Citation: Youbo HU, Donggang LI, Changhua SUN, Zhenzhong LU, Songjun GU. Coordination polymers based on anthracene- and pyrene-derived ligands: Crystal structure, fluorescent property, and framework isomerization[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1681-1688. doi: 10.11862/CJIC.20250004 shu

Coordination polymers based on anthracene- and pyrene-derived ligands: Crystal structure, fluorescent property, and framework isomerization

Figures(6)

  • Six coordination polymers based on 9, 10-di(pyridine-4-yl)-anthracene (DPA) and 1, 6-di(1H-imidazol-1-yl)pyrene (DIP) were obtained by solvothermal reactions. {[Zn(DPA)Cl2]·DMF·2H2O}n (1) and {[Zn1.5(DPA)1.5Cl3]·5H2O}n (2) are framework isomers, which both contain zigzag chains formed by DPA, Zn2+, and Cl-. The zigzag chains in 1 are further assembled by C—H…Cl interactions into layers, and these layers exhibit two different orientations, displaying a rare 2D to 3D interpenetration mode. The zigzag chains in 2 are parallelly arranged. {[Zn3(DPA)3Br6]·2DMF·1.5H2O}n (3) is isostructural to 2. 3 was obtained using ZnBr2 instead of ZnCl2.[M(DPA) (formate)2(H2O)2]n[M=Co (4), Cu (5)] are isostructural, contain chain structures formed by DPA, Cu2+/Co2+, and formate ions, which were formed in situ in the solvothermal reaction. {[Zn(DIP)2Cl]ClO4}n (6) contains a layer structure formed by DIP and Zn2+. Free DPA and DIP ligands exhibited high fluorescence at room temperature, and coordination polymers 3 and 6 displayed enhanced fluorescent emissions.
  • 加载中
    1. [1]

      FURUKAWA H, CORDOVA K E, O'KEEFFE M, YAGHI O M. The chemistry and applications of metal-organic frameworks[J]. Science, 2013,341(6149)1230444.

    2. [2]

      LIU J W, CHEN L F, CUI H, ZHANG J Y, ZHANG L, SU C Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chem. Soc. Rev., 2014,43:6011-6061.

    3. [3]

      WANG W T, XU Y, TANG Y Q, LI Q. Self-assembled metal complexes in biomedical research[J]. Adv. Mater., 2024,37(9)2416122.

    4. [4]

      XIAO C, TIAN J D, CHEN Q H, HONG M C. Water-stable metal-organic frameworks (MOFs): Rational construction and carbon dioxide capture[J]. Chem. Sci., 2024,15:1570-1610.

    5. [5]

      LUSTING W P, MUKHERJEE S, RUDD N D, DESAI A V, LI J, GHOSH S K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications[J]. Chem. Soc. Rev., 2017,46:3242-3285.

    6. [6]

      WANG Y Q, YIN X B. Persistent luminescence materials for imaging and therapeutic applications[J]. Coord. Chem. Rev., 2025,522216192.

    7. [7]

      CHEN P K, LI Q C, GRINDY S, HOLTEN-ANDERSEN N. White light emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties[J]. J. Am. Chem. Soc., 2015,137(36):11590-11593.

    8. [8]

      WU N, BO C M, GUO S W. Luminescent Ln-MOFs for chemical sensing application on biomolecules[J]. ACS Sens., 2024,9(9):4402-4424.

    9. [9]

      WANG H S. Metal-organic frameworks for biosensing and bioimaging applications[J]. Coord. Chem. Rev., 2017,349:139-155.

    10. [10]

      FENG X, WANG X H, REDSHAW C, TANG B Z. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application[J]. Chem. Soc. Rev., 2023,52:6715-6753.

    11. [11]

      HALDAR R, PRASAD K, SAMANTA P K, PATI S, MAJI T K. Luminescent metal-organic complexes of pyrene or anthracene chromophores: Energy transfer assisted amplified exciplex emission and Al3+ sensing[J]. Cryst. Growth Des., 2016,16(1):82-91.

