Citation: Xiaoli CHEN, Zhihong LUO, Yuzhu XIONG, Aihua WANG, Xue CHEN, Jiaojing SHAO. Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075 shu

Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries

  • Corresponding author: Jiaojing SHAO, shaojiao_jing@163.com
  • Received Date: 7 March 2025
    Revised Date: 16 June 2025

Figures(5)

  • A functional interlayer based on two-dimensional (2D) porous modified vermiculite nanosheets (PVS) was obtained by acid-etching vermiculite nanosheets. The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m2•g-1 and rich surface active sites, which help restrain polysulfides (LiPSs) through good physical and chemical adsorption, while simultaneously accelerating the nucleation and dissolution kinetics of Li2S, effectively suppressing the shuttle effect. The assembled lithium-sulfur batteries (LSBs) employing the PVS-based interlayer delivered a high initial discharge capacity of 1 386 mAh•g-1 at 0.1C (167.5 mAh•g-1), long-term cycling stability, and good rate property.
  • 加载中
    1. [1]

      SEH Z W, SUN Y M, ZHANG Q F, CUI Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016,45(20):5605-5634.

    2. [2]

      YANG Y, ZHENG G Y, CUI Y. Nanostructured sulfur cathodes[J]. Chem. Soc. Rev., 2013,42(7):3018-3032.

    3. [3]

      LIU X, HUANG J Q, ZHANG Q, MAI L Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Adv. Mater., 2017,29(20)1601759.

    4. [4]

      PANG Q, LIANG X, KWOK C Y, NAZAR L F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nat. Energy, 2016,1(9)16132.

    5. [5]

      MANTHIRAM A, FU Y Z, CHUNG S H, ZU C X, SU Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014,114(23):11751-11787.

    6. [6]

      LIU Y J, TAO X Y, WANG Y, JIANG C, MA C, SHENG O W, LU G X, LOU X W D. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries[J]. Science, 2022,375(6582):739-745.

    7. [7]

      ZHOU G M, TIAN H Z, JIN Y, TAO X Y, LIU B, ZHANG R, SEH Z W, ZHUO D, LIU Y Y, SUN J, ZHAO J, ZU C X, WU D S, ZHANG Q F, CUI Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proc. Natl. Acad. Sci. U. S. A., 2017,114(5):840-845.

    8. [8]

      LI Z, GUAN B Y, ZHANG J T, LOU X W. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries[J]. Joule, 2017,1(3):576-587.

    9. [9]

      WANG J L, HAN W Q. A review of heteroatom doped materials for advanced lithium-sulfur batteries[J]. Adv. Funct. Mater., 2021,32(2)2107166.

    10. [10]

      YUAN C, YANG X F, ZENG P, MAO J, DAI K H, ZHANG L, SUN X L. Recent progress of functional separators with catalytic effects for high-performance lithium-sulfur batteries[J]. Nano Energy, 2021,84105928.

    11. [11]

      GUO W, HAN Q, JIAO J R, WU W H, ZHU X B, CHEN Z H, ZHAO Y. In situ construction of robust biphasic surface layers on lithium metal for lithium-sulfide batteries with long cycle life[J]. Angew. Chem.‒Int. Edit., 2021,60(13):7267-7274.

    12. [12]

      ZHANG X Y, CHEN K, SUN Z H, HU G G, XIAO R, CHENG H M, LI F. Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries[J]. Energy Environ. Sci., 2020,13(4):1076-1095.

    13. [13]

      HAN X, ZHANG Z Y, XU X F. Single atom catalysts supported on N-doped graphene toward fast kinetics in Li-S batteries: A theoretical study[J]. J. Mater. Chem. A, 2021,9(20):12225-12235.

    14. [14]

      XIN S, GU L, ZHAO N H, YIN Y X, ZHOU L J, GUO Y G, WAN L J. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2012,134(45):18510-18513.

    15. [15]

      WANG T C, SHI Z H, WANG F R, LI W Y, KANG G H, LIU W, MYUNG S T, JIN Y C. Functionalization of two-dimensional vermiculite composite materials for improved adsorption and catalytic conversion reaction of soluble polysulfides in lithium-sulfur batteries[J]. J. Energy Chem., 2025,102:586-596.

