Citation: Yang ZHOU, Lili YAN, Wenjuan ZHANG, Pinhua RAO. Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032 shu

Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties

  • Corresponding author: Pinhua RAO, raopinhua@sues.edu.cn
  • Received Date: 26 January 2025
    Revised Date: 23 June 2025

Figures(10)

  • Based on the study of the characteristics and mechanism of ammonia nitrogen (NH4+) adsorption by biogas residue biochar, we focused on the thermal regeneration of saturated biogas residue biochar, and investigated the influence mechanism of thermal regeneration parameters (regeneration temperature, regeneration time, heating rate, protective gas, and gas flow rate) on the adsorption performance of biochar. The adsorption capacity of NH4+ by biogas residue biochar could reach 19.12 mg·g-1, which was in line with the Langmuir model. The adsorption mechanism was mainly surface coordination and ion exchange reaction. Optimal hot regeneration parameters were as fllowed: the temprepure was 200 ℃, the protective gas was N2, the flow rate was 0.5 L·min-1, and the regeneration was carried out at a heating rate of 5 ℃ ·min-1 for 1 h. The initial adsorption and regeneration rate was 99.59%. After 10 adsorption-regeneration cycles, the adsorption and regeneration rate still reached 89.55%, and the weight loss rate was less than 5%. Characterization was carried out through various technical means such as thermogravi-metric infrared spectroscopy (TG-IR), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), specific surface area and porosity analysis, and scanning electron microscopy (SEM). The results showed that multiple cycles of thermal regeneration could destroy the oxygen-containing functional groups such as C=O, —OH, and —COOH on the surface of saturated biochar. Meanwhile, some adsorption sites were permanently occupied, resulting in a gradual decrease in the adsorption regeneration rate. Hot regeneration could achieve the thermal desorption of the vast majority of ammonia nitrogen in saturated biochar, effectively restoring the pore structure and adsorption sites of oxygen-containing functional groups on the surface of biochar.
  • 加载中
    1. [1]

      ALSAWY T, RASHAD E, EL-QELISH M, MOHAMMED R H. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment[J]. NPJ Clean Water, 2022,529.

    2. [2]

      ZOU X Q, FENG Y Z, MIN H, LIN D H, YANG K, WU W H. Highly efficient bioregeneration of high temperature- pyrolyzed biochar after trichloroethylene adsorption through biodegradation of dehalococcoides[J]. Chem. Eng. J., 2024,487150655.

    3. [3]

      PAK S H, JEON Y W. Effect of vacuum regeneration of activated carbon on volatile organic compound adsorption[J]. Environ. Eng. Res., 2017,22(2):169-174.

    4. [4]

      ZHANG R F, XIA S, BAO W, LI W X, HOU J F. Efficient removal of tetracycline and Cu2+ by honeycomb derived magnetic carbon: Adsorption mechanism and advanced oxidation regeneration mechanism[J]. Ecotox. Environ. Safe., 2024,275116225.

    5. [5]

      WANG Z W, ZHOU B J, LIU Z D, LI L, ZHOU K M, TIAN T, WU B B, FENG W T, SHAN Y X, XUE H Q, WANG Z. Ultrasonic regeneration of activated carbon in water plants and correlation of adsorption performance[J]. J. Water Process. Eng., 2024,62105376.

    6. [6]

      PI X X, SUN F, GAO J H, ZHU Y W, WANG L J, QU Z B, LIU H, ZHAO G B. Microwave irradiation induced high-efficiency regeneration for desulfurized activated coke: A comparative study with conventional thermal regeneration[J]. Energy Fuels, 2017,31(9):9693-9702.

    7. [7]

      YING X Y, KIM G S, HAN I, SHENG J Y, MEI Q W, KIM Y. High efficiency regeneration performance of exhausted activated carbon by superheated steam and comparison with conventional chemical regeneration method[J]. KSCE J. Civ. Eng., 2022,26(5):2058-2067.

    8. [8]

      NARBAITZ R M, MCEWEN J. Electrochemical regeneration of field spent GAC from two water treatment plants[J]. Water Res., 2012,46(15):4852-4860.

    9. [9]

      NISTRATOV A V, KLIMENKO N N, PUSTYNNIKOV I V, LONG K V. Thermal regeneration and reuse of carbon and glass fibers from waste composites[J]. Emerging Sci. J., 2022,6(5):2022-984.

