Citation: Yifan ZHAO, Qiyun MAO, Meijing GUO, Guoying ZHANG, Tongliang HU. Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001 shu

Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production

  • Corresponding author: Tongliang HU, tlhu@nankai.edu.cn
  • Received Date: 1 January 2025
    Revised Date: 26 May 2025

Figures(10)

  • A direct Z-scheme 3D Bi2MoO6/Bi2S3 heterojunction with excellent photocatalytic performance for hydrogen (H2) production from water splitting was successfully fabricated by a simple hydrothermal ion exchange method. The composition, morphology, and microstructure were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and N2 adsorption-desorption test. The results showed that the small solubility product of Bi2S3 is conducive to the in-situ conversion of Bi2MoO6 to Bi2S3, and the porous microsphere structure of Bi2MoO6 is conducive to ion transport, so it is easy to form multi-site heterojunctions. UV-Vis-NIR diffuse reflectance spectra (DRS) indicates that the composite harvests a wide range of solar spectrum up to 1 800 nm. Photoluminescence, transient photocurrent response, and electrochemical impedance spectra confirm an accelerated charge generation and migration. The heterojunction overcame the low conduction band potential of bare Bi2MoO6 and the optimal photocatalytic H2 production rate reached 109.0 μmol·g-1·h-1 without using any noble metal cocatalyst. Based on DRS and Mott-Schottky measurements, it can be reasonably deduced that a Z-scheme heterojunction was constructed between Bi2MoO6 and Bi2S3.
  • 加载中
    1. [1]

      ZONG X, YAN H J, WU G P, MA G J, WEN F Y, WANG L, LI C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J]. J. Am. Chem. Soc., 2008, 130: 7176-7177  doi: 10.1021/ja8007825

    2. [2]

      ZHAO F L, FENG Y Y, WANG Y, ZHANG X, LIANG X J, LI Z, ZHANG F, WANG T, GONG J L, FENG W. Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO[J]. Nat. Commun., 2020, 11: 1443  doi: 10.1038/s41467-020-15262-4

    3. [3]

      SINGH A K, DAS C, INDRA A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride[J]. Coord. Chem. Rev., 2022, 465: 214516  doi: 10.1016/j.ccr.2022.214516

    4. [4]

      RUAN L Y, WANG X W, WANG T Y, REN Z H, CHEN Y, ZHAO R Y, ZHOU D K, FU G J, LI S, GAO L, LU Y H, WANG Z Y, TIAN H, KONG X Q, HAN G A. Surface defect-controlled growth and high photocatalytic H2 production efficiency of anatase TiO2 nanosheets[J]. ACS Appl. Mater. Interfaces, 2019, 11: 37256-37262  doi: 10.1021/acsami.9b11233

    5. [5]

      YU J G, YU Y F, ZHOU P, XIAO W, CHENG B. Morphology-dependent photocatalytic H2-production activity of CdS[J]. Appl. Catal. B‒Environ., 2014, 156-157: 184-191  doi: 10.1016/j.apcatb.2014.03.013

    6. [6]

      XIONG Z, LEI Z, LI Y Z, DONG L C, ZHAO Y C, ZHANG J Y. A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction[J]. J. Photochem. Photobiol. C, 2018, 36: 24-47  doi: 10.1016/j.jphotochemrev.2018.07.002

    7. [7]

      WANG H, WANG Y Q, JIANG C L, YE K H, HE X H, XUE C, YANG Z J, ZHOU X T, JI H B. Hybridization of CuO with Bi2MoO6 nanosheets as a surface multifunctional photocatalyst for toluene oxidation under solar irradiation[J]. ACS Appl. Mater. Interfaces, 2020, 12: 2259-2268  doi: 10.1021/acsami.9b14704

    8. [8]

      VESALI-KERMANI E, HABIBI-YANGJEH A, DIARMAND-KHALILABAD H, GHOSH S. Nitrogen photofixation ability of g-C3N4 nanosheets/Bi2MoO6 heterojunction photocatalyst under visible-light illumination[J]. J. Colloid Interf. Sci., 2019, 563: 81-91

