
(a) Outer ring presents the reactions in acid solutions, and the inner ring presents the reactions in alkaline solutions.
随着传统化石能源的日益枯竭,可再生清洁能源的开发和利用日趋重要。但太阳能、风能和潮汐能等清洁能源的采集受季节、地域等诸多因素影响,产能起伏不定,而我们需要稳定的能量载体来实现人类对能量的按需使用[1]。氢气具有使用清洁、能量密度高等诸多优点,是理想的“碳中性”能量载体[2]。其制取方法主要包括矿物燃料制氢、化学过程副产物制氢、生物质制氢和电解水制氢等[3-4]。其中,电解水制氢是生产绿氢的一种理想途径[5]。
标准条件下(298 K,101.325 kPa),电解水的理论反应电位为1.23 V。但在实际制氢过程中,由于反应动力学过程迟缓,施加的电压要远高于理论反应电位才能获得较高产氢速率[6-7]。采用以Pt、Rh为代表的贵金属作为析氢反应(HER,hydrogen evolution reaction)催化剂,以及以IrO2和RuO2为代表的贵金属氧化物作为析氧反应(OER,oxygen evolution reaction)催化剂,可大幅加快电解水动力学过程[8-9]。但贵金属的稀缺性和高昂的成本严重限制了相关催化剂的大规模生产和应用[10]。因此,开发具有低成本、高催化活性及稳定性的新型催化剂,成为电解水走向大规模工业化应用的一个关键环节。
高熵合金(HEAs,high-entropy alloys)和高熵陶瓷(HECs,high-entropy ceramics)的大量涌现,为低成本、优质电解水催化剂的设计和开发提供了良好平台。HEAs的概念首先由Yeh和Cantor等[11-12]在2004年提出,其指的是一类由5种或5种以上元素以等原子比(或近等原子比)组成的金属固溶体。与简单固溶体相比,这类材料具有极高的混合熵,能带来显著的晶格畸变效应、迟滞扩散效应和“鸡尾酒”效应(即协同效应)。上述效应赋予了HEAs更高的强度、更佳的热稳定性和良好的催化活性[13-15]。鉴于HEAs优异的物理和化学性能,“高熵”概念逐渐被拓展到陶瓷领域。2015年,Rost等[16]报道了具有岩盐型晶体结构的(MgCoNiCuZn)O高熵氧化物,开启了HECs材料的研发热潮[17-20]。其中的一些HECs在电解水领域展现出了良好的应用前景。
本文综述了HEAs和HECs在电解水领域的最新研究进展。文章首先介绍了电解水机制及其对高熵催化剂的设计要求,然后介绍了电解水用HEAs和HECs催化剂主要体系及这些高熵催化剂的制备方法,最后总结了当前电解水用HEAs和HECs材料尚面临的挑战及一些可能的解决方案,以期为高活性、高稳定性、低成本的高熵电解水催化剂的开发提供新思路,促进电解水相关技术的研究与发展。
电解水反应由阴极的HER和阳极的OER构成。HER是一个两电子转移过程(图 1a),主要包括电化学氢吸附反应-化学脱附(Volmer-Tafel)和电化学氢吸附反应-电化学脱附(Volmer-Heyrovsky)两种机制[21-22]。无论哪种机制,第一步均为Volmer反应,即1个氢离子H+(酸性)/水分子H2O(碱性)与1个电子e-在电极活性位点M上结合,形成1个吸附态氢原子H*。第二步反应路径由电极表面H*的覆盖率决定。若覆盖率高,由Tafel反应产氢,即2个H*结合,从M上脱附,形成1个氢分子H2。若H*覆盖率低,则由Heyrovsky反应产氢,1个H*、2个e-和1个H+/H2O结合,释放1个H2[23-24]。
(a) Outer ring presents the reactions in acid solutions, and the inner ring presents the reactions in alkaline solutions.
H*是HER过程中的重要中间体,其吸附自由能(ΔGH*)对HER的总反应速率具有重要影响[25-26]。Nørskov等[27]基于密度泛函理论(DFT)计算出不同金属元素的ΔGH*,将其与对应金属电极上HER的交换电流密度实测数据结合,绘制了火山图曲线(图 1b)。其研究表明,Pt能高效催化HER是由于它的ΔGH*接近于零。ΔGH*过大会导致H*难以形成;过小则会使H*难以形成H2分子而脱附。
OER是1个四电子转移过程,关于其反应机制的解释主要包括吸附质演化机制(AEM,adsorption evolution mechanism)和晶格氧介导机制(LOM,lattice oxygen participation mechanism)[28-31]。
AEM是在1个活性位点上通过4次质子/电子协同转移产氧(图 2a),即先由活性位点M吸附1个H2O(酸性)/OH-(碱性),通过3次去质子化,依次形成吸附态OH*、O*和OOH*中间体。OOH*再去质子化,形成1个氧分子O2。中间体O*、OH*和OOH*的吸附自由能(ΔGO*、ΔGOH*和ΔGOOH*)与4个基元反应的反应吉布斯自由能密切相关。由于OER的电位决定步骤是4个基元反应中吉布斯自由能最高的一步,中间体的吸附自由能之间又存在线性关系,OER的热力学过电位可简化为ΔGO*-ΔGOH*的函数。基于这一理论,OER过电位与ΔGO*-ΔGOH*呈火山型关系[32]。Seh等将系列金属氧化物的ΔGO*-ΔGOH*与1 mA·cm-2条件下实测的OER过电位进行了比较,验证了火山型函数关系的存在(图 2b)[33]。该关系表明,ΔGO*-ΔGOH*值接近1.6 eV时,最有利于OER催化。ΔGO*-ΔGOH*过低,会导致O*的吸附性太强,OOH*中间体形成缓慢;ΔGO*-ΔGOH*过高,则会使O*吸附性太弱,OH*去质子化过程延缓。
(a) Outer ring presents the reactions in acid solutions, and the inner ring presents the reactions in alkaline solutions; □ stands for oxygen vacancy.
