Citation: Tong WANG, Qinyue ZHONG, Qiong HUANG, Weimin GUO, Xinmei LIU. Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011 shu

Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance

  • Corresponding author: Xinmei LIU, xinmeiliu628@163.com
  • Received Date: 9 January 2025
    Revised Date: 16 June 2025

Figures(8)

  • Flower-like Fe-doped ZnO (ZnFeO) microspheres were synthesized via a hydrothermal method, and Mn-doped carbon quantum dots (Mn-CQDs) were uniformly loaded onto the surface of ZnFeO through physical deposition, successfully constructing Mn-CQDs/ZnFeO heterojunction composites. The relationship between the structure and photocatalytic performance of Mn-CQDs/ZnFeO was investigated using X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet visible diffuse reflection spectroscopy (UV-Vis DRS), and N2 adsorption-desorption analysis. The results showed that Mn doping significantly enhanced the light absorption range and photoluminescence (PL) stability of CQDs. The synergistic interaction between Mn-doped CQDs and Fe-doped ZnO extended the visible-light absorption edge of Mn-CQDs/ZnFeO, improved absorption intensity, and promoted the separation of photogenerated electron (e-)-hole (h+) pairs between the interfaces of heterojunction, leading to enhanced photocatalytic performance. Under xenon lamp irradiation for 80 min, the degradation rate of methyl orange (MO) reached 91.4%, and remained at 80.7% after four consecutive cycles over Mn-CQDs/ZnFeO heterojunction. The radical capture experiment confirmed that the main active species that participated in MO degradation were both the photogenerated h+ and superoxide radical (·O2-).
  • 加载中
    1. [1]

      MINTZ K J, BARTOLI M, ROVERE M, ZHOU Y Q, HETTIARACHCHI S D, PAUDYAL S, CHEN J Y, DOMENA J B, LIYANAGE P Y, SAMPSON R, KHADKA D, PANDEY R R, HUANG S X, CHUSUEI C C, TAGLIAFERRO A, LEBLANC R M. A deep investigation into the structure of carbon dots[J]. Carbon, 2021,173:433-447.

    2. [2]

      HUANG S Q, ZHANG Q, LIU P Y, MA S J, XIE B, YANG K, ZHAO Y P. Novel up-conversion carbon quantum dots/α-FeOOH nanohybrids eliminate tetracycline and its related drug resistance in visible-light responsive Fenton system[J]. Appl. Catal. B-Environ., 2020,263118336.

    3. [3]

      NIE Y C, YU F, WANG L C, XING Q J, LIU X, PEI Y, ZOU J P, DAI W L, LI Y, SUIB S L. Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: Performance and mechanism[J]. Appl. Catal. B-Environ., 2018,227:312-321.

    4. [4]

      CHEN P, ZHANG X Z, CHENG Z L, XU Q, ZHANG X, LIU Y, QIU F C. Peroxymonosulfate (PMS) activated by magnetic Fe3O4 doped carbon quantum dots (CQDs) for degradation of rhodamine B (RhB) under visible light: DFT calculations and mechanism analysis[J]. J. Clean. Prod., 2023,426139202.

    5. [5]

      ABD-RANI U, NG L Y, NG C Y, MAHMOUDI E. A review of carbon quantum dots and their applications in wastewater treatment[J]. Adv. Colloid Interface Sci., 2020,278102124.

    6. [6]

      RAMAR V, MOOTHATTU S, BALASUBRAMANIAN K. Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: A green way to remove pollution[J]. Sol. Energy, 2018,169:120-127.

    7. [7]

      ZHAO F X, LI X Y, ZUO M X, LIANG Y S, QIN P F, WANG H, WU Z B, LUO L, LIU C, LENG L J. Preparation of photocatalysts decorated by carbon quantum dots (CQDs) and their applications: A review[J]. J. Environ. Chem. Eng., 2023,11(2)109487.

    8. [8]

      NIZAM N U M, HANAFIAH M M, MAHMOUDI E, MOHAMMAD A W. Synthesis of highly fluorescent carbon quantum dots from rubber seed shells for the adsorption and photocatalytic degradation of dyes[J]. Sci. Rep., 2023,13(1)12777.

    9. [9]

      LI Y, SUN Y R, HU T Y, LI L, LIU Y T, GAO X, CAO Z K, WANG L Q, CAO Y Z. 3DOM SrTiO3-TiO2 composite material modified by CQDs with up-conversion characteristics: Enhanced photocatalytic degradation and photolysis of water for hydrogen production[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2023,674131896.

