Citation: Xinzhe ZHANG, Jiarong XU, Mochou GAO, Yage LIU, Yanbao ZHAO, Jingzeng CUI, Xueyan ZOU. Silver chloride/chitosan-based chloramine nanohybrid with excellent antibacterial activity: Design and structure characterization as well as Ag+-Cl- synergistic antibacterial effect[J]. Chinese Journal of Inorganic Chemistry, ;2026, 42(2): 428-438. doi: 10.11862/CJIC.20250123 shu

Silver chloride/chitosan-based chloramine nanohybrid with excellent antibacterial activity: Design and structure characterization as well as Ag+-Cl- synergistic antibacterial effect

Figures(6)

  • Chitosan (CTS) was grafted onto the surface of amino-functionalized silver chloride silicon dioxide (AgCl@SiO2-NH2) cores to obtain AgCl@SiO2/CTS hybrid nanoparticles. The as-obtained AgCl@SiO2/CTS nanoparticles were chlorinated by NaClO solution to get AgCl@SiO2/CTS-based chloramine nano-hybrid materials, denoted as AgCl@SiO2/CTS-Cl. A transmission electron microscope was used to observe the morphology of the as-prepared samples AgCl@SiO2/CTS and AgCl@SiO2/CTS-Cl. At the same time, an X-ray diffractometer and an infrared spectroscope were utilized to characterize their crystal and chemical structures. Besides, ζ potentials were measured to elucidate the surface modification of AgCl nanoparticles by —NH2, the antibacterial mechanism of AgCl@SiO2/CTS-Cl was investigated by scanning electron microscopy, and Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used as the to-be-tested strains to evaluate the antimicrobial activity of samples AgCl@SiO2/CTS and AgCl@SiO2/CTS-Cl. Findings demonstrate that sample AgCl@SiO2/CTS exhibits a chain-like structure ascribed to the interaction between —NH2, and each AgCl@SiO2/CTS hybrid nanoparticle contains several AgCl cores. In the meantime, sample AgCl@SiO2/CTS-Cl exhibits excellent antibacterial activity against E. coli and S. aureus, which is attributed to the synergistic antibacterial effect of Ag+ and Cl-. Sample AgCl@SiO2/CTS-Cl with a dosage of 640.00 μg·mL-1 could completely kill the two kinds of tested bacteria in 12 h of incubation; it retains a high antibacterial efficiency even after 10 cycles of antibacterial tests.
  • 加载中
    1. [1]

      YAO M. SARS-CoV-2 aerosol transmission and detection[J]. Eco-Environment & Health, 2022, 1(1): 3-10

    2. [2]

      WANG H F, TANG B, LI X Y, M Y. Antibacterial properties and corrosion resistance of nitrogen-doped TiO2 coatings on stainless steel[J]. J. Mater. Sci. Technol., 2011, 27(4): 309-316  doi: 10.1016/S1005-0302(11)60067-4

    3. [3]

      WEI Y, DONG Z M, FAN W H, XU K Q, TANG S, WANG Y, WU F C. A narrative review on the role of temperature and humidity in COVID-19: Transmission, persistence, and epidemiological evidence[J]. Eco-Environment & Health, 2022, 1(2): 73-85

    4. [4]

      LUO Y, GAO Y T. Potential role of hydrogels in stem cell culture and hepatocyte differentiation[J]. Nano Biomed. Eng., 2024, 16(2): 188-202  doi: 10.26599/NBE.2024.9290055

    5. [5]

      FU X, OU Z Y, SUN Y. Indoor microbiome and allergic diseases: From theoretical advances to prevention strategies[J]. Eco-Environment & Health, 2022, 1(3): 133-146

    6. [6]

      CHENG X L, MA K K, LI R, REN X H, HUANG T S. Antimicrobial coating of modified chitosan onto cotton fabrics[J]. Appl. Surf. Sci., 2014, 309: 138-143  doi: 10.1016/j.apsusc.2014.04.206