LOM机制[34-35]如图 2a所示,即活性位点M形成OH*后,绕开OOH*的形成过程,由OH*和1个与M配位的晶格氧直接结合产O2,同时在晶格中留下1个氧空位。该过程使析氧动力学过程大幅增快。但LOM机制下,催化剂的稳定性较差,易出现金属元素溶出现象[36]。
在HER端,通过成分设计对催化剂活性元素的d带中心进行有效调控,使该元素的ΔGH*接近0 eV,可实现高效HER催化[27]。HEAs和HECs材料自身多组分的特点为这种调控的实现提供了有力保障[37]。在结构设计方面,通过在催化剂表面创建大量台阶和空位,可促进电子转移,有利于Volmer反应的进行[38]。当催化剂具有高的电化学活性面积和良好的疏气性,则可在单位时间内获得较高的电子转移数,有利于Heyrovsky反应和Tafel反应的推进[39]。因此,对于HEAs和HECs电解水催化剂而言,使其结构纳/微米化、低维化,在其表面构造大量原子级缺陷,都有利于HER催化性能的提高。此外,基底等其它因素也对HEAs和HECs的HER催化性能具有一定的影响。
在OER端,基于AEM机制调节活性元素的ΔGO*-ΔGOH*,使其接近1.6 eV,有利于反应过电位的降低[33]。基于LOM机制,在催化剂表面引入大量空位有利于反应的快速推进[40]。HEAs和HECs的多组分特点及其带来的晶格畸变效应为上述调控提供了良好的实施平台。此外,纳/微米化、低维化等方法也能进一步提升HEAs和HECs的OER催化性能。
对于工业电解水制氢,酸性电解质中HER端常用Pt/C作催化剂,OER端为IrO2和RuO2。碱性电解质中,双极常用泡沫镍或镍网,镍的电解水催化活性逊于贵金属基催化剂。通过在泡沫镍或镍网上负载铂、铱和钌基等纳米颗粒催化剂,可以提高电极催化活性[41-42]。但一方面,贵金属的使用提升了制氢成本,另一方面,这类电极还易因颗粒团聚、中毒等问题产生性能衰减。因此,要在低成本条件下解决电解水的高能耗问题,迫切需要发展具有高催化活性、高稳定性的低/无贵金属新型催化剂。鉴于高熵材料在高效电解水催化剂成分和结构设计中具有的突出优势,近年来,有大量HEAs和HECs被尝试用于HER和OER催化。
在HER端,研究者通过在贵金属Pt/Pd/Rh及其组合中引入多种金属元素来合成新型低贵金属HEAs纳米材料,以替代酸性介质中Pt/C的使用。Ni、Co等多组元金属的加入,一方面能降低贵金属用量,另一方面还可通过元素间的协同作用来调节活性位点的ΔGH*,提高HEAs中贵金属元素的催化活性[43-44]。例如,Feng等[45]在PtRh合金中引入过渡金属元素Ni、Co和Fe,合成了具有面心立方结构的NiCoFePtRh纳米颗粒。在0.5 mol·L-1 H2SO4中,这种HEA的HER Tafel斜率(30.1 mV·dec-1)与Pt/C(30.5 mV·dec-1)相当,但其线性扫描曲线(LSV)表明,HER在10 mA·cm-2条件下的过电位(η10,后文的ηx均代表电流密度为x mA·cm-2时对应的过电位)为20 mV,远低于同等测试条件下的商用Pt/C(30 mV)(图 3a和3b)。在50 mV条件下,该HEA中的贵金属(Pt、Rh)质量活性达28.3 A·mg-1,是Pt/C的40倍,HER转换频率为30.1 s-1,比Pt/C高41.8倍(图 3c)。Operando X射线吸收光谱和理论计算显示,HEA元素间的“鸡尾酒”效应赋予了该催化剂良好的HER催化活性。Fu等[46]则在贵金属Pd中同时引入过渡元素和ⅢA族元素,制备了具有面心立方结构的PdMoGaInNi HEA纳米片。在0.5 mol·L-1 H2SO4中,该催化剂的HER η10仅为13 mV,Tafel斜率为93.1 mV·dec-1,15 mV处的转换频率为1.2 s-1,比Pt/C高2.4倍。在质子交换膜电解槽中,PdMoGaInNi HEA能在100 mA‧cm-2条件下稳定运行200 h。理论和实验结果分析表明,高熵带来的元素协同作用优化了Pd位点的ΔGH*,高熵带来的迟滞扩散效应则提高了催化剂的工作稳定性。
Inset: LSV curves before and after stability test and the morphology image after stability test.
