Citation: Yan'e LIU, Shengli JIA, Yifan JIANG, Qinghua ZHAO, Yi LI, Xinshu CHANG. MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054 shu

MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery

  • Corresponding author: Yan'e LIU, 865611162@qq.com
  • Received Date: 19 February 2025
    Revised Date: 10 July 2025

Figures(8)

  • MoO3 nanosheets were composited with TEMPO-oxidized cellulose nanofibers (TEMPO-CNF), and the mixture was subsequently subjected to a high-temperature carbonization process to prepare a MoO3/T-CNF carbonized composite aerogel material, where T-CNF refers to the porous carbonaceous material obtained through carbonization of TEMPO-CNT. The MoO3/T-CNF material exhibited high electrical conductivity, a well-developed porous structure, and a large specific surface area. When employed as a cathode in lithium-sulfur batteries, it effectively adsorbs polysulfides, suppresses the shuttle effect, and mitigates volume expansion during charge/discharge cycles. Specifically, the optimal sample, MoO3/T-CNF-3, delivered a maximum discharge specific capacity of 1 721.8 mAh· g-1 at 0.1C. Furthermore, after 200 cycles, it maintained a high capacity retention rate of 84.8% and a Coulombic efficiency of 99.6%.
  • 加载中
    1. [1]

      ZHONG H Y, CHAI Y, LU X, HUANG P W, CHEN B C, DU K Z. Bimetallic alloy FexCo1-xPS3 with boosted lithium reaction kinetics for lithium-ion batteries[J]. Chem. Eng. J., 2023,47510.

    2. [2]

      YIN Y X, XIN S, GUO Y G, WAN L J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angew. Chem. - Int. Edit., 2013,52(50):13186-13200.

    3. [3]

      FU A, WANG C, PEI F, CUI J, FANG X L, ZHENG N. Recent advances in hollow porous carbon materials for lithium-sulfur batteries[J]. Small, 2019,15(10)1804786.

    4. [4]

      GAO N, SHEN X T, LIU Y F, XU Z W, WANG X, LIU H Y, REN Y C, CHEN S Y, LI Z. Co-Co9S8-NC particles anchored on 3D hyperfine carbon nanofiber networks with a hierarchical structure as a catalyst promoting polysulfide conversion for lithium-sulfur batteries[J]. J. Mater. Chem. A, 2023,11(10):5212-5221.

    5. [5]

      YAO M, HUANG H M, WANG L, YANG K, CUI H H, CHEN L, ZHOU M. Crowd infection and its prevention strategy in a subway station based on social force model[J]. E3S Web of Conferences, 2022,35602020.

    6. [6]

      RAKHIMBEK I, BAIKALOV N, KONAROV A, MENTBAYEVA A, ZHANG Y, MANSUROV Z, WAKIHARA M, BAKENOV Z. Efficient polysulfides conversion kinetics enabled by Ni@CNF interlayer for lithium sulfur batteries[J]. Eurasian Chem. - Technol. J., 2023,25(3):147-147.

    7. [7]

      WU C, LI M, CAO S, LI Z, ZENG P, CHEN J R, ZHU X T, GUO X W, CHEN G R, CHANG B B, SHEN Y Q, WANG X Y. Boosting performance of Co-free Li-rich cathode material through regulating the anionic activity by means of the strong TaO bonding[J]. J. Colloid Interf. Sci., 2022,628:1031-1040.

    8. [8]

      CHEN Y, WANG T Y, TIAN H J, SU D W, ZHANG Q, WANG G X. Advances in lithium-sulfur batteries: From academic research to commercial viability[J]. Adv. Mater., 2021,33(29)2003666.

    9. [9]

      ZHOU G M, CHEN H, CUI Y. Formulating energy density for designing practical lithium-sulfur batteries[J]. Nat. Energy, 2022,7(4):312-319.

    10. [10]

      YU X F, HE B, WU T, CHEN X R, LU A H. Multi- cavity carbon nanofiber film decorated with Co-Nx doped CNTs for lithium-sulfur batteries with high-areal-capacity[J]. J. Mater. Chem. A, 2022,10(22):12168-12176.

    11. [11]

      LIANG X, WANG L L, WANG Y, LIU Y C, SUN Y, XIANG H F. Constructing multi-functional composite separator of PVDF-HFP/h-BN supported Co - CNF membrane for lithium - sulfur batteries[J]. Sustain. Energ. Fuels, 2022,6(2):440-448.