    9. [9]

      NÚÑEZ-GONZÁLEZ R, RANGEL R, ANTÚNEZ-GARCÍA J, GALVÁN D H. DFT study of electronic structure and optical properties of Ru-doped low-temperature γ-Bi2MoO6 phase[J]. Solid State Commun., 2020, 318: 113978  doi: 10.1016/j.ssc.2020.113978

    10. [10]

      ZHANG L W, XU T G, ZHAO X, ZHU Y F. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J]. Appl. Catal. B‒Environ., 2010, 98: 138-146  doi: 10.1016/j.apcatb.2010.05.022

    11. [11]

      CHEN F, NIU, C G, YANG Q, LI X M, ZENG G M. Facile synthesis of visible-light-active BiOI modified Bi2MoO6 photocatalysts with highly enhanced photocatalytic activity[J]. Ceram. Int., 2016, 42: 2515-2525  doi: 10.1016/j.ceramint.2015.10.053

    12. [12]

      LAI K R, WEI W, ZHU Y T, GUO M, DAI Y, HUANG B B, DAI Y, HUANG B B. Effects of oxygen vacancy and N-doping on the electronic and photocatalytic properties of Bi2MO6 (M=Mo, W)[J]. J. Solid. State. Chem., 2012, 187: 103-108  doi: 10.1016/j.jssc.2012.01.004

    13. [13]

      WU J N, SUN X, ZHU K J, WANG Q, TANG J K, WANG Q H, GUO J R, KHOR S M. A stable and regenerative TiO2/Bi2MoO6 photocatalyst for highly effective degradation of rhodamine B and Congo red[J]. Int. J. Environ. Anal. Chem., 2024. https://doi.org/10.1080/03067319.2024.2376901  doi: 10.1080/03067319.2024.2376901

    14. [14]

      LI H Y, ZHENG Z M, LIU M F, JIANG H, HU D F, ZHANG X D, XIA L, GENG X M, LU J W, CHENG X, RAN, WAN Y F, YANG P. Visible light photo-treatment of simulated wastewater activated by high-efficient photocatalyst: A novel heterojunction of Bi2MoO6 balls and Pd nanoskeletons[J]. Appl. Surf. Sci., 2020, 510: 145468  doi: 10.1016/j.apsusc.2020.145468

    15. [15]

      ASHOK B, RAMESH K, BHOGI A, UPENDER G. Rhodamine B degradation over visible light promoted Bi2WO6/Bi2W0.75Mo0.25O6 and Bi2MoO6/Bi2W0.75Mo0.25O6 heterostructures: DFT and photocatalytic studies[J]. Optik, 2024, 311: 171927  doi: 10.1016/j.ijleo.2024.171927

    16. [16]

      PINCHUJIT S, PHURUANGRAT A, WANNAPOP S, THONGTEM T, THONGTEM S. Sonochemical-assisted synthesis of Pt/Bi2MoO6 nanocomposites for efficient photodegradation of rhodamine B[J]. Opt. Mater., 2023, 135: 113265  doi: 10.1016/j.optmat.2022.113265

    17. [17]

      YANG G, ZHU Y A, LIANG Y J, YANG J, WANG K, ZENG Z K, XU R, XIE X J. Fabrication of porous biochar supported Bi2MoO6 photocatalyst for efficient degradation of ciprofloxacin in seawater under visible light irradiation: Mechanistic investigation and intermediates analysis[J]. Sep. Purif. Technol., 2024, 349: 124860

    18. [18]

      CAI M J, LIU Y P, WANG C C, LIN W, LI S J. Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment[J]. Sep. Purif. Technol., 2023, 304: 122401  doi: 10.1016/j.seppur.2022.122401

    19. [19]

      XU X, DING X, YANG X L, WANG P, LI S, LU Z X, CHEN H. Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study[J]. J. Hazard. Mater., 2019, 364: 691-699  doi: 10.1016/j.jhazmat.2018.10.063

    20. [20]