也有研究者尝试通过高熵化,发展不含贵金属的高活性HEAs HER催化剂[47-48]。此类HEAs多以Ni为催化活性元素,引入Mo、Co和Cu等过渡元素往往能有效提升Ni的催化性能。例如,Yao等制备了系列含Ni的中、高熵纳米多孔材料[49]。在1 mol·L-1 KOH溶液中,CuAlNiMoFe HEA的HER η10为9.7 mV(图 3d)。在50 mV条件下,CuAlNiMoFe电极可稳定运行200 h以上(图 3e)。DFT计算表明,CuAlNiMoFe各元素间存在协同作用,其中,Ni和Fe位点有利于中间体的吸附-脱附,Mo位点促进了水的解离,进而提升了催化剂的催化活性。
除了金属元素间的协同效应,HEAs的小尺寸化对HER催化性能也有着至关重要的影响。Feng等[50]比较了粒径分布在40~200 nm的CoNiCuMgZn HEA纳米颗粒与相应HEA块体的HER催化性能。在1 mol·L-1 KOH溶液中,纳米颗粒的HER η10和Tafel斜率分别为158 mV和36.1 mV·dec-1,分别比块体低了117 mV和23.3 mV·dec-1。
此外,将HEAs与适当的集流体复合,也有利于整个电极HER催化性能的提升。Shi等[51]将NiFeCoCuTi HEA负载到柱状纳米多孔镍骨架上,形成了复合电极。在1 mol·L-1 KOH中,该电极的HER η100为62 mV,Tafel斜率为60 mV·dec-1。该报道认为,柱状纳米Ni网络结构作为集流体,促进了H2O/OH-的转移和输运,提高了电极的HER催化能力。
在OER端,高熵效应同样可使Ir/Ru系HEAs在降低贵金属载量的同时,保持高的催化活性。这些催化剂中,多通过引入Co、Ni等过渡元素来提升贵金属元素的催化活性。例如,在0.1 mol·L-1 HClO4电解液中,IrFeCoNiCu (42.9% Ir) HEA纳米颗粒的OER η10为302 mV,Tafel斜率为58.0 mV·dec-1,低于纯Ir纳米颗粒(352 mV,75.8 mV·dec-1)。在300 mV条件下,IrFeCoNiCu的Ir质量活性达34.67 A·g-1。相关分析表明,电化学活化后,IrFeCoNiCu会因过渡金属溶解而形成一个富Ir壳层。层中,多组元间的协同效应使OER催化活性增加[52]。Zhu等[53]合成了贵金属载量更低的FeCoNiIrRu HEA纳米颗粒(2.45% Ir+Ru)。在0.5 mol·L-1 H2SO4中,该HEA的OER η10为241 mV,Tafel斜率为154 mV·dec-1,优于IrO2(423 mV,170 mV·dec-1)(图 4a和4b)。在270 mV处,贵金属的质量活性为205 mA·mg-1(图 4c)。DFT计算结果表明,Fe、Co和Ni的引入使Ir费米能级附近态密度增加,降低了Ir的OH*吸附能,促进了OOH*的转化和O2的生成。
在碱性环境中,一些含Ni的无贵金属负载HEAs表现出远优于纯Ni的OER催化活性,部分HEA的性能甚至可与RuO2等贵金属氧化物媲美[54-57]。这些催化剂多通过在Ni/Co及其组合中引入Fe、Mn、Mo等元素来实现高的OER催化活性。例如,Huang等[58]合成的MnFeCoNiCu HEA在1 mol·L-1 KOH中的OER η10仅为263 mV,Tafel斜率为43 mV·dec-1,优于同等测试条件下的商用RuO2催化剂(277 mV,59 mV·dec-1)(图 4d~4f)。作者认为,HEA中高度的晶格畸变及元素协同效应使其表现出高的OER催化活性。另外,Wei等[59]合成的FeCoNiCrMn HEA在1 mol·L-1 KOH中的OER η10为263 mV,Tafel斜率为48.6 mV·dec-1。该催化剂可在100 mA·cm-2下稳定运行100 h。作者将其优异的OER催化性能归因于元素间的相互作用及其独特的纳米片结构。
值得注意的是,尽管许多HEAs在实验室测试条件下(1 mol·L-1 H+/OH-、5~100 mA·cm-2)已显示出良好的电解水催化性能,但其在工业级电解水制氢条件下的使役性能,尤其是OER催化稳定性,仍亟待提高。一般情况下,基于质子膜电解水技术的阳极需要在低pH值(1~2)和强氧化电流密度(1~2 A·cm-2)条件下长期运行[60-61]。碱性电解水阳极则需处于浓碱(6 mol·L-1 KOH/NaOH)、强氧化电流密度(200~500 mA·cm-2)和高温(40~80 ℃)状态[62-63]。在上述严苛使役条件下,HEAs易因其多组分的特点出现原电池腐蚀现象。此外,小尺寸HEAs还易发生团聚,非自支撑的HEAs催化剂存在从电极上被气泡剥离的问题。因此,如何通过成分和结构设计,构筑活性与稳定性兼备的HEAs催化剂成为当前研究的热点。Li等[64]利用Mo在FeCoNiMn HEA中引起强烈的晶格畸变效应及五元合金高的混合熵,设计制备出了可在6 mol·L-1 KOH中,60 ℃、400 mA·cm-2条件下稳定运行300 h以上的HEA催化剂。Cui等[65]开发出具有介观非晶-纳米晶核壳结构的高熵合金纤维(Fe20Co20Ni20Mo20Al20)催化剂,在1 mol·L-1 KOH溶液中,该HEA可在1~2 A·cm-2条件下稳定运行300~450 h。通过在HEAs上外延生长活性组分、优化HEAs催化剂的亲水性/疏气性、引入动态修复机制等方法,能够在一定程度上提高HEAs在工业电解水条件下的使役性能[66-69]。然而,探寻具有普适性的HEAs稳定性提升策略,在工业级苛刻条件下实现HEAs上千小时的稳定运转,仍任重道远。
与HEAs相比,HECs往往表现出更佳的电化学稳定性,有利于苛刻工况下催化剂稳定性的提升。目前,被尝试用于电解水的HECs主要包括一些高熵氧化物、氢氧化物、磷化物、硫化物、硫化物和硒化物等[70-71]。
相对于金属,氧化物在阳极端具有更好的电化学稳定性,因而多在OER端使用。高熵化后,氧化物在HER和OER端均能显示出良好的催化效果[72-74]。例如,Ding等[75]报道了一种经Ar等离子体处理的二维高熵FeNiCoMnVOx氧化物阵列,它在1 mol·L-1 KOH溶液中的HER η10为81 mV,Tafel斜率为88 mV·dec-1(图 5a~5c)。Nguyen等[76]合成了一种平均粒径为100 nm的高熵钙钛矿La(CrMnFeCo2Ni)O3纳米颗粒。在1 mol·L-1 KOH溶液中,其OER η10为325 mV,Tafel斜率为51.2 mV·dec-1;在400 mV条件下,催化剂转换频率达0.026 7 s-1。X射线光电子能谱(XPS)分析和DFT计算表明,Co为La(CrMnFeCo2Ni)O3中的催化活性位点,Co3+离子可被Fe3+有效活化,加上Cr6+和Mn4+的协同作用,催化剂表面的OER动力学过程得以加速。
Inset: LSV curves before and after stability test.