    7. [7]

      ABHIMANYU P, ARVIND M, KISHOR N. Biosynthesis of CuO nanoparticles using plant extract as a precursor: Characterization, antibacterial, and antioxidant activity. [J]. Nano Biomed. Eng., 2023, 15(4): 369-377  doi: 10.26599/NBE.2023.9290027

    8. [8]

      KHAN M M, MATUSSIN S N, RAHMAN A. Recent development of metal oxides and chalcogenides as antimicrobial agents[J]. Bioproc. Biosyst. Eng., 2023, 46(9): 1231-1249  doi: 10.1007/s00449-023-02878-1

    9. [9]

      SHIN H K, PARK M, CHUNG Y S, KIM H, JIN F, PARK S. Antimicrobial characteristics of n-halaminated chitosan salt/cotton knit composites[J]. J. Ind. Eng. Chem., 2014, 20(4): 1476-1480  doi: 10.1016/j.jiec.2013.07.034

    10. [10]

      XUAN J Q, FENG W G, WANG J Y, WANG R C, ZHANG B W, BO L T, CHEN S, YANG H, SUN L M. Antimicrobial peptides for combating drug-resistant bacterial infections[J]. Drug Resist Update, 2023, 68: 100954-100965  doi: 10.1016/j.drup.2023.100954

    11. [11]

      GAO M C, LI L X, LIU Q, XUE Y Y, WANG W H, ZHAO Y B, ZOU X Y. Synthesis of multifunctional silica composite nanospheres and their application in separation of MBP-tagged protein[J]. Mater. Lett., 2022, 318: 132222-132225  doi: 10.1016/j.matlet.2022.132222

    12. [12]

      LIANG J, HAN L, LI B, SHI Z Z, LIU X C, PENG L C, ZOU X Y. Fast and efficient immobilization behavior of bifunctional magnetic nano-amendment against multi-heavy metal[J]. Chinese J. Inorg. Chem., 2021, 37(11): 1981-1990

    13. [13]

      ZOU X Y, YIN Y B, ZHAO Y B, CHEN D Y, DONG S. Synthesis of ferriferrous oxide/L-cysteine magnetic microspheres and their adsorption capacity for Pb(Ⅱ) ions[J]. Mater. Lett., 2015, 150: 59-61  doi: 10.1016/j.matlet.2015.02.133

    14. [14]

      JIN Y L, HAN G H, ZHANG W J, BU B, ZHAO Y B, WANG J J, LIU R S, YANG H, XU H X, MA P T. Evaluation and genetic dissection of the powdery mildew resistance in 558 wheat accessions[J]. New Crops, 2024, 1: 100018  doi: 10.1016/j.ncrops.2024.100018

    15. [15]

      ZOU X Y, YANG F B, SUN X, QIN M M, ZHAO Y B, ZHANG Z J. Functionalized nano-adsorbent for affinity separation of proteins[J]. Nanoscale Res. Lett., 2018, 13(1): 165-172  doi: 10.1186/s11671-018-2531-4

    16. [16]

      YIN Y B, WEI G M, ZOU X Y, ZHAO Y B. Functionalized hollow silica nanospheres for His-tagged protein purification[J]. Sens. Actuator B‒Chem., 2015, 209: 701-705  doi: 10.1016/j.snb.2014.12.049

    17. [17]

      ZOU X Y, ZHANG Y, YUAN J Q, WANG Z B, ZENG R, LI K, ZHAO Y B, ZHANG Z J. A porous nano-adsorbent with dual functional groups for selective binding proteins with a low detection limit[J]. RSC Adv., 2020, 10(39): 23270-23275  doi: 10.1039/D0RA01193B

    18. [18]

      TIAN S F, ZOU X Y, LU H T, HE J Y, ZHAO Y B, GUO J Y. Synthesis of nanometer hollow silica composite microspheres for affinity separation of protein[J]. Inorg. Chem., 2015, 31(7): 1329-1334