      SHI T, JIA H L, FENG Y M, GONG B, CHEN D M, LIANG Y, DING H, CHEN K, HAO D. Photoreduction adjusted surface oxygen vacancy of Bi2MoO6 for boosting photocatalytic redox performance[J]. Front. Chem. Sci. Eng., 2023, 17: 1937-1948  doi: 10.1007/s11705-023-2353-5

    21. [21]

      HAO Y C, DONG X L, ZHAI S R, WANG X Y, MA H C, ZHANG X F. Towards understanding the photocatalytic activity enhancement of ordered mesoporous Bi2MoO6 crystals prepared via a novel vacuum-assisted nanocasting method[J]. RSC Adv., 2016, 6: 35709-35718  doi: 10.1039/C6RA05796A

    22. [22]

      HE J, YANG Z Q, WANG Z Q, FANG R M, GU L L, YAN Y F, RAN J Y. Systematic study of H2 production from photothermal reforming of α-cellulose over atomically thin Bi2MoO6[J]. Energy Conv. Manag., 2023, 277: 116605  doi: 10.1016/j.enconman.2022.116605

    23. [23]

      ZHANG Z J, ZHENG T T, XU J Y, ZENG H B, ZHANG N. Carbon quantum dots/Bi2MoO6 composites with photocatalytic H2 evolution and near infrared activity[J]. J. Photochem. Photobiol. A, 2017, 346: 24-31  doi: 10.1016/j.jphotochem.2017.05.029

    24. [24]

      ZHAO J, YANG Y, YU W S, MA Q L, DONG X T, WANG X L, WANG J X, LIU G X. Bi2MoO6/RGO composite nanofibers: Facile electrospinning fabrication, structure, and significantly improved photocatalytic water splitting activity[J]. J. Mater. Sci. Mater. Electron., 2017, 28: 543-552  doi: 10.1007/s10854-016-5557-3

    25. [25]

      FU F, SHEN H D, XUE W W, ZHEN Y Z, SOOMRO R A, YANG X X, WANG D J, XU B, CHI R. Alkali-assisted synthesis of direct Z-scheme based Bi2O3/Bi2MoO6 photocatalyst for highly efficient photocatalytic degradation of phenol and hydrogen evolution reaction[J]. J. Catal., 2019, 375: 399-409  doi: 10.1016/j.jcat.2019.06.033

    26. [26]

      LIU X M, WU B Q, CHEN X Y, YAN L S, GUO H Q, LI K X, XU L P, LIN J. A novel hierarchical Bi2MoO6/Mn0.2Cd0.8S heterostructured nanocomposite for efficient visible-light hydrogen production[J]. Int. J. Hydrog. Energy, 2020, 45: 2884-2895  doi: 10.1016/j.ijhydene.2019.11.197

    27. [27]

      XU Q L, ZHU B C, JIANG C J, CHENG B, YU J G. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance[J]. Sol. RRL, 2018, 2: 1800006  doi: 10.1002/solr.201800006

    28. [28]

      ZHOU F Q, FAN J C, XU Q J, MIN Y L. BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation[J]. Appl. Catal. B‒Environ., 2017, 201: 77-83  doi: 10.1016/j.apcatb.2016.08.027

    29. [29]

      IMRAN M, YOUSAF A B, FAROOQ M, KASAK P. Enhanced Z-scheme visible light photocatalytic hydrogen production over α-Bi2O3/CZS heterostructure[J]. Int. J. Hydrog. Energy, 2018, 43: 4256-4264  doi: 10.1016/j.ijhydene.2018.01.056

    30. [30]

      LU Y, POPESCU R, GERTHSEN D, FENG Y C, SU W, HSU Y, CHEN Y. Highly efficient recovery of H2 from industrial waste by sunlight-driven photoelectrocatalysis over a ZnS/Bi2S3/ZnO photoelectrode[J]. ACS Appl. Mater. Interfaces, 2022, 14: 7756-7767  doi: 10.1021/acsami.1c18142

    31. [31]