高熵氢氧化物其中的层状氢氧化物(LDH)被认为是极有应用前景的一种OER催化剂。这类材料往往兼具高催化活性和高稳定性[77-78]。例如,Liu等[79]合成的FeCoNiMg-LDH纳米片在1 mol·L-1 KOH中的OER η100仅为302 mV,Tafel斜率为75 mV·dec-1,纳米片可在300 mA·cm-2运行60 h而不出现明显的活性衰减。DFT计算表明,高熵使该体系费米能级附近的态密度(DOS)增加,提高了催化剂的电子电导能力,起到了促进电子转移、加速OER的作用。Wang等[80]制备了负载Au单原子的氧空位改性MnFeCoNiCu-LDH。该催化剂在1 mol·L-1 KOH溶液中的OER η10仅为213 mV(图 5d),在250 mV下的贵金属质量活性为732.925 A·g-1,在1.53 V(vs RHE)下连续运行700 h后,MnFeCoNiCu-LDH的电流密度仅衰减6.4%。Wang等认为,该HECs中的氧空位与Au原子具有协同作用,Au使O2p带上升,触发了LOM机制,降低了OER的反应能垒(图 5e和5f)。
与氧化物、氢氧化物相比,磷化物的电子电导能力更好,可减少因催化剂本身导电性差带来的电极极化问题。在高熵磷化物体系中,研究者多利用不同金属原子之间的强协同作用来提升催化剂性能[81-82]。例如,Wang等[83]将碳杂化高熵磷化物WNiCoMoRuP/C纳米片用于0.5 mol·L-1 H2SO4中的HER催化,其η10为40 mV,优于商用Pt/C(48 mV)在同等测试条件下的表现。50 mV条件下的贵金属质量活性达1.6 A·mg-1,高于商业Pt/C(1.2 A·mg-1)。其优异的催化活性被归因于体系中各元素的协同效应。Lai等[84]将一种NiCoFeMnCrP纳米颗粒同时用于1 mol·L-1 KOH中的HER和OER催化,其η10分别为220和270 mV,Tafel斜率分别为94.5和52.5 mV·dec-1(图 6a和6b)。将NiCoFeMnCrP催化剂同时负载在双极上,仅需1.55 V槽压即可达到10 mA·cm-2的电解电流密度(图 6c)。
Inset: schematic diagram of overall water splitting device.
与高熵磷化物类似,高熵硫化物也具有比氧化物更好的电子电导能力。同时,硫原子p轨道与过渡金属d轨道的杂化空间也更大,为调整金属位点附近的电子结构,获得更佳的反应活性提供了可能[85-86]。Lei等[87]制备了一种碳纤维支撑的CoZnCdCuMnS阵列,在1 mol·L-1 KOH溶液中,其HER η10为173 mV,Tafel斜率为98.5 mV·dec-1。此外,该材料可在10 mA·cm-2稳定运行70 h。作者将其高催化活性归因于多种金属元素间的协同作用及高熵纳米阵列和碳纤维间的强界面键合效应。Nguyen等[88]合成的系列FeNiCoCrXS2(X=Mn、Cu、Zn、Al)高熵硫化物在1 mol·L-1 KOH溶液中表现出良好的OER催化性能。其中,FeNiCoCrMnS2的OER η10为199 mV(图 6d),Tafel斜率为39.1 mV·dec-1。在500 mA·cm-2的电流密度下,FeNiCoCrMnS2可稳定运行55 h(图 6e)。原位拉曼光谱分析表明,在反应过程中,高熵硫化物的表面会转变为金属羟基氧化物,这些羟基氧化物是OER的催化活性物质(图 6f),而硫与高熵羟基氧化物间的协同作用使金属羟基氧化物的催化活性得以提升。
硒化物的氧化产物在碱中溶解度较低,因此,该材料在电化学活化过程不会发生严重的过渡金属浸出现象[89]。Jiang等[90]将合成的花状高熵硒化物(CoNiFeCuCr)Se用于碱性OER催化。其OER η100为252 mV,Tafel斜率为46.78 mV·dec-1。该催化剂在100 mA·cm-2条件下可稳定循环50 h。作者利用原位拉曼光谱研究了(CoNiFeCuCr)Se在OER催化过程中的表面重构过程,结果显示重构形成的Co(Ni)OOH为OER的催化活性物质,硒离子被氧化成硒酸盐,稳定吸附在催化剂表面,提高了催化剂表面的润湿性,协同改善了OER的反应动力学过程。
除上述高熵陶瓷,一些高熵氟化物、碳化物和硼化物也表现出良好的电解水性能。Wang等[91]开发的K(MgMnFeCoNi)F3和K0.8Na0.2(MgMnFeCoNi)F3高熵氟化物在1 mol·L-1 KOH中的OER η10分别为369和314 mV,Tafel斜率分别为61和55 mV·dec-1。K0.8Na0.2(MgMnFeCoNi)F3可在314 mV稳定运行10 h。作者认为,该催化剂高度分散的活性位点、低的电荷转移电阻和快的传质过程使其表现出良好的OER催化活性。Niu等[92]制备了分散性良好且具有高密度表面缺陷的高熵碳化物(MoWVNbTa)C纳米颗粒,在0.5 mol·L-1 H2SO4溶液中,其HER η10为156 mV,Tafel斜率为78 mV·dec-1,优于单一金属碳化物。225 mV条件下,(MoWVNbTa)C可稳定循环48 h。DFT计算表明,高熵效应改善了活性位点与H*间的相互作用,高密度的缺陷暴露出更多的活性位点,且优化了催化剂电子结构,其协同作用促进了HER的动力学过程。Dong等[93]在过渡金属基硼化物中加入稀土元素,制备出了系列高熵硼化物催化剂,在1 mol·L-1 KOH溶液中表现出较好的HER催化性能。其中,WMoVNbCeB、WMoVNbSmB和WMoVNbLaB的HER η10过电位分别为117、173和151 mV,Tafel斜率分别为111、140和137 mV·dec-1。DFT计算结果表明,稀土金属的f轨道与其他过渡金属d轨道之间的极化作用加速了电荷转移,促进了吸附中间体的解离,降低了HER过程的反应能垒。
在众多HECs中,高熵氧化物和氢氧化物的电解水催化活性和稳定性均较佳,但其较低的电子电导能力会导致额外的电极极化。对于高熵磷化物和硫化物,尽管其电子电导能力高,但在催化过程中会因表面重构导致元素溶出。如何通过能带结构调整和集流体结构设计来提高HECs的电子电导能力,如何深入理解催化过程中的重构现象,如何通过催化剂的结构和成分设计,控制HECs重构过程中的溶出程度,增加重构结构的电化学稳定性,这些都是HECs在电解水领域开展实际应用仍需攻克的难题。
总的来说,与传统商用Pt/C、IrO2/RuO2催化剂相比,HEAs和HECs在电解水催化活性及原料成本方面均有一定优势。与近年来开发出的简单合金和陶瓷催化剂相比,一些HEAs和HECs材料也表现出更高的催化活性和稳定性(表 1),且随着组元数量的增加和组元比例调整,高熵催化剂的电解水性能还有进一步的提升空间。
