(25):13750-13757.

    8. [8]

      SHENG K, WANG Z, LI L, GAO Z Y, TUNG C H, SUN D. Solvent-mediated separation and reversible transformation of 1D supramolecular polymorphs built from [W10O32]4- templated 48 - nuclei silver cluster[J]. J. Am. Chem. Soc., 2023,145(19):10595-10603.

    9. [9]

      CAO Y T, GUO J H, SHI R, WATERHOUSE G I N, PAN J H, DU Z X, YAO Q F, WU L Z, TUNG C H, XIE J P, ZHANG T R. Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates[J]. Nat. Commun., 2018,9(1)2379.

    10. [10]

      NAN Z A, XIAO Y, LIU X Y, WANG T, CHENG X L, YANG Y, LEI Z, WANG Q M. Monitoring the growth of Ag-S clusters through crystallization of intermediate clusters[J]. Chem. Commun., 2019,55(47):6771-6774.

    11. [11]

      WANG Z, WANG Y C, XU T Y, LI L, AIKENS C M, GAO Z Y, AZAM M, TUNG C H, SUN D. Temperature-controlled selective formation of silver nanoclusters and their transformation to the same product[J]. Angew. Chem.-Int. Edit., 2024,63(23)e202403464.

    12. [12]

      LUO X M, HUANG S, LUO P, MA K, WANG Z Y, DONG X Y, ZANG S Q. Snapshots of key intermediates unveiling the growth from silver ions to Ag70 nanoclusters[J]. Chem. Sci., 2022,13(37):11110-11118.

    13. [13]

      BAO S J, LIU C Y, ZHANG M, CHEN X R, YU H, LI H X, BRAUNSTEIN P, LANG J P. Metal complexes with the zwitterion 4- (trimethylammonio)benzenethiolate: Synthesis, structures and applications[J]. Coord. Chem. Rev., 2019,397:28-53.

    14. [14]

      YANG L, WANG X Y, TANG X Y, WANG M Y, NI C Y, YU H, SONG Y L, ABRAHAMS B F, LANG J P. Temperature-dependent chloride-mediated access to atom-precise silver thiolate nanoclusters[J]. Sci. China-Chem., 2022,65(6):1094-1099.

    15. [15]

      JAMES S L, ADAMS C J, BOLM C, BRAGA D, COLLIER P, FRIŠČIĆ T, GREPIONI F, HARRIS K D M, HYETT G, JONES W, KREBS A, MACK J, MAINI L, ORPEN A G, PARKIN I P, SHEAROUSE W C, STEED J W, WADDELL D C. Mechanochemistry: Opportunities for new and cleaner synthesis[J]. Chem. Soc. Rev., 2011,41(1):413-447.

    16. [16]

      SHEN F, XIONG X N, FU J Y, YANG J R, QIU M, QI X H, TSANG D C W. Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources[J]. Renew. Sust. Energ. Rev., 2020,130109944.

    17. [17]

      NIU Y Y, ZHENG H G, HOU H W, XIN X Q. Heterothiometallic polymeric clusters[J]. Coord. Chem. Rev., 2004,248(1):169-183.

    18. [18]

      YU H, XU Q F, SUN Z R, JI S J, CHEN J X, LIU Q, LANG J P, TATSUMI K. Unique formation of two different W/Ag/S clusters from the same components via a low heating temperature solid state reaction and a solution reaction and their third-order NLO properties in solution[J]. Chem. Commun., 2001(24):2614-2615.

    19. [19]

      CHEN J X, XU Q F, XU Y, ZHANG Y, CHEN Z N, LANG J P. Solidstate reactions of AgAc with TabHPF 6 at room temperature-isolation and structural characterisation of an unusual octadecanuclear silver thiolate cluster [Ag9(Tab)8(MeCN) 8]2(PF6)18·4MeCN [Tab=4-(trimethylammonio)benzenethiolate[J]. Eur. J. Inorg. Chem., 2004(21):4247-4252.

    20. [20]

      XIN J S, XU J, ZHU C, TIAN Y P, ZHANG Q, KANG X, ZHU M Z. Restriction of intramolecular rotation for functionalizing metal nanoclusters[J]. Chem. Sci., 2023,14(32):8474-8482.

    21. [21]

      LI S, DU X S, LI B, WANG J Y, LI G P, GAO G G, ZANG S Q. Atomprecise modification of silver?? thiolate cluster by shell ligand substitution: A new approach to generation of cluster functionality and chirality[J]. J. Am. Chem. Soc., 2018,140(2):594-597.

    22. [22]

      ZHENG L M, SHI W Q, HU F, GUAN Z J, WANG Q M. Allcalixarene-protected silver nanocluster with all silver atoms in a face-centered cubic arrangement[J]. J. Am. Chem. Soc., 2024,146(36):25101-25107.