    10. [10]

      AFSHAR M, MOFATTEH S. Biochar for a sustainable future: Environmentally friendly production and diverse applications[J]. Results Eng., 2024,23102433.

    11. [11]

      DONG L H, LIU W J, JIANG R F, WANG Z S. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process[J]. Bioresour. Technol., 2014,171:260-264.

    12. [12]

      CUI X Q, WANG J T, WANG X T, DU G Y, KHAN K Y, YAN B B, CHENG Z J, CHEN G Y. Pyrolysis of exhausted hydrochar sorbent for cadmium separation and biochar regeneration[J]. Chemosphere, 2022,306135546.

    13. [13]

      CHEN X J, GUO Y X, ZHANG H R, CHENG F Q, JIAO Z L. Coke powder improving the performance of desulfurized activated carbon from the cyclic thermal regeneration[J]. Chem. Eng. J., 2022,448137459.

    14. [14]

      NIE X, CHEN Q, ZHENG S Y, LÜ M, ZHONG J F, ZENG G D. Study on the behavior of thermal regeneration process of coal-based ineffective biological activated carbon[J]. Journal of China Coal Society, 2021,46(S2):1050-1057.

    15. [15]

      ZHENG S Y. Experimental study on pyrolysis and regeneration process of saturated biological activated carbon and low pressure arc initiation[D]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2022.

    16. [16]

      DUAN X T, CHEN X, SHI L L, CAO Y R, LIANG Y C, WANG T Y, HUANG C, CAO Y X. Functionality- dependent removal efficiency and mechanisms of polystyrene microplastics by a robust magnetic biochar[J]. J. Environ. Chem., 2025,,13(2)115509.

    17. [17]

      XING Y C, SHEN X L, NIU Q J, DUAN H W, TANG C S, TAO B, CHEN S Y, SHANGGUAN Q Y, FENG B, YU H Z, TANG Z, JI G Y. Thermally and chemically stable Fe/Mg- layered double oxidesbiochar for enhanced polystyrene nanoplastic adsorption and sustainable recycling[J]. Chem. Eng. J., 2025,508160918.

    18. [18]

      GREINER B G, SHIMABUKU K K, SUMMERS R S. Influence of biochar thermal regeneration on sulfamethoxazole and dissolved organic matter adsorption[J]. Environ. Sci. - Wat. Res. Technol., 2018,4(2):169-174.

    19. [19]

      DUTTA T, KIM T, VELLINGIRI K, TSANG D C W, SHON J R, KIM K H, KUMAR S. Recycling and regeneration of carbonaceous and porous materials through thermal or solvent treatment[J]. Chem. Eng. J., 2019,364:514-529.

    20. [20]

      LIN J, ZHANG Q, XIA H, CHENG S. Effect of pyrolysis temperature on pyrolysis of pine saw dust and application of bio-char[J]. Int. J. Environ. Sci. Technol., 2022,19:1977-1984.

    21. [21]

      ALGHASHM S, QIAN S Y, HUA Y F, WU J, ZHANG W T, CHEN W H, SHEN G Q. Properties of biochar from anaerobically digested food waste and its potential use in phosphorus recovery and soil amendment[J]. Sustainability, 2018,10(12)4692.

    22. [22]

      LI D Y, XIAO Y, XI B D, GONG T C, ZHANG T, HUANG N N, LI W X, YANG T X. Enhanced phenol removal by permanganate with biogas residue biochar: Catalytic role of in-situ formation of manganese dioxide and activation of biochar[J]. Biochar, 2023,5(1)54.

    23. [23]

      TANG Y, ALAM M S, KONHAUSER K O, ALESSI D S, XU S N, TIAN W J, LIU Y. Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater[J]. J. Clean. Prod., 2019,209:927-936.

    24. [24]

      ZHAO Z D, ZHOU W J. Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole[J]. Environ. Pollut., 2019,245:208-208.

    25. [25]

      FERNANDES B C C, MENDES K F, DIAS A F, CALDEIRA V P D, TEÓFILO T M D, SILVA T S, MENDONÇA V, SOUZA M D, SILVA D V. Impact of pyrolysis temperature on the properties of eucalyptus wood-derived biochar[J]. Materials, 2020,13(24)5841.

    26. [26]

      YU L L, ZHONG Q. Preparation of adsorbents made from sewage sludges for adsorption of organic materials from wastewater[J]. J. Hazard. Mater., 2006,137(1):359-366.