    19. [19]

      IVLIEVA A, PETRITSKAYA E, ROGATKIN D, YUSHIN N, GROZDOV D, VERGEL K, ZINICOVSCAIA I. Does nanosilver have a pronounced toxic effect on humans[J]. Appl. Sci., 2022, 12(7): 3476-3489  doi: 10.3390/app12073476

    20. [20]

      MA C Y, ZHANG X Y, BAO X Y, ZHU X H. In the symbiosome: Cross-kingdom dating under the moonlight[J]. New Crops, 2024, 1: 100015  doi: 10.1016/j.ncrops.2024.100015

    21. [21]

      ABHIMANYU P, ARVIND M, KISHOR N. Biosynthesis of CuO nanoparticles using plant extract as a precursor: Characterization, antibacterial, and antioxidant activity[J]. Nano Biomed. Eng., 2023, 15(4): 369-377  doi: 10.26599/NBE.2023.9290027

    22. [22]

      YANG Y, ZHANG Z J, WAN M H, WANG Z H, ZOU X Y, ZHAO Y B, SUN L. A facile method for the fabrication of silver nanoparticles surface decorated polyvinyl alcohol electrospun nanofibers and controllable antibacterial activities[J]. Polymers, 2020, 12(11): 2486-2498  doi: 10.3390/polym12112486

    23. [23]

      NI Z H, GU X X, HE Y L, WANG Z H, ZOU X Y, ZHAO Y B, SUN L. Synthesis of silver nanoparticle-decorated hydroxyapatite (HA@Ag) poriferous nanocomposites and the study of their antibacterial activities[J]. RSC Adv., 2018, 8(73): 41722-41730  doi: 10.1039/C8RA08148D

    24. [24]

      TAN P, LI Y H, LIU X Q, JIANG Y, SUN L B. Core-shell AgCl@SiO2 nanoparticles: Ag(Ⅰ)-based antibacterial materials with enhanced stability[J]. ACS Sustainable Chem. Eng., 2016, 4(6): 3268-3275  doi: 10.1021/acssuschemeng.6b00309

    25. [25]

      GAO M J, DU J Y, HAN Z H, WANG Z H, ZHAO Y B, ZOU X Y, SUN L. Precise preparation of various morphological silver sulfide nanostructures, investigation of formation mechanism and comparative study of photothermal performance for cancer treatment[J]. Part. Part. Syst. Char., 2021, 23: 1-13

    26. [26]

      GAO M C, ZHAO H D, WANG Z H, ZHAO Y B, ZOU X Y, SUN L. Controllable preparation of Ag2S quantum dots with size-dependent fluorescence and cancer photothermal therapy[J]. Adv. Powder Technol., 2021, 32(6): 1972-1982  doi: 10.1016/j.apt.2021.04.011

    27. [27]

      SAMBHY V, MACBRIDE M M, PETERSON B R, SEN A. Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials[J]. J. Am. Chem. Soc., 2006, 128(30): 9798-9808  doi: 10.1021/ja061442z

    28. [28]

      HOSSAIN S I, SPORTELLI M C, PICCA R A, GENTILE L, PALAZZO G, DITARANTO N, CIOFFI N. Green synthesis and characterization of antimicrobial synergistic AgCl/BAC nanocolloids[J]. ACS Appl. Bio Mater., 2022, 5(7): 3230-3240  doi: 10.1021/acsabm.2c00207

    29. [29]

      DU P H, HALMA M. Graphene-based nanomaterials: Uses, environmental fate, and human health hazards[J]. Nano Biomed. Eng., 2024, 16(2): 219-231  doi: 10.26599/NBE.2024.9290059

    30. [30]

      WANG L M, WANG Y Y, YIN P, JIANG C F, ZHANG M. ZmHAK17 encodes a Na+-selective transporter that promotes maize seed germination under salt conditions[J]. New Crops, 2024, 1: 100024  doi: 10.1016/j.ncrops.2024.100024