Catalyst | Catalytic reaction | Electrolyte | η10 / mV | Tafel slope / (mV·dec-1) | Stability | Ref. | |
HEAs | NiCoFePtRh | HER | 0.5 mol·L-1 H2SO4 | 20 | 30.1 | -0.2-0.1 V, 10 000 cycles | [45] |
PdMoGaInNi | HER | 0.5 mol·L-1 H2SO4 | 13 | 93.1 | 100 mA·cm-2, 200 h | [46] | |
CuAlNiMoFe | HER | 1 mol·L-1 KOH | 9.7 | 60 | 50 mV, 200 h | [49] | |
CoNiCuMgZn | HER | 1 mol·L-1 KOH | 158 | 36.1 | 10 mA·cm-2, 100 h | [50] | |
IrFeCoNiCu | OER | 0.1 mol·L-1 HClO4 | 302 | 58 | 10 mA·cm-2, 12 h | [52] | |
FeCoNiIrRu | OER | 0.5 mol·L-1 H2SO4 | 241 | 154 | 10 mA·cm-2, 14 h | [53] | |
MnFeCoNiCu | OER | 1 mol·L-1 KOH | 263 | 43 | 10 mA·cm-2, 24 h | [58] | |
FeCoNiMnMo | OER | 1 mol·L-1 KOH | 279 | 56.1 | 10 mA·cm-2, 1 000 h | [64] | |
6 mol·L-1 KOH | 400 mA·cm-2, 60 ℃, 300 h | ||||||
PtPdRhRuCu | HER | 0.5 mol·L-1 H2SO4 | 13 | — | 10-100 mA·cm-2, 100 h | [96] | |
1 mol·L-1 KOH | 10 | 87 | |||||
HECs | FeNiCoMnVOx | HER | 1 mol·L-1 KOH | 81 | 88 | 10 mA·cm-2, 100 h | [75] |
La(CrMnFeCo2Ni)O3 | OER | 1 mol·L-1 KOH | 325 | 51.2 | 10 mA·cm-2, 50 h | [76] | |
(CoCuFeMnNi)3O4 | OER | 1 mol·L-1 KOH | 350 | 59.5 | 1.58 V, 12 h | [97] | |
K0.8Na0.2(MgMnFeCoNi)F3 | OER | 1 mol·L-1 KOH | 314 | 55 | 314 mV, 10 h | [91] | |
AuSA-MnFeCoNiCu LDH | OER | 1 mol·L-1 KOH | 213 | 27.5 | 100 mA·cm-2, 700 h | [80] | |
Fe-Cr-Co-Ni-Cu HE-LDHs-Ar | OER | 1 mol·L-1 KOH | 330 | 63.7 | 10 mA·cm-2, 16 h | [98] | |
CoZnCdCuMnS@CF | HER | 1 mol·L-1 KOH | 173 | 98.5 | 10 mA·cm-2, 70 h | [87] | |
FeNiCoCrMnS2 | OER | 1 mol·L-1 KOH | 199 | 39.1 | 500 mA·cm-2, 55 h | [88] | |
WNiCoMoRuP/C | HER | 0.5 mol·L-1 H2SO4 | 40 | 36 | 10 mA·cm-2, 50 h | [83] | |
NiCoFeMnCrP | HER | 1 mol·L-1 KOH | 220 | 94.5 | 10 mA·cm-2, 24 h | [84] | |
OER | 270 | 52.5 | |||||
(MoWVNbTa)C | HER | 0.5 mol·L-1 H2SO4 | 156 | 78 | 225 mV, 48 h | [92] | |
WMoVNbCeB | HER | 1 mol·L-1 KOH | 117 | 111 | 10 mA·cm-2, 50 h | [93] | |
Alloys with low mixing entropy | CoNiPt alloy | HER | 1 mol·L-1 KOH | 25 | 43 | 10 mA·cm-2, 24 h | [125] |
Ni-Mo alloy | HER | 1 mol·L-1 KOH | 119 | 119 | 200 mV, 10 h | [126] | |
Pt3V alloy | HER | 0.5 mol·L-1 H2SO4 | 20 | 36 | 300 mV, 100 h | [127] | |
Rh-Ir alloy | OER | 0.5 mol·L-1 H2SO4 | 292 | 101 | 0.05-1.00 V, 2 000 cycles | [128] | |
CoIr alloy | OER | 0.5 mol·L-1 H2SO4 | 220 | 70.6 | 10 mA·cm-2, 120 h | [129] | |
NiFe alloy | OER | 1 mol·L-1 KOH | 242 | 24 | 40 mA·cm-2, 200 h | [130] | |
Ceramics with low mixing entropy | MoS2 | HER | 0.5 mol·L-1 H2SO4 | 127 | 41 | 150 mV, 24 h | [131] |
NiO | HER | 1 mol·L-1 KOH | 110 | 100 | 10 mA·cm-2, 10 h | [132] | |
NiFeP | OER | 1 mol·L-1 KOH | 233 | 48.7 | 10 mA·cm-2, 30 h | [133] | |
NiFe-LDH | OER | 1 mol·L-1 KOH | 205 | 41.8 | 100 mA·cm-2, 24 h | [134] |
合成块体高熵材料的方法很多,例如传统铸造、粉末冶金等[94-95]。但高熵催化剂需要通过小尺寸化、低维化来提高催化活性和使用效率。一些高熵催化剂还需要在表面引入大量缺陷来优化催化性能。因此,电解水用高熵催化剂多采用远离平衡条件的方法制备。本文按照制备时间尺度和前驱体相态对高熵催化剂的制备方法进行分类介绍。
