Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production
- Corresponding author: Tongliang HU, tlhu@nankai.edu.cn
Citation:
Yifan ZHAO, Qiyun MAO, Meijing GUO, Guoying ZHANG, Tongliang HU. Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(7): 1318-1330.
doi:
10.11862/CJIC.20250001
ZONG X, YAN H J, WU G P, MA G J, WEN F Y, WANG L, LI C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J]. J. Am. Chem. Soc., 2008, 130: 7176-7177
doi: 10.1021/ja8007825
ZHAO F L, FENG Y Y, WANG Y, ZHANG X, LIANG X J, LI Z, ZHANG F, WANG T, GONG J L, FENG W. Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO[J]. Nat. Commun., 2020, 11: 1443
doi: 10.1038/s41467-020-15262-4
SINGH A K, DAS C, INDRA A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride[J]. Coord. Chem. Rev., 2022, 465: 214516
doi: 10.1016/j.ccr.2022.214516
RUAN L Y, WANG X W, WANG T Y, REN Z H, CHEN Y, ZHAO R Y, ZHOU D K, FU G J, LI S, GAO L, LU Y H, WANG Z Y, TIAN H, KONG X Q, HAN G A. Surface defect-controlled growth and high photocatalytic H2 production efficiency of anatase TiO2 nanosheets[J]. ACS Appl. Mater. Interfaces, 2019, 11: 37256-37262
doi: 10.1021/acsami.9b11233
YU J G, YU Y F, ZHOU P, XIAO W, CHENG B. Morphology-dependent photocatalytic H2-production activity of CdS[J]. Appl. Catal. B‒Environ., 2014, 156-157: 184-191
doi: 10.1016/j.apcatb.2014.03.013
XIONG Z, LEI Z, LI Y Z, DONG L C, ZHAO Y C, ZHANG J Y. A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction[J]. J. Photochem. Photobiol. C, 2018, 36: 24-47
doi: 10.1016/j.jphotochemrev.2018.07.002
WANG H, WANG Y Q, JIANG C L, YE K H, HE X H, XUE C, YANG Z J, ZHOU X T, JI H B. Hybridization of CuO with Bi2MoO6 nanosheets as a surface multifunctional photocatalyst for toluene oxidation under solar irradiation[J]. ACS Appl. Mater. Interfaces, 2020, 12: 2259-2268
doi: 10.1021/acsami.9b14704
VESALI-KERMANI E, HABIBI-YANGJEH A, DIARMAND-KHALILABAD H, GHOSH S. Nitrogen photofixation ability of g-C3N4 nanosheets/Bi2MoO6 heterojunction photocatalyst under visible-light illumination[J]. J. Colloid Interf. Sci., 2019, 563: 81-91
NÚÑEZ-GONZÁLEZ R, RANGEL R, ANTÚNEZ-GARCÍA J, GALVÁN D H. DFT study of electronic structure and optical properties of Ru-doped low-temperature γ-Bi2MoO6 phase[J]. Solid State Commun., 2020, 318: 113978
doi: 10.1016/j.ssc.2020.113978
ZHANG L W, XU T G, ZHAO X, ZHU Y F. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J]. Appl. Catal. B‒Environ., 2010, 98: 138-146
doi: 10.1016/j.apcatb.2010.05.022
CHEN F, NIU, C G, YANG Q, LI X M, ZENG G M. Facile synthesis of visible-light-active BiOI modified Bi2MoO6 photocatalysts with highly enhanced photocatalytic activity[J]. Ceram. Int., 2016, 42: 2515-2525
doi: 10.1016/j.ceramint.2015.10.053
LAI K R, WEI W, ZHU Y T, GUO M, DAI Y, HUANG B B, DAI Y, HUANG B B. Effects of oxygen vacancy and N-doping on the electronic and photocatalytic properties of Bi2MO6 (M=Mo, W)[J]. J. Solid. State. Chem., 2012, 187: 103-108
doi: 10.1016/j.jssc.2012.01.004
WU J N, SUN X, ZHU K J, WANG Q, TANG J K, WANG Q H, GUO J R, KHOR S M. A stable and regenerative TiO2/Bi2MoO6 photocatalyst for highly effective degradation of rhodamine B and Congo red[J]. Int. J. Environ. Anal. Chem., 2024. https://doi.org/10.1080/03067319.2024.2376901
doi: 10.1080/03067319.2024.2376901