      CUI Y Q, XING Z P, GUO M J, QIU Y L, FANG B, LI Z Z, YANG S L, ZHOU W. Hollow core-shell potassium phosphomolybdate@ cadmium sulfide@bismuth sulfide Z-scheme tandem heterojunctions toward optimized photothermal-photocatalytic performance[J]. J. Colloid Inter. Sci., 2022, 607: 942-953  doi: 10.1016/j.jcis.2021.09.075

    32. [32]

      ZHAO Z W, ZHANG W D, SUN Y J, YU J Y, ZHANG Y X, WANG H, DONG F, WU Z B. Bi cocatalyst/Bi2MoO6 microspheres nanohybrid with SPR-promoted visible-light photocatalysis[J]. J. Phys. Chem. C, 2016, 120: 11889-11898  doi: 10.1021/acs.jpcc.6b01188

    33. [33]

      HELAL A, HARRAZ F A, ISMAIL A A, SAMI T M, IBRAHIMI A. Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light[J]. Appl. Catal. B‒Environ., 2017, 213: 18-27  doi: 10.1016/j.apcatb.2017.05.009

    34. [34]

      MENG X C, ZHANG Z S. Plasmonic ternary Ag-rGO-Bi2MoO6 composites with enhanced visible light-driven photocatalytic activity[J]. J. Catal., 2016, 344: 616-630  doi: 10.1016/j.jcat.2016.10.006

    35. [35]

      JIA Y L, MA Y, TANG J Z, SHI W B. hierarchical nanosheet-based Bi2MoO6 microboxes for efficient photocatalytic performance[J]. Dalton Trans., 2018, 47: 5542-5547  doi: 10.1039/C8DT00061A

    36. [36]

      FENG Y, YAN X, LIU C B, HONG Y Z, ZHU L, ZHOU M J, SHI W D. Hydrothermal synthesis of CdS/Bi2MoO6 heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance[J]. Appl. Surf. Sci., 2015, 353: 87-94  doi: 10.1016/j.apsusc.2015.06.061

    37. [37]

      LI H D, LI W J, WANG F Z, LIU X T, REN C J. Fabrication of two lanthanides co-doped Bi2MoO6 photocatalyst: Selection, design and mechanism of Ln1/Ln2 redox couple for enhancing photocatalytic activity[J]. Appl. Catal. B‒Environ., 2017, 217: 378-387  doi: 10.1016/j.apcatb.2017.06.015

    38. [38]

      CHACHVALVUTIKUL A, PUDKON W, LUANGWANTA T, THONGTEM T, THONGTEM S, KITTIWACHANA S, KAOWPHONG S. Enhanced photocatalytic degradation of methylene blue by a direct Z-scheme Bi2S3/ZnIn2S4 photocatalyst[J]. Mater. Res. Bull., 2019, 111: 53-60  doi: 10.1016/j.materresbull.2018.10.034

    39. [39]

      CAO D D, WANG Q Y, WU Y, ZHU S X, JIA Y, WANG R L. Solvothermal synthesis and enhanced photocatalytic hydrogen production of Bi/Bi2MoO6 co-sensitized TiO2 nanotube arrays[J]. Sep. Purif. Technol., 2020, 250: 117132  doi: 10.1016/j.seppur.2020.117132

    40. [40]

      QIAO X, ZHANG Z, LI Q, HOU D F, ZHANG Q C, ZHANG J, LI D, FENG P Y, BU X H. In situ synthesis of n-n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr􀃱[J]. J. Mater. Chem. A, 2018, 6: 22580  doi: 10.1039/C8TA08294D

    41. [41]

      TIAN J, HAO P, WEI N, CUI H Z, LIU H. 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: Enhanced photocatalytic activities and photoelectochemistry performance[J]. ACS Catal., 2015, 5: 4530-4536  doi: 10.1021/acscatal.5b00560

    42. [42]

      FENG X, ZHANG W D, SUN Y J, HUANG H W, DONG F. Fe􀃮 cluster-grafted (BiO)2CO3 superstructures: In situ drifts investigation on IFCT-enhanced visible light photocatalytic NO oxidation[J]. Environ. Sci. Nano, 2017, 4: 604-612  doi: 10.1039/C6EN00637J