    10. [10]

      VELUMANI A, SENGODAN P, ARUMUGAM P, RAJENDRAN R, SANTHANAM S, PALANISAMY M. Carbon quantum dots supported ZnO sphere based photocatalyst for dye degradation application[J]. Curr. Appl. Phys., 2020,20(10):1176-1184.

    11. [11]

      SHARMA S, MEHTA S K, IBHADON A O, KANSAL S K. Fabrication of novel carbon quantum dots modified bismuth oxide (α-Bi2O3/C-dots): Material properties and catalytic applications[J]. J. Colloid Interface Sci., 2019,533:227-237.

    12. [12]

      TONG S J, ZHOU J, DING L, ZHOU C, LIU Y, LI S Q, MENG J, ZHU S L, CHATTERJEE S, LIANG F. Preparation of carbon quantum dots/TiO2 composite and application for enhanced photodegradation of rhodamine B[J]. Colloids Surf. A - Physicochem. Eng. Asp., 2022,648129342.

    13. [13]

      ARUL V, CHANDRASEKARAN P, SIVARAMAN G, SETHURAMAN M G. Efficient green synthesis of N, B co-doped bright fluorescent carbon nanodots and their electrocatalytic and bioimaging applications[J]. Diam. Relat. Mater., 2021,116108437.

    14. [14]

      BENJAMIN I, EKPONG B O, ABDULLAH H Y, AGWAMBA E C, ANYAMBULA IA, ADEDAPO S A, LOUIS H. Surface modification of transition metals (TM: Mn, Fe, Co) decorated Pt-doped carbon quantum dots (Pt@CQDs) nanostructure as nonenzymatic sensors for nitrotyrosine (a biomarker for Alzheimer): Perspective from density functional theory[J]. Mater. Sci. Semicond. Process., 2024,174108245.

    15. [15]

      ARUL V, SETHURAMAN M G. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications[J]. Opt. Mater., 2018,78:181-190.

    16. [16]

      ARUL V, SETHURAMAN M G. Hydrothermally green synthesized nitrogen-doped carbon dots from Phyllanthus emblica and their catalytic ability in the detoxification of textile effluents[J]. ACS Omega, 2019,4(2):3449-3457.

    17. [17]

      ARUL V, CHANDRASEKARAN P, SETHURAMAN M G. Reduction of Congo red using nitrogen doped fluorescent carbon nanodots obtained from sprout extract of Borassus flabellifer[J]. Chem. Phys. Lett., 2020,754137646.

    18. [18]

      TADESSE A, HAGOS M, BELACHEW N, MURTHY H A, BASAVAIAH K. Enhanced photocatalytic degradation of rhodamine B, antibacterial and antioxidant activities of green synthesised ZnO/N doped carbon quantum dot nanocomposites[J]. New J. Chem., 2021,45(46):21852-21862.

    19. [19]

      JIN Y L, TANG W W, WANG J Y, REN F, CHEN Z Y, SUN Z F, REN P G. Construction of biomass derived carbon quantum dots modified TiO2 photocatalysts with superior photocatalytic activity for methylene blue degradation[J]. J. Alloy. Compd., 2023,932167627.

    20. [20]

      HE H, YANG Y A, LI J F, LAI X F, CHEN X F, WANG L, ZHANG W T, HUANG Y, ZHANG P C. Enhanced fluorescence of Zn-doped carbon quantum dots using zinc citrate chelate as precursor for fluorescent sensor applications[J]. Mater. Sci. Eng. B-Adv. Funct. Solid- State Mater., 2021,264114955.

    21. [21]

      WANG Y, ZHANG Y, JIA M Y, MENG H, LI H, GUAN Y F, FENG L. Functionalization of carbonaceous nanodots from Mn-coordinating functional knots[J]. Chem. -Eur. J., 2015,21(42):14843-14850.

    22. [22]

      LI X C, FU Y Z, ZHAO S J, XIAO J F, LAN M H, WANG B H, ZHANG K, SONG X Z, ZENG L T. Metal ions-doped carbon dots: Synthesis, properties, and applications[J]. Chem. Eng. J., 2022,430133101.

    23. [23]

      QI J, ZHANG P F, ZHANG T, ZHANG R, ZHANG Q M, WANG J, ZONG M R, GONG Y J, LIU X M, WU X P, LI B. Metal-doped carbon dots for biomedical applications: From design to implementation[J]. Heliyon, 2024,10(11)e32133.

    24. [24]

      DAS S, MONDAL U S, PAUL S. Highly fluorescent metal doped carbon quantum dots prepared from hen feather demonstrating pH-dependent dual sensing of 4-nitrophenol and Hg2+ ion[J]. Appl. Surf. Sci., 2023,638157998.