LI H Y, ZHENG Z M, LIU M F, JIANG H, HU D F, ZHANG X D, XIA L, GENG X M, LU J W, CHENG X, RAN, WAN Y F, YANG P. Visible light photo-treatment of simulated wastewater activated by high-efficient photocatalyst: A novel heterojunction of Bi2MoO6 balls and Pd nanoskeletons[J]. Appl. Surf. Sci., 2020, 510: 145468
doi: 10.1016/j.apsusc.2020.145468
ASHOK B, RAMESH K, BHOGI A, UPENDER G. Rhodamine B degradation over visible light promoted Bi2WO6/Bi2W0.75Mo0.25O6 and Bi2MoO6/Bi2W0.75Mo0.25O6 heterostructures: DFT and photocatalytic studies[J]. Optik, 2024, 311: 171927
doi: 10.1016/j.ijleo.2024.171927
PINCHUJIT S, PHURUANGRAT A, WANNAPOP S, THONGTEM T, THONGTEM S. Sonochemical-assisted synthesis of Pt/Bi2MoO6 nanocomposites for efficient photodegradation of rhodamine B[J]. Opt. Mater., 2023, 135: 113265
doi: 10.1016/j.optmat.2022.113265
YANG G, ZHU Y A, LIANG Y J, YANG J, WANG K, ZENG Z K, XU R, XIE X J. Fabrication of porous biochar supported Bi2MoO6 photocatalyst for efficient degradation of ciprofloxacin in seawater under visible light irradiation: Mechanistic investigation and intermediates analysis[J]. Sep. Purif. Technol., 2024, 349: 124860
CAI M J, LIU Y P, WANG C C, LIN W, LI S J. Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment[J]. Sep. Purif. Technol., 2023, 304: 122401
doi: 10.1016/j.seppur.2022.122401
XU X, DING X, YANG X L, WANG P, LI S, LU Z X, CHEN H. Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study[J]. J. Hazard. Mater., 2019, 364: 691-699
doi: 10.1016/j.jhazmat.2018.10.063
SHI T, JIA H L, FENG Y M, GONG B, CHEN D M, LIANG Y, DING H, CHEN K, HAO D. Photoreduction adjusted surface oxygen vacancy of Bi2MoO6 for boosting photocatalytic redox performance[J]. Front. Chem. Sci. Eng., 2023, 17: 1937-1948
doi: 10.1007/s11705-023-2353-5
HAO Y C, DONG X L, ZHAI S R, WANG X Y, MA H C, ZHANG X F. Towards understanding the photocatalytic activity enhancement of ordered mesoporous Bi2MoO6 crystals prepared via a novel vacuum-assisted nanocasting method[J]. RSC Adv., 2016, 6: 35709-35718
doi: 10.1039/C6RA05796A
HE J, YANG Z Q, WANG Z Q, FANG R M, GU L L, YAN Y F, RAN J Y. Systematic study of H2 production from photothermal reforming of α-cellulose over atomically thin Bi2MoO6[J]. Energy Conv. Manag., 2023, 277: 116605
doi: 10.1016/j.enconman.2022.116605
ZHANG Z J, ZHENG T T, XU J Y, ZENG H B, ZHANG N. Carbon quantum dots/Bi2MoO6 composites with photocatalytic H2 evolution and near infrared activity[J]. J. Photochem. Photobiol. A, 2017, 346: 24-31
doi: 10.1016/j.jphotochem.2017.05.029
ZHAO J, YANG Y, YU W S, MA Q L, DONG X T, WANG X L, WANG J X, LIU G X. Bi2MoO6/RGO composite nanofibers: Facile electrospinning fabrication, structure, and significantly improved photocatalytic water splitting activity[J]. J. Mater. Sci. Mater. Electron., 2017, 28: 543-552
doi: 10.1007/s10854-016-5557-3
FU F, SHEN H D, XUE W W, ZHEN Y Z, SOOMRO R A, YANG X X, WANG D J, XU B, CHI R. Alkali-assisted synthesis of direct Z-scheme based Bi2O3/Bi2MoO6 photocatalyst for highly efficient photocatalytic degradation of phenol and hydrogen evolution reaction[J]. J. Catal., 2019, 375: 399-409
doi: 10.1016/j.jcat.2019.06.033
LIU X M, WU B Q, CHEN X Y, YAN L S, GUO H Q, LI K X, XU L P, LIN J. A novel hierarchical Bi2MoO6/Mn0.2Cd0.8S heterostructured nanocomposite for efficient visible-light hydrogen production[J]. Int. J. Hydrog. Energy, 2020, 45: 2884-2895
doi: 10.1016/j.ijhydene.2019.11.197