    43. [43]

      LIU Y F, LV Y H, ZHU Y Y, LIU D, ZONG R L, ZHU Y F. Fluorine mediated photocatalytic activity of BiPO4[J]. Appl. Catal. B‒Environ., 2014, 147: 851-857  doi: 10.1016/j.apcatb.2013.09.050

    44. [44]

      SHIMODAIRA Y, KATO H, KOBAYASHI H, KUDO A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J]. J. Phys. Chem. B, 2006, 110: 17790-17797  doi: 10.1021/jp0622482

    45. [45]

      YU H B, JIANG L B, WANG H, HUANG B B, YUAN X Z, HUANG J H, ZHANG J, ZENG G M. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: A critical review[J]. Small, 2019, 15: 1901008  doi: 10.1002/smll.201901008

    46. [46]

      GARCÍA-MENDOZA C, OROS-RUIZ S, HERNÁNDEZ-GORDILLO A, LÓPEZ R, JÁCOME-ACATITLA G, CALDERÓN H A, RICARDO G. Suitablepreparation of Bi2S3 nanorods-TiO2 heterojunction semiconductors with improved photocatalytic hydrogen production from water/methanol decomposition[J]. J. Chem. Technol. Biotechnol., 2016, 91: 2198-2204  doi: 10.1002/jctb.4979

    47. [47]

      YANG Z F, SHAO L H, WANG L L, XIA X N, LIU Y T, CHENG S, YANG C, LI S J. Boosted photogenerated carriers separation in Z-scheme Cu3P/ZnIn2S4 heterojunction photocatalyst for highly efficient H2 evolution under visible light[J]. Int. J. Hydrog. Energy, 2020, 45: 14334-14346  doi: 10.1016/j.ijhydene.2020.03.139

    48. [48]

      ZHENG B J, WANG X, LIU C, TAN K, XIE Z X, ZHENG L S. High-efficiently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy[J]. J. Mater. Chem. A, 2013, 1: 12635-12640  doi: 10.1039/c3ta12946b

    49. [49]

      LI J L, LIU X J, PAN L K, QIN W, SUN Z. Enhanced visible light photocatalytic degradation of rhodamine B by Bi/Bi2MoO6 hollow microsphere composites[J]. RSC Adv., 2014, 4: 62387

    50. [50]

      LI S G, BAI L Q, JI N, YU S X, LIN S, TIAN N, HUANG H W. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6[J]. J. Mater. Chem. A, 2020, 8: 9268-9277  doi: 10.1039/D0TA02102D

    51. [51]

      FUJISHIMA A, ZHANG X T. Titanium dioxide photocatalysis: Present situation and future approaches[J]. C. R. Chim., 2006, 9: 750-760

    52. [52]

      YI S S, YAN J M, WULAN B R, LI S J, LIU K H, JIANG Q. Noble-metal-free cobalt phosphide modified carbon nitride: An efficient photocatalyst for hydrogen generation[J]. Appl. Catal. B‒Environ., 2017, 200: 477-483  doi: 10.1016/j.apcatb.2016.07.046

    53. [53]

      ZHANG Y H, LIU M M, CHEN J L, XIE K F, FANG S M. Dendritic branching Z-scheme Cu2O/TiO2 heterostructure photocatalysts for boosting H2 production[J]. J. Phys. Chem. Solids, 2021, 152: 109948  doi: 10.1016/j.jpcs.2021.109948

    54. [54]

      WEI T T, JIN Z B, WANG Y M, LI F Y, XU L. Constructing direct Z-scheme photocatalysts with black NeTiO2-x/C and Cd0.5Zn0.5S for efficient H2 production[J], Int. J. Hydrog. Energy, 2021, 46: 14236-14246  doi: 10.1016/j.ijhydene.2021.01.159

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    3. [3]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    10. [10]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    11. [11]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Menglan Wei Xiaoxia Ou Yimeng Wang Mengyuan Zhang Fei Teng Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-. doi: 10.1016/j.actphy.2025.100105

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(0)
  • Abstract views(15)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return