    12. [12]

      ZHONG Y, XIA X H, DENG S J, ZHAN J Y, FANG R Y, XIA Y, WANG X L, ZHANG Q, TU J P. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries[J]. Adv. Energy Mater., 2018,8(1)1701110.

    13. [13]

      LIU Y T, ELIAS Y, MENG J S, AURBACH D, ZOU R Q, XIA D G, PANG Q Q. Electrolyte solutions design for lithium-sulfur batteries[J]. Joule, 2021,5(9):2323-2364.

    14. [14]

      PAN Z Y, BRETT A J L, HE G J, PARKIN I P. Progress and perspectives of organosulfur for lithium-sulfur batteries[J]. Adv. Energy Mater., 2022,12(8)2103483.

    15. [15]

      PEI H Y, YANG Q, YU J K, SONG H Q, ZHAO S Y, WATERHOUSE G I N, GUO J L, LU S Y. Self-supporting carbon nanofibers with Ni- single- atoms and uniformly dispersed Ni- nanoparticles as scalable multifunctional hosts for high energy density lithium-sulfur batteries[J]. Small, 2022,18(27)2202037.

    16. [16]

      BEAK M, PARK S, KIM S, PARK J, JEONG S, THIRUMALRAJ B, JEONG G, KIM T, KWON K. Effect of Na from the leachate of spent Li-ion batteries on the properties of resynthesized Li-ion battery cathodes[J]. J. Alloy. Compd., 2021,873(25)159808.

    17. [17]

      LIU H Y, XU T, CAI C Y, LIU K, ZHANG M, DU H S, SI C L, ZHANG K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor[J]. Adv. Funct. Mater., 2022,32(26)2113082.

    18. [18]

      XU R F, YAN Y L, WANG X H, YU Z S, LIU Z Y, WANG J, YU W, ZHONG L S, XU Y H, YANG R. High specific capacity of Li3V2 (PO4)3/C glass-ceramic with ultralow carbon content[J]. Ceram. Int., 2024,50(13):22905-22913.

    19. [19]

      DENG R Y, WANG M, YU H Y, LUO S R, LI J H, CHU F L, LIU B, WU F X. Recent advances and applications toward emerging lithium-sulfur batteries: Working principles and opportunities[J]. Energy Environ. Mater., 2022,5(3):777-799.

    20. [20]

      LI J Y, ZHANG H W, LUO L Q, LI H, HE J Y, ZU H L, LIU L, LIU H, WANG F Y, SONG J J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2021,9(4):2205-2213.

    21. [21]

      WANG H L, LIU S Q, LI H J, LI M F, WU X T, ZHANG S H, YE L, HU X T, CHEN Y W. Green printing for scalable organic photovoltaic modules by controlling the gradient Marangoni flow[J]. Adv. Mater., 2024,362313098.

    22. [22]

      BAI Y Z, MA W Q, DONG W J, WU Y K, WANG X, HUANG F Q. In-situ-polymerized 1, 3-dioxolane solid-state electrolyte with space-confined plasticizers for high-voltage and robust Li/LiCoO2 batteries[J]. ACS Appl. Mater. Interfaces, 2023,15(22):26834-26842.

    23. [23]

      TANG H, YOU L, LIU J W, WANG S Q, WANG P Y, FENG C Q, GUO Z P. Integrated polypyrrole@sulfur@graphene aerogel 3D architecture via advanced vapor polymerization for high- performance lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019,11(20):18448-18455.

    24. [24]

      DAI X, LV G J, WU Z, WANG X, LIU Y, SUN J J, WANG Q C, XIONG X Y, LIU Y N, ZHANG C F, XIN S, CHEN Y Z, ZHOU T F. Flexible hierarchical Co- doped NiS2@CNF-CNT electron deficient interlayer with grass-roots structure for Li-S batteries[J]. Adv. Energy Mater., 2023,13(21)2300452.

    25. [25]

      JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009,8(6):500-506.

    26. [26]

      NAKAMURA N, AHN S, MOMMA T, OSAKA T. Future potential for lithium-sulfur batteries[J]. J. Power Sources, 2023,558232566.

    27. [27]

      LI H T, LI Y G, ZHANG L. Designing principles of advanced sulfur cathodes toward practical lithium-sulfur batteries[J]. SusMat, 2022,2(1):34-64.