XU Q L, ZHU B C, JIANG C J, CHENG B, YU J G. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance[J]. Sol. RRL, 2018, 2: 1800006
doi: 10.1002/solr.201800006
ZHOU F Q, FAN J C, XU Q J, MIN Y L. BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation[J]. Appl. Catal. B‒Environ., 2017, 201: 77-83
doi: 10.1016/j.apcatb.2016.08.027
IMRAN M, YOUSAF A B, FAROOQ M, KASAK P. Enhanced Z-scheme visible light photocatalytic hydrogen production over α-Bi2O3/CZS heterostructure[J]. Int. J. Hydrog. Energy, 2018, 43: 4256-4264
doi: 10.1016/j.ijhydene.2018.01.056
LU Y, POPESCU R, GERTHSEN D, FENG Y C, SU W, HSU Y, CHEN Y. Highly efficient recovery of H2 from industrial waste by sunlight-driven photoelectrocatalysis over a ZnS/Bi2S3/ZnO photoelectrode[J]. ACS Appl. Mater. Interfaces, 2022, 14: 7756-7767
doi: 10.1021/acsami.1c18142
CUI Y Q, XING Z P, GUO M J, QIU Y L, FANG B, LI Z Z, YANG S L, ZHOU W. Hollow core-shell potassium phosphomolybdate@ cadmium sulfide@bismuth sulfide Z-scheme tandem heterojunctions toward optimized photothermal-photocatalytic performance[J]. J. Colloid Inter. Sci., 2022, 607: 942-953
doi: 10.1016/j.jcis.2021.09.075
ZHAO Z W, ZHANG W D, SUN Y J, YU J Y, ZHANG Y X, WANG H, DONG F, WU Z B. Bi cocatalyst/Bi2MoO6 microspheres nanohybrid with SPR-promoted visible-light photocatalysis[J]. J. Phys. Chem. C, 2016, 120: 11889-11898
doi: 10.1021/acs.jpcc.6b01188
HELAL A, HARRAZ F A, ISMAIL A A, SAMI T M, IBRAHIMI A. Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light[J]. Appl. Catal. B‒Environ., 2017, 213: 18-27
doi: 10.1016/j.apcatb.2017.05.009
MENG X C, ZHANG Z S. Plasmonic ternary Ag-rGO-Bi2MoO6 composites with enhanced visible light-driven photocatalytic activity[J]. J. Catal., 2016, 344: 616-630
doi: 10.1016/j.jcat.2016.10.006
JIA Y L, MA Y, TANG J Z, SHI W B. hierarchical nanosheet-based Bi2MoO6 microboxes for efficient photocatalytic performance[J]. Dalton Trans., 2018, 47: 5542-5547
doi: 10.1039/C8DT00061A
FENG Y, YAN X, LIU C B, HONG Y Z, ZHU L, ZHOU M J, SHI W D. Hydrothermal synthesis of CdS/Bi2MoO6 heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance[J]. Appl. Surf. Sci., 2015, 353: 87-94
doi: 10.1016/j.apsusc.2015.06.061
LI H D, LI W J, WANG F Z, LIU X T, REN C J. Fabrication of two lanthanides co-doped Bi2MoO6 photocatalyst: Selection, design and mechanism of Ln1/Ln2 redox couple for enhancing photocatalytic activity[J]. Appl. Catal. B‒Environ., 2017, 217: 378-387
doi: 10.1016/j.apcatb.2017.06.015
CHACHVALVUTIKUL A, PUDKON W, LUANGWANTA T, THONGTEM T, THONGTEM S, KITTIWACHANA S, KAOWPHONG S. Enhanced photocatalytic degradation of methylene blue by a direct Z-scheme Bi2S3/ZnIn2S4 photocatalyst[J]. Mater. Res. Bull., 2019, 111: 53-60
doi: 10.1016/j.materresbull.2018.10.034
CAO D D, WANG Q Y, WU Y, ZHU S X, JIA Y, WANG R L. Solvothermal synthesis and enhanced photocatalytic hydrogen production of Bi/Bi2MoO6 co-sensitized TiO2 nanotube arrays[J]. Sep. Purif. Technol., 2020, 250: 117132
doi: 10.1016/j.seppur.2020.117132
QIAO X, ZHANG Z, LI Q, HOU D F, ZHANG Q C, ZHANG J, LI D, FENG P Y, BU X H. In situ synthesis of n-n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr[J]. J. Mater. Chem. A, 2018, 6: 22580
doi: 10.1039/C8TA08294D
TIAN J, HAO P, WEI N, CUI H Z, LIU H. 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: Enhanced photocatalytic activities and photoelectochemistry performance[J]. ACS Catal., 2015, 5: 4530-4536