    27. [27]

      LI S M, BARRETO V, LI R W, CHEN G, HSIEH Y P. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures[J]. J. Anal. Appl. Pyrolysis, 2018,133:133-146.

    28. [28]

      VU T M, TRINH V T, DOAN D P, VAN H T, NGUYEN T V, VIGNESWARAN S, NGO H H. Removing ammonium from water using modified corncob-biochar[J]. Sci. Total Environ., 2017,579:612-619.

    29. [29]

      SONG H H, WANG J M, GARG A, LIN S. Exploring mechanism of five chemically treated biochars in adsorbing ammonium from waste-water: Understanding role of physiochemical characteristics[J]. Biomass Convers. Biorefinery, 2024,2024(5):5847-5847.

    30. [30]

      ZENG Z, ZHANG S D, LI T Q, ZHAO F L, HE Z L, ZHAO H P, YANG X E, WANG H L, ZHAO J, RAFIQ M T. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants[J]. J. Zhejiang Univ. - Sci. B, 2013,14(12):1152-1161.

    31. [31]

      XUE S, ZHANG X, NGO H H, GUO W S, WEN H T, LI C C, ZHANG Y C, MA C J. Food waste based biochars for ammonia nitrogen removal from aqueous solutions[J]. Bioresour. Technol., 2019,292121927.

    32. [32]

      WU R F, ZHAI X, DAI K, LIAN J P, CHENG L P, WANG G, LI J Z, YANG C, YIN Z C, LI H J, YANG X E. Synthesis of acidified magnetic sludge-biochar and its role in ammonium nitrogen removal: Perception on effect and mechanism[J]. Sci. Total Environ., 2022,832154780.

    33. [33]

      KIM G, KIM Y M, KIM S M, CHO H U, PARK J M. Magnetic steel slag biochar for ammonium nitrogen removal from aqueous solution[J]. Energies, 2021,14(9)2682.

    34. [34]

      IZNAGA I R, GÓMEZ A, FUENTES G R, AGUILAR A B, BALLAN J S. Natural clinoptilolite as an exchanger of Ni2+ and NH4+ ions under hydrothermal conditions and high ammonia concentration[J]. Microporous Mesoporous Mat., 2002,53(1/2/3):71-80.

    35. [35]

      TAKAHASHI A, TANAKA H, PARAJULI D, NAKAMURA T, MINAMI K, SUGIYAMA Y, HAKUTA Y, OHKOSHI S, KAWAMOTO T. Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds[J]. J. Am. Chem. Soc., 2016,138:26376-6379.

    36. [36]

      SHUI Z Y, YAO L, PU X Q, YANG L, JIANG W J, JIANG X. Synthesis of a novel zeolite-activated carbon composite using lithium- silicon-powder waste for ammonia-nitrogen and methylene blue removal[J]. Ind. Eng. Chem. Res., 2020,59(33)146.

    37. [37]

      TAN T. Construction of nitrogen-containing model compounds in sewage sludge and study on nitrogen conversion pathway during pyrolysis[D]. Harbin: Harbin Institute of Technology, 2011.

    38. [38]

      CUI Y, BAKER A P, XU X, XIANG Y, WANG L, LAVORGNA M, WU J W. Enhancement of Nafion based membranes for direct methanol fuel cell applications through the inclusion of ammonium-X zeolite fillers[J]. J. Power Sources, 2015,294:369-376.

    39. [39]

      WU Y, CHANG C C, GUAN C Y, CHANG C C, LI J W, CHANG C Y, YU C P. Enhanced removal of ammonium from the aqueous solution using a high-gravity rotating packed bed loaded with clinoptilolite[J]. Sep. Purif. Technol., 2019,221:378-384.

    40. [40]

      KHRAISHEH M A M, AL-GHOUTI M A, ALLEN S J, AHMAD M N. Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite[J]. Water Res., 2005,39(5):922-932.

    41. [41]

      FENG L Y, QIU T S, YAN H S, LIU C, CHEN Y N, ZHOU X W, QIU S. Removal of ammonia nitrogen from aqueous media with lowcost adsorbents: A review[J]. Water Air Soil Pollut., 2023,234(4)280.

    42. [42]

      PATWA D, BORDOLOI U, DUBEY A A, RAVI K, SEKHARAN S, KALITA P. Energy-efficient biochar production for thermal backfill applications[J]. Sci. Total Environ., 2022,833155253.