    31. [31]

      WAN M H, ZHAO H D, WANG Z H, ZOU X Y, ZHAO Y B, SUN L. Fabrication of Ag modified SiO2 electrospun nanofibrous membranes as ultrasensitive and high stable SERS substrates for multiple analytes detection[J]. Colloid Interface Sci. Commun., 2021, 42: 100428-100437  doi: 10.1016/j.colcom.2021.100428

    32. [32]

      ZHANG Z J, WU Y P, WANG Z H, ZOU X Y, ZHAO Y B, SUN L. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities[J]. Mater. Sci. Eng. C, 2016, 69: 462-469  doi: 10.1016/j.msec.2016.07.015

    33. [33]

      LI Y Y, YANG L S, ZHAO Y B, LI B J, SUN L, LUO H J. Preparation of AgBr@SiO2 core@shell hybrid nanoparticles and their bactericidal activity[J]. Mater. Sci. Eng. C, 2013, 33(3): 1808-1812  doi: 10.1016/j.msec.2012.12.016

    34. [34]

      GAO M C, ZHAO X H, WANG W, ZOU X Y, SONG C P. Preparation of fluorescently and biologically active chain-like chitosan nanocomposite and its use in separating MBP-tagged proteins and as fluorescent tracer of tobacco[J]. Sens. Actuator B‒Chem., 2023, 381: 133371-133381  doi: 10.1016/j.snb.2023.133371

    35. [35]

      HARUGADE A, SHERJE A P, PETHE A. Chitosan: A review on properties, biological activities and recent progress in biomedical applications[J]. React. Funct. Polym. , 2023, 191: 105634-105652  doi: 10.1016/j.reactfunctpolym.2023.105634

    36. [36]

      LI A Q, YANG Y, GUO Y X, LI Q Z, Z A, W J H, L R, SHE D M, WU C Y, WU J D. ZmASR6 positively regulates salt stress tolerance in maize[J]. New Crops, 2025, 2: 100067  doi: 10.1016/j.ncrops.2025.100067

    37. [37]

      CAO N, XIE X, ZHANG Y, ZHAO Y B, CAO L Q, SUN L. Dendritic porous SnO2/SiO2@polymer nanospheres for pH-controlled styptic drug release[J]. J. Ind. Eng. Chem., 2016, 34: 9-13  doi: 10.1016/j.jiec.2015.10.040

    38. [38]

      LI A, LIN R J, LIN C, HE B Y, ZHENG T T, LU L B, CAO Y. An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion[J]. Carbohyd Polym, 2016, 148: 272-280  doi: 10.1016/j.carbpol.2016.04.070

    39. [39]

      LI X, ZHENG H L, WANG Y L, SUN Y J, XU B C, ZHAO C L. Fabricating an enhanced sterilization chitosan-based flocculant: Synthesis, characterization, evaluation of sterilization and flocculation[J]. Chem. Eng. J., 2017, 319: 119-130  doi: 10.1016/j.cej.2017.02.147

    40. [40]

      ZHANG X, WANG Y M, ZHAO Y B, SUN L. pH-responsive drug release and real-time fluorescence detection of porous silica nanoparticles[J]. Mater. Sci. Eng. C, 2017, 77: 19-26  doi: 10.1016/j.msec.2017.03.224

    41. [41]

      MIN Y L, HE G Q, XU Q J, CHEN Y C. Self-assembled encapsulation of graphene oxide/Ag@AgCl as a Z-scheme photocatalytic system for pollutant removal[J]. J. Mater. Chem. A, 2014, 2(5): 1294-1301  doi: 10.1039/C3TA13687F

    42. [42]