doi: 10.1021/acscatal.5b00560
FENG X, ZHANG W D, SUN Y J, HUANG H W, DONG F. Fe cluster-grafted (BiO)2CO3 superstructures: In situ drifts investigation on IFCT-enhanced visible light photocatalytic NO oxidation[J]. Environ. Sci. Nano, 2017, 4: 604-612
doi: 10.1039/C6EN00637J
LIU Y F, LV Y H, ZHU Y Y, LIU D, ZONG R L, ZHU Y F. Fluorine mediated photocatalytic activity of BiPO4[J]. Appl. Catal. B‒Environ., 2014, 147: 851-857
doi: 10.1016/j.apcatb.2013.09.050
SHIMODAIRA Y, KATO H, KOBAYASHI H, KUDO A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J]. J. Phys. Chem. B, 2006, 110: 17790-17797
doi: 10.1021/jp0622482
YU H B, JIANG L B, WANG H, HUANG B B, YUAN X Z, HUANG J H, ZHANG J, ZENG G M. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: A critical review[J]. Small, 2019, 15: 1901008
doi: 10.1002/smll.201901008
GARCÍA-MENDOZA C, OROS-RUIZ S, HERNÁNDEZ-GORDILLO A, LÓPEZ R, JÁCOME-ACATITLA G, CALDERÓN H A, RICARDO G. Suitablepreparation of Bi2S3 nanorods-TiO2 heterojunction semiconductors with improved photocatalytic hydrogen production from water/methanol decomposition[J]. J. Chem. Technol. Biotechnol., 2016, 91: 2198-2204
doi: 10.1002/jctb.4979
YANG Z F, SHAO L H, WANG L L, XIA X N, LIU Y T, CHENG S, YANG C, LI S J. Boosted photogenerated carriers separation in Z-scheme Cu3P/ZnIn2S4 heterojunction photocatalyst for highly efficient H2 evolution under visible light[J]. Int. J. Hydrog. Energy, 2020, 45: 14334-14346
doi: 10.1016/j.ijhydene.2020.03.139
ZHENG B J, WANG X, LIU C, TAN K, XIE Z X, ZHENG L S. High-efficiently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy[J]. J. Mater. Chem. A, 2013, 1: 12635-12640
doi: 10.1039/c3ta12946b
LI J L, LIU X J, PAN L K, QIN W, SUN Z. Enhanced visible light photocatalytic degradation of rhodamine B by Bi/Bi2MoO6 hollow microsphere composites[J]. RSC Adv., 2014, 4: 62387
LI S G, BAI L Q, JI N, YU S X, LIN S, TIAN N, HUANG H W. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6[J]. J. Mater. Chem. A, 2020, 8: 9268-9277
doi: 10.1039/D0TA02102D
FUJISHIMA A, ZHANG X T. Titanium dioxide photocatalysis: Present situation and future approaches[J]. C. R. Chim., 2006, 9: 750-760
YI S S, YAN J M, WULAN B R, LI S J, LIU K H, JIANG Q. Noble-metal-free cobalt phosphide modified carbon nitride: An efficient photocatalyst for hydrogen generation[J]. Appl. Catal. B‒Environ., 2017, 200: 477-483
doi: 10.1016/j.apcatb.2016.07.046
ZHANG Y H, LIU M M, CHEN J L, XIE K F, FANG S M. Dendritic branching Z-scheme Cu2O/TiO2 heterostructure photocatalysts for boosting H2 production[J]. J. Phys. Chem. Solids, 2021, 152: 109948
doi: 10.1016/j.jpcs.2021.109948
WEI T T, JIN Z B, WANG Y M, LI F Y, XU L. Constructing direct Z-scheme photocatalysts with black NeTiO2-x/C and Cd0.5Zn0.5S for efficient H2 production[J], Int. J. Hydrog. Energy, 2021, 46: 14236-14246
doi: 10.1016/j.ijhydene.2021.01.159
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Menglan Wei , Xiaoxia Ou , Yimeng Wang , Mengyuan Zhang , Fei Teng , Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-. doi: 10.1016/j.actphy.2025.100105
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
(a) Survey; (b) Bi4f; (c) S2p; (d) Mo3d; (e) O1s.
(b) 0 h, (c) 1 h, (d) 2 h, (e) 4 h, (f) 6 h, (g) 10 h, and (h) 14 h.
Inset: SAED patterns.
Inset: pore-size distribution plots.
Inset: corresponding (αhν)2-hν plots for BMO and BS.