    43. [43]

      WANG X, SHENG L L, YANG X Y. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp. [J]. Bioresour. Technol., 2017, 229: 119-125

    44. [44]

      ZHANG Y K, MA Z Y, YAN J H. Study on pyrolysis characteristics of pork by thermogravimetric infrared combined technique[J]. Journal of Agro-Environment Science, 2018,37(9):2052-2060.

    45. [45]

      CHEN M, WANG F, ZHANG D L, YI W M, LIU Y. Effects of acid modification on the structure and adsorption NH4+-N properties of biochar[J]. Renew. Energy, 2021,169:1343-1350.

    46. [46]

      FENG L Y, QIU T S, LIU C. Study on adsorption of ammonia nitrogen by sodium-modified kaolin at calcination temperature[J]. Environ. Sci. Pollut., 2023,30(43):97063-97077.

    47. [47]

      LI Y, JIN H L, LIU W B, SU H, LU Y, LI J F. Study on regeneration of waste powder activated carbon through pyrolysis and its adsorption capacity of phosphorus[J]. Sci. Rep., 2018,8(1)778.

    48. [48]

      WANG S, TANG Y F, WANG J S. Pyrolysis and regeneration of waste activated carbon in organic synthesis[J]. Journal of Wuhan Institute of Technology, 2021,43(6):597-602.

    49. [49]

      XU M X, MENG X X, JI H W, YANG J, DI J Y, WU Y C, LU Q. Evolution of pyrolysis char during the recovery of carbon fiber reinforced polymer composite and its effects on the recovered carbon fiber[J]. J. Environ. Chem., 2024,12(2)112214.

    50. [50]

      NIKNADDAF S, ATKINSON J D, GHOLIDOUST A, FAYAZ M, AWAD R, HASHISHO Z, PHILLIPS J H, ANDERSON J E, NICHOLS M. Influence of purge gas flow and heating rates on volatile organic compound decomposition during regeneration of an acti- vated carbon fiber cloth[J]. Ind. Eng. Chem. Res., 2020,59(8):3521-3521.

    51. [51]

      REN Z J, FU X L, ZHANG G M, LI Y Y, QIN Y, WANG P F, LIU X Y, LV L Y. Study on performance and mechanism of enhanced low-concentration ammonia nitrogen removal from low-temperature wastewater by iron-loaded biological activated carbon filter[J]. J. Environ. Manage., 2022,301301.

    52. [52]

      ROMÁN S, LEDESMA B, GONZÁLEZ J F, AL-KASSIR A, ENGO G, ÁLVAREZ-MURILLO A. Two stage thermal regeneration of exhausted activated carbons[J]. J. Anal. Appl. Pyrolysis, 2013,103:201-206.

    53. [53]

      NIKNADDAF S, ATKINSON J D, SHARIATY P, LASHAKI M J, HASHISHO Z, PHILLIPS J H, ANDERSON J E, NICHOLS M. Heel formation during volatile organic compound desorption from activated carbon fiber cloth[J]. Carbon, 2016,96:131-138.

    54. [54]

      PIKUNIC J, LLEWELLYN P, PELLENQ R, GUBBINS K E. Argon and nitrogen adsorption in disordered nanoporous carbons: Simulation and experiment[J]. Langmuir, 2005,21(10):4431-4440.

    55. [55]

      WEI F, CAO J P, ZHAO X Y, REN J, WANG J X, FAN X, WEI X Y. Nitrogen evolution during fast pyrolysis of sewage sludge under inert and reductive atmospheres[J]. Energy Fuels, 2017,31(7):7191-7196.

    56. [56]

      FEIZBAKHSHAN M, HASHISHO Z, CROMPTON D, ANDERSON J E, NICHOLS M. Effect of activated carbon's pore size distribution on oxygen induced heel build-up[J]. J. Hazard. Mater, 2023,457126905.

    57. [57]

      ZHENG Z Z, CHEN M M, ZHENG X W, LIU K L, YANG T, ZHANG J Z. Hydrogen spillover facilitating reduction of surface oxygen species on porous carbon[J]. ChemistrySelect, 2021,6(9):2178-2183.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    6. [6]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    7. [7]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    8. [8]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    11. [11]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    12. [12]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    13. [13]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    14. [14]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    15. [15]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    16. [16]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    19. [19]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    20. [20]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return