    12. [12]

      LUO J W, ZHAO B, ZHANG S L, JIA Y F, LIU J. Detection of Fe3+ and Cu2+ by fluorescence probe of pyrazoline derivatives with 9-anthralaldehyde as fluorescent group[J]. Chinese J. Inorg. Chem., 2021,37(3):421-430.

    13. [13]

      MA X F, MI P F, BAO S S, ZHENG L M. Effect of doping on the photodimerization reaction and the modulation of magneto-optical properties of erbium- and neodymium-anthracene complexes[J]. Chinese J. Inorg. Chem., 2024,40(1):270-280.

    14. [14]

      NIE H X, ZHANG B, LIU Y M, YU M H, CHANG Z. Subtle structural engineering of a coordination polymer host for the fluorescence modulation of host-guest donor-acceptor systems[J]. Inorg. Chem. Front., 2023,106229.

    15. [15]

      XU Z X, LI L F, BAI X L. Helical coordination polymers based on tetra-coordinated Co(Ⅱ): Syntheses, structures and photocatalytic CO2 reduction reaction[J]. Chinese J. Inorg. Chem., 2020,36(8):1430-1436.

    16. [16]

      HUANG Z W, HU K Q, LI X B, BIN Z N, WU Q Y, ZHANG Z H, GUO Z J, WU W S, CHAI Z F, MEI L, SHI W Q. Thermally induced orderly alignment of porphyrin photoactive motifs in metal-organic frameworks for boosting photocatalytic CO2 reduction[J]. J. Am. Chem. Soc., 2023,145(32):18148-18159.

    17. [17]

      AYYAVOO K, VELUSAMY P. Pyrene based materials as fluorescent probes in chemical and biological fields[J]. New J. Chem., 2021,45:10997-11017.

    18. [18]

      VASYLEVAKYI S I, REGET K, RUGGI A, PETOUD S, PIGUET C, FROMM K M. Cis- and trans-9, 10-di(1H-imidazol-1-yl)-anthracene based coordination polymers of Zn and Cd, synthesis, crystal structures and luminescence properties[J]. Dalton Trans., 2018,47:596-607.

    19. [19]

      LIU T F, LV J, GUO Z G, PROSERPIO D M, CAO R. New metal-organic framework with uninodal 4-connected topology displaying interpenetration, self-catenation, and second-order nonlinear optical response[J]. Cryst. Growth Des., 2010,10(4):1489-1491.

    20. [20]

      GHEORGHE A, REUS S, KOENIS M, DUBBELDAM D, WOUTERSEN S, TANASE S. Role of additives and solvents in the synthesis of chiral isoreticular MOF-74 topologies[J]. Dalton Trans., 2021,50:12159-12167.

    21. [21]

      LIU S X, WANG C M, ZHAI H J, LI D H. Hydrolysis of N, N-dimethylformamide catalyzed by the Keggin H3[J]. J. Mol. Struct., 2003,654:215-221.

    22. [22]

      BROW R S, BENNET A J, SLEBOCKA-TILK H. Recent perspectives concerning the mechanism of H3O+- and OH--promoted amide hydrolysis[J]. Accounts Chem. Res., 1992,25:481-488.

    23. [23]

      COTTINEAU T, RICHARD-PLOUET M, MEVELLEC J Y, BROHAN L. Hydrolysis and complexation of N, N-dimethylformamide in new nanostructured titanium oxide hybrid organic-inorganic sols and gel[J]. J. Phys. Chem. C, 2011,115(25):12269-12274.

    24. [24]

      NOLI N K, CONGIU M, RAMADAN A J, FEARN S, MCMEEKIN D P, PATEL J B, JOHNSON M B, WENGER B, SNAITH H J. Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics[J]. Joule, 2017,1(2):328-343.

  • 加载中
    1. [1]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    2. [2]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    3. [3]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    4. [4]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    5. [5]

      Xiaonan LIHui HANYihan ZHANGJing XIONGTingting GUOJuanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    8. [8]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    12. [12]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    13. [13]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    14. [14]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    15. [15]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    16. [16]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    17. [17]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    18. [18]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    19. [19]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return