    16. [16]

      ZHENG M, LUO Z H, SONG Y, ZHOU M X, GUO C, SHI Y, LI L, SUN Q, SHI B, YI Z L, SU F Y, SHAO J J, ZHOU G M. Carbon-coated nitrogen, vanadium co-doped MXene interlayer for enhanced polysulfide shuttling inhibition in lithium-sulfur batteries[J]. J. Power Sources, 2023,580233445.

    17. [17]

      HAO X G, MA J B, CHENG X, ZHONG G M, YANG J L, HUANG L, LING H J, LAI C, LV W, KANG F Y, SUN X L, HE Y B. Electron and ion co-conductive catalyst achieving instant transformation of lithium polysulfide towards Li2S[J]. Adv. Mater., 2021,33(52)2105362.

    18. [18]

      LI P Y, LV H W, LI Z L, MENG X P, LIN Z, WANG R H, LI X J. The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium-sulfur batteries[J]. Adv. Mater., 2021,33(17)2007803.

    19. [19]

      LONG X, LUO Z H, ZHOU W H, ZHU S K, SONG Y, LI H, GENG C N, SHI B, HAN Z Y, ZHOU G M, LV W, SHAO J J. Two-dimensional montmorillonite-based heterostructure for high-rate and long-life lithium-sulfur batteries[J]. Energy Storage Mater., 2022,52:120-129.

    20. [20]

      ZHAO H J, KANG W M, DENG N P, LIU M, CHENG B W. A fresh hierarchical-structure gel poly-m-phenyleneisophthalamide nanofiber separator assisted by electronegative nanoclay-filler towards high-performance and advanced-safety lithium-ion battery[J]. Chem. Eng. J., 2020,384123312.

    21. [21]

      KITTRICK J A. Interlayer forces in montmorillonite and vermiculite[J]. Soil Sci. Soc. Am. J., 1969,33(2):217-222.

    22. [22]

      SHAO J J, RAIDONGIA K, KOLTONOW A R, HUANG J X. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability[J]. Nat. Commun., 2015,6(1)7602.

    23. [23]

      SUN W H, SUN X G, AKHTAR N, LI C M, WANG W K, WANG A B, WANG K, HUANG Y Q. Attapulgite nanorods assisted surface engineering for separator to achieve high-performance lithium-sulfur batteries[J]. J. Energy Chem., 2020,48:364-374.

    24. [24]

      KEHAL M, REINERT L, DUCLAUX L. Characterization and boron adsorption capacity of vermiculite modified by thermal shock or H2O2 reaction and/or sonication[J]. Appl. Clay Sci., 2010,48(4):561-568.

    25. [25]

      JIA F F, SONG S X. Exfoliation and characterization of layered silicate minerals: A review[J]. Surf. Rev. Lett., 2014,21(2)1430001.

    26. [26]

      GUO C, LUO Z H, ZHOU M X, WU X R, SHI Y, AN Q Y, SHAO J J, ZHOU G M. Clay-originated two-dimensional holey silica separator for dendrite-free lithium metal anode[J]. Small, 2023,19(36)2301428.

    27. [27]

      LEE B J, ZHAO C, YU J H, KANG T H, PARK H Y, KANG J, JUNG Y G, LIU X, LI T Y, XU W Q, ZUO X B, XU G L, AMINE K, YU J S. Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy[J]. Nat. Commun., 2022,13(1)4629.

    28. [28]

      LIAO Y Q, YUAN L X, LIU X T, MENG J T, ZHANG W, LI Z, HUANG Y H. Low-cost fumed silicon dioxide uniform Li+ flux for lean-electrolyte and anode-free Li/S battery[J]. Energy Storage Mater., 2022,48:366-374.

    29. [29]

      LUO Z H, ZHENG M, ZHOU M X, SHENG X T, CHEN X L, SHAO J J, WANG T S, ZHOU G M. 2D nanochannel interlayer realizing high-performance lithium-sulfur batteries[J]. Adv. Mater., 2025,37(9)2417321.