    25. [25]

      XU Q, SU R G, CHEN Y S, SREENIVASAN S T, LI N, ZHENG X S, ZHU J F, PAN H B, LI W J, XU C M, XIA Z H, DAI L M. Metal charge transfer doped carbon dots with reversibly switchable, ultrahigh quantum yield photoluminescence[J]. ACS Appl. Nano Mater., 2018,1(4):1886-1893.

    26. [26]

      SINGH H, DHAR D, DAS S, HALDER M. Methotrexate-loaded manganese nitrogen dual-doped carbon quantum dots as targeted nano drug-delivery system for potential use in cancer theranostics[J]. J. Photochem. Photobiol. A-Chem., 2024,455115692.

    27. [27]

      WANG Y, MENG H, JIA M Y, ZHANG Y, LI H, FENG L. Intraparticle FRET of Mn(Ⅱ)-doped carbon dots and its application in discrimination of volatile organic compounds[J]. Nanoscale, 2016,8(39):17190-17195.

    28. [28]

      ABU-MELHA S. Metal-doped carbon quantum dots for catalytic discoloration of methylene blue in day light[J]. J. Photochem. Photobiol. A-Chem., 2024,447115233.

    29. [29]

      LIU X M, HUANG W Y, HUANG G X, FU F M, CHENG H, GUO W M, LI J S, WU H D. Synthesis of bilayer ZnO nanowire arrays: Morphology evolution, optical properties and photocatalytic performance[J]. Ceram. Int., 2015,41(9):11710-11718.

    30. [30]

      LIU X M, HUANG W Y, CHENG H, HUANG B B, BAI D W, FU F M, WU H D, LI L J. In-situ observation of hydrothermal growth of ZnO nanowires on patterned Zn substrate and their photo catalytic performance[J]. Appl. Surf. Sci., 2015,2015:240-248.

    31. [31]

      LIU X M, ZHONG Q Y, GUO W M, ZHANG W K, YA Y Y, XIA Y Q. Novel platycladus orientalis-shaped Fe-doped ZnO hierarchical nanoflower decorated with Ag nanoparticles for photocatalytic application[J]. J. Alloy. Compd., 2021,880160501.

    32. [32]

      SAÁEDI A, YOUSEFI R, JAMALI-SHEINI F, ZAK A K, CHERAGHIZADE M, MAHMOUDIAN M R, BAGHCHESARA M A, DEZAKI A S. XPS studies and photocurrent applications of alkalimetals-doped ZnO nanoparticles under visible illumination conditions[J]. Physica E, 2016,79:113-118.

    33. [33]

      LEMINE O M, MODWI A, HOUAS A, DAI J H, SONG Y, ALSHAMMARI M, ALANZI A, ALHATHLOOL R, BOUOUDINA M. Room temperature ferromagnetism in Ni, Fe and Ag co-doped Cu-ZnO nanoparticles: An experimental and first-principles DFT study[J]. J. Mater. Sci.-Mater. Electron., 2018,29:14387-14395.

    34. [34]

      WANG Y Q, SU L, LIU L, TIAN Z M, CHANG T Q, WANG Z, YIN S Y, YUAN S L. Ferromagnetism in Fe-doped ZnO bulk samples with additional Cu doping[J]. Phys. Status Solidi A, 2010,207(11):2553-2557.

    35. [35]

      LU Y Q, XU H, WEI S X, JIANG F Y, ZHANG J M, GE Y Y, LI Z L. In situ doping lignin-derived carbon quantum dots on magnetic hydrotalcite for enhanced degradation of Congo red over a wide pH range and simultaneous removal of heavy metal ions[J]. Int. J. Biol. Macromol., 2023,239124303.

    36. [36]

      GAO H J, ZHENG C X, YANG H, NIU X W, WANG S F. Construction of a CQDs/Ag3PO4/BiPO4 heterostructure photocatalyst with enhanced photocatalytic degradation of rhodamine B under simulated solar irradiation[J]. Micromachines, 2019,10(9)557.

    37. [37]

      XUE S Y, WU C Z, PU S Y, HOU Y Q, TONG T, YANG G, WANG Z M, BAO J M. Direct Z-scheme charge transfer in heterostructured MoO3/g-C3N4 photocatalysts and the generation of active radicals in photocatalytic dye degradations[J]. Environ. Pollut., 2019,250:338-345.

  • 加载中
    1. [1]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    2. [2]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    5. [5]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    8. [8]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    10. [10]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    11. [11]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    15. [15]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    17. [17]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    18. [18]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return