溶剂热/水热法以溶解在有机物或水溶液中的金属盐为前驱体,通过在一定温度和压力条件下的化学反应,可制备包括HEAs和HECs在内的许多纳米材料[46, 79-80]。通过反应模板、还原剂和表面活性剂的选择,能对高熵材料的形态和结构进行调控。例如,Kang等[96]设计了一种采用一步溶剂热还原法,以二嵌段共聚物PEO10500-b-PMMA18000为软模板,合成了核壳结构的PtPdRhRuCu HEAs介孔纳米球(图 7a)。研究表明,在该软模版中,不同金属前驱体的还原和生长动力学存在差异,使HEAs具有核壳型结构。Wang等[97]以聚乙烯氧化物P123和乙二醇为表面活性剂,在乙醇溶液中通过溶剂热法和后续低温热解,制备出了具有高分散性的小粒径(5 nm)高熵氧化物(CoCuFeMnNi)3O4。P123的使用对防止颗粒团聚起了重要作用。Gu等[98]则以不同金属盐及氢氧化钠为原料,在80 ℃下通过水热法合成了系列FeAlCoNiZn、FeCrCoNiZn和FeCrCoNiCu高熵LDH纳米片。
喷雾干燥-热解法是一种可扩展的纳米材料合成技术,通常以溶解在有机物或水溶液中的金属盐为前驱体,经过雾化后热解,可获得粒径分布较窄的纳米颗粒[99-100],目前已被用于HEAs和HECs纳米粉体的制备[101-103]。Zhao等[104]采用该法制备了系列PtCoCuRuFeNi HEAs纳米颗粒。他们将金属前驱体溶液和不同碳材料混合,通过喷雾-热解,获得了分散在氧化石墨烯、纳米碳管等不同载体上的小粒径PtCoCuRuFeNi(图 7b)。
溶液中的金属离子通过电极反应,沉积在电极表面的过程,可用于HEAs及高熵氢氧化物的合成[54, 82]。调控金属离子的还原电位、浓度,使其实现共沉积,是该法制备HEAs和HECs的关键。沉积产物形貌则可通过沉积参数和沉积模板予以调控。Pavithra等[105]利用脉冲电沉积法成功制备了CoCuFeNiZn HEAs纳米晶。在沉积液中,柠檬酸钠使多种离子形成配合物,其还原电位更加接近,从而实现了HEAs的共沉积。Ritter等[106]利用恒流电沉积制备了非晶态FeMnNiCaMg高熵氢氧化物纳米颗粒。在沉积过程中,阴极的HER导致电极附近pH发生快速改变,多种金属的离子浓度超过了溶积度的容许范围,进而以氢氧化物的形式在阴极沉淀下来,形成了高熵氢氧化物。作者通过改变电流密度对阴极湍流环境进一步调控,改善了颗粒的团聚问题。Pavithra等[107]在阳极氧化铝模板上进行电化学沉积,制备出了CoCuFeNiZn HEAs纳米线阵列(图 7c)。
使用含多种金属元素的溶胶作为前驱体,通过陈化、胶粒聚合形成凝胶,再通过干燥、煅烧等方法彻底去除溶剂,可制得HEAs和HECs[108-110]。例如,Niu等[111]利用溶胶-凝胶法制备了平均晶粒尺寸为14 nm的CoCrCuNiAl HEA纳米颗粒。Lai等[84]采用低温溶胶-凝胶方法在碳基体表面合成了NiCoFe系中熵和高熵磷化物纳米颗粒(图 7d)。Haussain等[112]以金属有机框架为模板,合成了具有大比表面积的CeCuNiCoMnOx高熵纳米颗粒、纳米片复合催化剂。
高能球磨法是一种常用的机械合金化方法,可用于HEAs和高熵氧化物纳米颗粒的制备。例如,Sivanantham等[113]用高能球磨工艺制备了面心立方结构的CuCoNiFeMn HEAs(图 7e)。Zhang等[114]合成了(Co0.2Mn0.2Ni0.2Fe0.2Zn0.2)Fe2O4和(Co0.25Mn0.25Ni0.25Fe0.25) Fe2O4 HECs粉末。高能球磨具有设备及操作简单等优势,但制备过程耗时耗能,且易因球磨球和容器表面的磨损造成HEAs和HECs的污染。
脱合金法是一种采用化学或电化学腐蚀,选择性地去除固态前驱体中电化学活性较高成分的方法。通过改变前驱体成分、腐蚀剂种类等参数,可对多孔催化剂的成分、孔道结构进行有效调控。近年来,研究者开始尝试用该法制备高熵电解水催化剂[49, 51]。如Yu等[115]以含Al的AlCoCrFeNi固溶体为预合金,在2.5 mol·L-1 NaOH溶液中进行脱合金处理。Al腐蚀后,可获得纳米多孔结构的HEAs(图 7f)。使用脱合金法制备HEAs时,主要的挑战在于预合金的设计和选择。为确保制成的HEAs具有均匀的纳米孔道结构,预合金需为六元及以上固溶体。此外,在脱合金过程中,HEAs也容易因元素组成复杂而出现相分离现象。
上述传统制备方法多在数分钟至数小时的时间尺度内合成HEAs和HECs。其优点在于大部分技术可以进行HEAs和HECs的批量制备。但由于金属离子的还原/氧化温度、电位往往具有较大差异,在制备过程中,较难实现任意多种金属的共还原/氧化,使技术的可扩展性受限。
碳热冲击法由Yao等在2018年首次提出[116]。其反应机制与溶剂热/水热法及喷雾热解法等相似,以溶解在液相中的金属盐为前驱体,通过含氧碳载体对前驱体实施快速(约55 ms)、高温(约2 000 K)的冲击式加热,使多种金属在极短的时间内共还原,形成超细的HEAs纳米颗粒。由于形核量大、晶体生长时间短,获得的HEAs颗粒均匀、粒径分布窄。Yao等通过该方法,成功制备出八元PtPdCoNiFeCuAuSn HEAs纳米颗粒(图 8a)。此后,Cui等[117]基于该方法制备出了PtCoNiRuIr HEA纳米颗粒,在HER催化中表现突出。
受碳热冲击启发,Glasscott等[118]开发了一种纳米液滴介导的电合成方法(图 8b),其合成机制与电化学沉积类似。该法先将金属盐前驱体溶液与二氯乙烷混合,在微乳液中形成“油包水”液滴,再通过电场使纳米液滴与高取向热解石墨阴极碰撞,液滴中的金属离子在瞬间(100 ms)还原、合金化,形成HEAs纳米颗粒。Glasscott等利用该法合成了CrVNiCo、CoCrMnNiV、CoCuCrGdNi、CoCrLaMnNiV、CoCrCuGdMnNi和CoCrCuGdInMnNiV等HEAs纳米颗粒催化剂。
Gao等[119]对传统的移动床热解设施进行改造,形成了一种新的快速移动床热解技术,可在不同载体上合成超小粒径的HEAs。其合成机制与溶剂热/水热法相似,先通过浸渍,将金属盐前驱体和1,10-菲咯啉混合物负载到氧化石墨烯等载体(炭黑、γ-Al2O3和沸石)上,然后将前驱体在5 s内升至923 K,通过热解还原来合成HEAs纳米颗粒。作者通过该法制备出组元高达10种的MnCoNiCuRhPdSnIrPtAu HEAs纳米颗粒(图 8c)。