      SHEN Y F, CHEN P L, XIAO D, CHEN C C, ZHU M S, LI T S, MA W G, LIU M H. Spherical and sheetlike Ag/AgCl nanostructures: Interesting photocatalysts with unusual facet-dependent yet substrate-sensitive reactivity[J]. Langmuir, 2015, 31(1): 602-610  doi: 10.1021/la504328j

  • 加载中
    1. [1]

      Yingyue ZHANGLiuqing KANGYating YANGXiaofen GUANWenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100

    2. [2]

      Peipei CUIYawen ZHENGPan LIPeiyan GUANZhaohong QIAN . Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152

    3. [3]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    4. [4]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    5. [5]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    6. [6]

      Ying ZhaoYao HeJian-Xin YangWen-Jie LiuDan TianFrancisco AznarezLe-Le GongLi-Long DangLu-Fang Ma . Controllable self-assembly and photothermal conversion of metalla[2]catenanes induced by synergistic effect of free radicals and stacking interactions. Chinese Chemical Letters, 2025, 36(12): 111460-. doi: 10.1016/j.cclet.2025.111460

    7. [7]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    8. [8]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    9. [9]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    10. [10]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    11. [11]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    12. [12]

      Xin DaiTong LiuYe DuJie-Yu CaoZhong-Juan WangJie LiPeng ZhouHeng ZhangBo Lai . Synergistic effect in enhancing treatment of micro-pollutants by ferrate and carbon materials: A review. Chinese Chemical Letters, 2025, 36(8): 110548-. doi: 10.1016/j.cclet.2024.110548

    13. [13]

      Chenchen XieJun LiaoYi LiYunan ZhangZhicheng XiaoYun WangTing ChenLiyan XiongTao PangXiangao JiangFeng ZhangChuan ZhangTingfang Wang . Synergistic anti-inflammatory effect of cascade nanozymes for neural recovery in ischemic stroke. Chinese Chemical Letters, 2026, 37(1): 110956-. doi: 10.1016/j.cclet.2025.110956

    14. [14]

      Ying ChenLun LiGuohao HanRen LiuGuanghui AnYi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458

    15. [15]

      Yuwei KangCan YangJun ZhangQi Wu . Synergistic triple-site engineering in ABX3-type hybrid halides for high-performance nonlinear optical crystals. Chinese Chemical Letters, 2026, 37(1): 111385-. doi: 10.1016/j.cclet.2025.111385

    16. [16]

      Jiang GongFengling ZhengHanqing ZhangWeihan ShuHao WangNi ZhangPengbing HuangChuancai ZhangBin Dai . The interfacial effect of SiO2-Ni3Mo3N efficiently catalyzes the low-temperature hydrogenation of dimethyl oxalate to ethanol. Chinese Chemical Letters, 2025, 36(8): 111122-. doi: 10.1016/j.cclet.2025.111122

    17. [17]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    18. [18]

      Zheng-Biao ZouTai-Zong WuChun-Lan XieYuan WangYan LiGang ZhangRong ChaoLian-Zhong LuoLi-Sheng LiXian-Wen Yangneo-Dicitrinols A–C: Unprecedented PKS-NRPS hybrid citrinin dimers with ferroptosis inhibitory activity from the deep-sea-derived Penicillium citrinum W22. Chinese Chemical Letters, 2024, 35(12): 109723-. doi: 10.1016/j.cclet.2024.109723

    19. [19]

      Xuanyang JinXincheng GuoSiyang DongShilan LiShengdong JinPeng XiaShengjun LuYufei ZhangHaosen Fan . Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries. Chinese Chemical Letters, 2025, 36(7): 110604-. doi: 10.1016/j.cclet.2024.110604

    20. [20]

      Zhi-Xin LiXiao-Feng QiuPei-Qin Liao . Efficient electroreduction of CO2 to acetate with relative purity of 100% by ultrasmall Cu2O nanoparticle on a conductive metal-organic framework. Chinese Chemical Letters, 2025, 36(11): 110473-. doi: 10.1016/j.cclet.2024.110473

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return