    23. [23]

      BUSCHMANN D A, HIRAI H, TSUKUDA T. Tuning photoluminescence properties of Au clusters by surface modification and doping: Lessons from case studies of icosahedral Au13[J]. Inorg. Chem. Front., 2024,11(20):6694-6710.

    24. [24]

      MA Q Q, ZHAI X J, HUANG J H, SI Y B, DONG X Y, ZANG S Q, MAK T C W. Construction of novel Ag(0)-containing silver nanoclusters by regulating auxiliary phosphine ligands[J]. Nanoscale, 2024,16(19):9361-9366.

    25. [25]

      KHATUN E, GHOSH A, CHAKRABORTY P, SINGH P, BODIUZZAMAN M, GANESAN P, NATARANJAN G, GHOSH J, PAL S K, PRADEEP T. A thirty-fold photoluminescence enhancement induced by secondary ligands in monolayer protected silver clusters[J]. Nanoscale, 2018,10(42):20033-20042.

    26. [26]

      YANG S Y, FU Y M, TIAN Y R, ZHAO L, WANG X L, LI B L. Design and oxidative desulfurization of Ag/Ti heterometallic clusters based on hard-soft acid-base principle[J]. Dalton Trans., 2023,52(47):17792-17796.

    27. [27]

      YANG L, DENG S Y, PEI Y. Theoretical studies of the N-heterocyclic carbene ligand protected Ag29 clusters[J]. Chem. Phys. Lett., 2023,833140960.

    28. [28]

      LV X T, HUANG J G, CAO D K. Mononuclear Pt(Ⅱ) complexes and[Pt-Ag-Pt] cluster: Controllable syntheses, structural transition and luminescence modulation[J]. Eur. J. Inorg. Chem., 2025,28(5)e202400714.

    29. [29]

      TOMÁS-MENDIVIL E, GARCÍA-ÁLVAREZ R, GARCÍA-GARRIDO S E, DÍEZ J, CROCHET P, CADIERNO V. Facile transmetalation of a pyridylphosphine ligand from ruthenium to gold and silver[J]. J. Organomet. Chem., 2013,727:1-9.

    30. [30]

      LIU Q, LU M J, YU L C, SONG Y L, LANG J P. Butterfly and nestshaped Tp*-W-Cu-S cluster monomers and dimers with hexamethy-lenetetramine as ligand: Anion- dependent structures and nonlinear optical properties[J]. Chin. J. Chem., 2021,39(3):647-654.

    31. [31]

      OKADA D. Chirality-dependent anisotropic nonlinear optical effect in low-dimensional hybrid metal halides[J]. Chem.-Eur. J., 2024,31(9)e202404034.

    32. [32]

      WANG B L, MA B, WANG K, ZHANG H J, ZHANG Z Q, SONG T, WANG S Y, CHEN M Z, LI S J, WANG Q, ZHANG H L. Fractal growth of 2D NbSe2 for broadband nonlinear optical limiting[J]. Adv. Funct. Mater., 2024,34(29)2401490.

    33. [33]

      WANG Z K, DU M H, BRAUNSTEIN P, LANG J P. A cut-to-link strategy for cubane-based heterometallic sulfide clusters with giant third- order nonlinear optical response[J]. J. Am. Chem. Soc., 2023,145(18):9982-9987.

    34. [34]

      BAO S J, XU Z M, YU T C, SONG Y L, WANG H, NIU Z, LI X P, ABRAHAMS B F, BRAUNSTEIN P, LANG J P. Flexible vertex engineers the controlled assembly of distorted supramolecular tetrahedral and octahedral cages[J]. Research, 20229819343.

    35. [35]

      SHEIK-BAHAE M, SAID A A, WEI T H, HAGAN D J, VAN STRYLAND E W. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE J. Quantum Electron., 1990,26(4):760-769.

    36. [36]

      GE J F, LU Y T, SUN R, ZHANG J, XU Q F, LI N J, SONG Y L, LU J M. Third-order nonlinear optical properties of symmetric phenoxa-zinium chlorides with resonance structures at 532 nm[J]. Dyes Pigment., 2011,91(3):489-494.

    37. [37]

      ZHANG Z, LI S T, WANG Y J, DU M H, SONG Y L, LANG J P. Synthesis, structural characterization and third-order nonlinear optical study of W/Cu/S cluster-based coordination polymers with thioether-containing ligands[J]. Inorg. Chem. Commun., 2024,170:113502-113509.

    38. [38]

      XIE H P, JIN X H, LI J Y, DU M H, SONG Y L, LANG J P. Polyhedral Ag12 and Ag16 clusters: Synthesis, structural characterization and third - order nonlinear optical properties[J]. Chem. ‒ Asian J., 2024,19(15)e202400443.

  • 加载中
    1. [1]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    2. [2]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    3. [3]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    4. [4]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    7. [7]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    15. [15]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    19. [19]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return