气溶胶介导合成法将金属盐溶液通过雾化形成微小的气溶胶颗粒,再通过短时热解(数百毫秒)可以形成HEAs和HECs纳米颗粒。该法可避免溶剂或表面活性剂残留污染的问题[120-122]。Yang等[123]基于此法合成了NiCoCuFePt HEAs纳米颗粒(图 8d)。Qiao等[124]采用该法成功制备了CoFeNiMnMoPi高熵磷化物微球。
上述新兴的超快制备技术在短时间内实现金属盐的热解/还原和合金化,可有效避免相分离现象,因此具有高度的可扩展性,能进行更多组元的高熵体系合成,为催化剂的性能提升提供了良好平台。此外,由于晶体生长时间受限,这些技术还有益于催化剂的小尺寸化、均匀化,为进一步提升高熵催化剂的性能提供了有效保障。然而,快速升温/电冲击对于设备的要求较高,离催化剂的量产尚有一定距离。此外,通过这些方法,目前较难实现高熵催化剂在高比表面金属电极(如泡沫镍)上的直接合成。
综上所述,大的晶格畸变、显著的迟滞扩散效应和“鸡尾酒”效应使HEAs和HECs表现出异于传统合金和陶瓷的良好电解水催化性能。基于电解水机制,研究者对HEAs和HECs进行成分和结构设计,已发展出了多种低/无贵金属的高效HER、OER高熵催化剂,且其性能仍有极大提升空间,这为解决绿氢制备低能效问题提供了一条理想途径。针对高熵催化剂多组元、小尺寸的结构特点,在传统纳米材料制备技术基础上发展起来的系列超快制备新技术,又为HEAs和HECs性能的进一步提升提供了良好平台。
但值得注意的是,电解水用高熵催化剂在成分设计、批量可控制备技术、性能优化及实际应用等方面仍存在一些迫切需要解决的问题。未来HEAs和HECs的发展方向主要包括以下几个方面:
(1) 发展高效、精准的高熵成分设计方法。增加组元数量是提升HEAs和HECs催化性能的一种重要手段。鉴于其多组元的成分特点,通过传统试错法对HEAs和HECs催化剂组分进行实验筛选无疑是一项耗时耗力的工作。挖掘高熵材料电解水的微观机制和借助人工智能进行高效、精准的成分设计,是解决上述问题的有效途径。把握HEAs和HECs电解水的微观机制,是对其成分进行精准设计的前提。不断发展的探针、原位光谱、原位成像等技术为微观机制的深入挖掘提供了契机。在此基础上,借助人工智能强大的数据处理能力、模式识别能力及深度学习、机器学习等先进算法,有望实现高效、精准的HEAs和HECs成分设计。
(2) 发展高通量的HEAs和HECs制备及性能检测技术。鉴于HEAs和HECs多组分的特点,在对其进行性能检测和优化时,采用传统方法将耗费大量人力物力。发展高通量的制备和检测技术将是快速推进这一进程的重要手段。
(3) 发展低成本、可扩展的HEAs和HECs大规模的超快制备技术。尽管研究者已实现了超多组元HEAs和HECs的实验室合成,但要让高熵材料替代商用电解水催化剂走向大规模应用,其制备技术在可控性、可扩展性和成本等方面还面临挑战。开发条件温和、可扩展性高的制备新方法,发展环保、低能耗的合成新设施将有利于该问题的解决。
AMIN M, SHAH H H, FAREED A G, KHAN W U, CHUNG E, ZIA A, RAHMAN FAROOQI Z U, LEE C. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change[J]. Int. J. Hydrog. Energy, 2022, 47(77): 33112-33134 doi: 10.1016/j.ijhydene.2022.07.172
YU Z Y, DUAN Y, FENG X Y, YU X X, GAO M R, YU S H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects[J]. Adv. Mater., 2021, 33(31): 2007100 doi: 10.1002/adma.202007100
KOTHARI R, BUDDHI D, SAWHNEY R L. Comparison of environmental and economic aspects of various hydrogen production methods[J]. Renew. Sust. Energ. Rev., 2008, 12(2): 553-563 doi: 10.1016/j.rser.2006.07.012
DINCER I. Green methods for hydrogen production[J]. Int. J. Hydrog. Energy, 2012, 37(2): 1954-1971 doi: 10.1016/j.ijhydene.2011.03.173
HASSAN N S, JALIL A A, RAJENDRAN S, KHUSNUN N F, BAHARI M B, JOHARI A, KAMARUDDIN M J, ISMAIL M. Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society[J]. Int. J. Hydrog. Energy, 2024, 52: 420-441 doi: 10.1016/j.ijhydene.2023.09.068
THOMAS J G N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals[J]. Trans. Faraday Soc., 1961, 57: 1603-1611 doi: 10.1039/tf9615701603
DAMJANOVIC A, DEY A, BOCKRIS J O M. Kinetics of oxygen evolution and dissolution on platinum electrodes[J]. Electrochim. Acta, 1966, 11(7): 791-814 doi: 10.1016/0013-4686(66)87056-1
HANSEN J N, PRATS H, TOUDAHL K K, MØRCH SECHER N, CHAN K, KIBSGAARD J, CHORKENDORFF I. Is there anything better than Pt for HER?[J]. ACS Energy Lett., 2021, 6(4): 1175-1180 doi: 10.1021/acsenergylett.1c00246
OVER H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting[J]. ACS Catal., 2021, 11(14): 8848-8871 doi: 10.1021/acscatal.1c01973