    28. [28]

      HUANG S Z, WANG Z H, LIM Y V, WANG Y, L IY, ZHANG D H, YANG H Y. Recent advances in heterostructure engineering for lithium-sulfur batteries[J]. Adv. Energy Mater., 2021,11(10)2003689.

    29. [29]

      CAO Z X, GUO J, JIA J Y, ZHANG Z N, YIN Y H, YANG M G, YANG S T. In situ self-boosting catalytic synthesizing free-standing N, S rich transition metal sulfide/hierarchical CNF-CNT architectures enable high-performance lithium-sulfur batteries[J]. Electro- chim. Acta, 2022,422140549.

    30. [30]

      MAGNACCA G, GUERRETTA F, VIZINTIN A, BENZI P, VALSANIA M C, NISTICÒ R. Preparation, characterization and environmental/electrochemical energy storage testing of low-cost bio-char from natural chitin obtained via pyrolysis at mild conditions[J]. Appl. Surf. Sci., 2018,427:883-893.

    31. [31]

      ZHOU S Y, HU J Y, LIU S G, LIN J X, CHENG J, MEI T, WANG H B, LIAO H G, HUANG L, SUN S G. Biomimetic micro cell cathode for high performance lithium-sulfur batteries[J]. Nano Energy, 2020,72104680.

    32. [32]

      ZHONG Y, XIA X H, DENG S J, ZHAN J Y, FANG R Y, XIA Y, WANG X L, ZHANG Q, TU J P. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries[J]. Adv. Energy Mater., 2017,8(1)1701110.

    33. [33]

      LIU Y T, LIU S, LI G R, GAO X P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Adv. Mater., 2021,33(8)2003955.

    34. [34]

      ZHOU L, DANILOV D L, QIAO F, WANG J F, LI H T, EICHEL R A, NOTTEN P H L. Sulfur reduction reaction in lithium-sulfur batteries: Mechanisms, catalysts, and characterization[J]. Adv. Energy Mater., 2022,12(44)2202094.

    35. [35]

      LIANG Z W, SHEN J D, XU X J, LI F K, LIU J, YUAN B, YU Y, ZHU M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries[J]. Adv. Mater., 2022,34(30)2200102.

    36. [36]

      DAI X, WANG X, LV G J, WU Z, LIU Y, SUN J J, LIU Y N, CHEN Y Z. Defect-engineered sulfur vacancy modified NiCo2S4-x nanosheet anchoring polysulfide for improved lithium sulfur batteries[J]. Small, 2023,19(36)2302267.

    37. [37]

      WEI C B, HAN Y L, LIU H, GAN R H, LI Q Q, WANG Y L, HU P, MA C, SHI J L. Advanced lithium-sulfur batteries enabled by a SnS2-hollow carbon nanofibers flexible electrocatalytic membrane[J]. Carbon, 2021,184:1-11.

    38. [38]

      L Y E, ZHANG M G, GUO J. High-performance lithium-sulfur battery based on carbonized 3D MXene/T-CNF aerogel composite membrane[J]. Ionics, 2022,28(2):647-655.

    39. [39]

      ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011,3(1):71-85.

    40. [40]

      QI D M. Preparation of molybdenum-based nanocomposites based on natural cellulose substances and their lithium storage properties[D]. Hangzhou: Zhejiang University, 2017.

    41. [41]

      RESSLER T, JENTOFT R E, WIENOLD J, GÜNTER M M. In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3[J]. J. Phys. Chem. B, 2000,104(27):6360-6370.

    42. [42]

      MA H L, WANG W B, YU W, KONG F G, WANG S J, LIU K Y, ZHOU Z, WEI G J, WANG X H, LIU Y. Preparation of dispersible TEMPO-CNF ultrafine powder and its application in achieving superhydrophobicity[J]. Cellulose, 2025,32(4):2245-2260. doi: 10.1007/s10570-025-06408-y

    43. [43]

      DENG X C. Preparation of molybdenum-based composite electrode materials and their capacitance characteristics[D]. Nanchang: East China University of Technology, 2021.

    44. [44]

      LEI D, SHANG W Z, ZHANG X, LI Y P, QIAO S M, ZHONG Y P, DENG X Y, SHI X S, ZHANG Q, HAO C, SONG X D, ZHANG F X. Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries[J]. ACS Nano, 2021,15(12):20478-20488.

  • 加载中
    1. [1]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    5. [5]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    6. [6]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    10. [10]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    11. [11]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    12. [12]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    13. [13]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    14. [14]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    18. [18]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    19. [19]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return