    30. [30]

      KIM F, COTE L J, HUANG J X. Graphene oxide: Surface activity and two-dimensional assembly[J]. Adv. Mater., 2010,22(17):1954-1958.

    31. [31]

      KHASSIN A A, YURIEVA T M, DEMESHKINA M P, KUSTOVA G N, ITENBERG I S, KAICHEV V V, PLYASOVA L M, ANUFRIENKO V F, MOLINA I Y, LARINA T V, BARONSKAYA N A, PARMON V N. Characterization of the nickel-amesite-chlorite-vermiculite system[J]. Phys. Chem. Chem. Phys., 2003,5(18):4025-4031.

    32. [32]

      BARR T L. An XPS study of Si as it occurs in adsorbents, catalysts, and thin films[J]. Appl. Surf. Sci., 1983,15(1/2/3/4):1-35.

    33. [33]

      SANTOS S S G, SILVA H R M, DE SOUZA A G, ALVES A P M, DA SILVA FILHO E C, FONSECA M G. Acid-leached mixed vermiculites obtained by treatment with nitric acid[J]. Appl. Clay Sci., 2015,104:286-294.

    34. [34]

      SONG Y, LONG X, LUO Z H, GUO C, GENG C N, OUYANG Q S, HAN Z, ZHOU G M, SHAO J J. Solid carbon spheres with interconnected open pore channels enabling high-efficient polysulfide conversion for high-rate lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2022,14(28):32183-32195.

    35. [35]

      LI X T, YANG X X, YE J J, XIA G, FU Z H, HU C. A trifunctional modified separator based on Fe tetraaminophthalocyanine@rGO for lithium-sulfur batteries[J]. Chem. Eng. J., 2021,405126947.

    36. [36]

      XIE F W, XU C J, SONG Y C, LIANG Q, JI J J, WANG S Z. 2D-2D heterostructure of ionic liquid-exfoliated MoS2/MXene as lithium polysulfide barrier for Li-S batteries[J]. J. Colloid Interface Sci., 2023,636:528-536.

    37. [37]

      FAN F Y, CARTER W C, CHIANG Y M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries[J]. Adv. Mater., 2015,27(35):5203-5209.

    38. [38]

      GUO L, OSKAM G, RADISIC A, HOFFMANN P M, SEARSON P C. Island growth in electrodeposition[J]. J. Phys. D‒Appl. Phys., 2011,44(44)443001.

    39. [39]

      YOU D, YANG W H, LIANG Y S, YANG C M, YU Y W, ZHU Z Y, LI X, ZHANG Y Y, ZHANG Y J. Regulation of Li2S deposition and dissolution to achieve an efficient bidirectional lithium-sulfur battery[J]. Adv. Funct. Mater., 2025,35(20)2421900.

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    3. [3]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    4. [4]

      Na LiWenxue WangPeng WangZhanying SunXinlong TianXiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731

    5. [5]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    6. [6]

      Xuanyang JinXincheng GuoSiyang DongShilan LiShengdong JinPeng XiaShengjun LuYufei ZhangHaosen Fan . Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries. Chinese Chemical Letters, 2025, 36(7): 110604-. doi: 10.1016/j.cclet.2024.110604

    7. [7]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    8. [8]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    9. [9]

      Qihou LiJiamin LiuFulu ChuJinwei ZhouJieshuangyang ChenZengqiang GuanXiyun YangJie LeiFeixiang Wu . Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(5): 110306-. doi: 10.1016/j.cclet.2024.110306

    10. [10]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    11. [11]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    12. [12]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    13. [13]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    14. [14]

      Hui YangGuangxun ZhangYueyao SunHuijie ZhouHuan Pang . Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel-zinc batteries. Chinese Chemical Letters, 2025, 36(6): 110016-. doi: 10.1016/j.cclet.2024.110016

    15. [15]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    16. [16]

      Yue WangWenli HuBinchao ShiHe JiaShilin MeiChang-Jiang Yao . Design of carbon@WS2 host with graham condenser-like structure for tunable sulfur loading of lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(6): 110065-. doi: 10.1016/j.cclet.2024.110065

    17. [17]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    18. [18]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    19. [19]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    20. [20]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return