JIAO S L, FU X W, WANG S Y, ZHAO Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology[J]. Energy Environ. Sci., 2021, 14(4): 1722-1770 doi: 10.1039/D0EE03635H
YEH J W, CHEN S K, LIN S J, GAN J Y, CHIN T S, SHUN T T, TSAU C H, CHANG S Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6(5): 299-303 doi: 10.1002/adem.200300567
CANTOR B, CHANG I T H, KNIGHT P, VINCENT A J B. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng. A‒Struct. Mater. Prop. Microstruct. Process., 2004, 375/376/377: 213-218
TIAN F Y, VARGA L K, CHEN N X, SHEN J, VITOS L. Empirical design of single phase high-entropy alloys with high hardness[J]. Intermetallics, 2015, 58: 1-6 doi: 10.1016/j.intermet.2014.10.010
VAIDYA M, GURUVIDYATHRI K, MURTY B S. Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys[J]. J. Alloy. Compd., 2019, 774: 856-864 doi: 10.1016/j.jallcom.2018.09.342
LI R, LIU X J, LIU W H, LI Z B, CHAN K C, LU Z P. Design of hierarchical porosity via manipulating chemical and microstructural complexities in high-entropy alloys for efficient water electrolysis[J]. Adv. Sci., 2022, 9(12): 2105808 doi: 10.1002/advs.202105808
ROST C M, SACHET E, BORMAN T, MOBALLEGH A, DICKEY E C, HOU D, JONES J L, CURTAROLO S, MARIA J P. Entropy-stabilized oxides[J]. Nat. Commun., 2015, 6(1): 8485 doi: 10.1038/ncomms9485
ZHOU N X, JIANG S C, HUANG T, QIN M D, HU T, LUO J. Single-phase high-entropy intermetallic compounds (HEICs): Bridging high-entropy alloys and ceramics[J]. Sci. Bull., 2019, 64(12): 856-864 doi: 10.1016/j.scib.2019.05.007
OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat. Rev. Mater., 2020, 5(4): 295-309 doi: 10.1038/s41578-019-0170-8
AKRAMI S, EDALATI P, FUJI M, EDALATI K. High-entropy ceramics: Review of principles, production and applications[J]. Mater. Sci. Eng. R‒Rep., 2021, 146: 100644 doi: 10.1016/j.mser.2021.100644
XIANG H M, XING Y, DAI F Z, WANG H J, SU L, MIAO L, ZHANG G L, WANG Y G, QI X W, YAO L, WANG H L, ZHAO B, LI J Q, ZHOU Y C. High-entropy ceramics: Present status, challenges, and a look forward[J]. J. Adv. Ceram., 2021, 10(3): 385-441 doi: 10.1007/s40145-021-0477-y
BOCKRIS J O M, AMMAR I A, HUQ A K M S. The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions[J]. J. Phys. Chem. A, 1957, 61(7): 879-886 doi: 10.1021/j150553a008
DE CHIALVO M R G, CHIALVO A C. Hydrogen evolution reaction: Analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model[J]. J. Electroanal. Chem., 1994, 372(1): 209-223
ĎUROVIČ M, HNáT J, BOUZEK K. Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. a comparative review[J]. J. Power Sources, 2021, 493: 229708 doi: 10.1016/j.jpowsour.2021.229708
EID K, OZOEMENA K I, VARMA R S. Unravelling the structure-activity relationship of porous binary metal-based electrocatalysts for green hydrogen evolution reaction[J]. Coord. Chem. Rev., 2025, 523: 216238 doi: 10.1016/j.ccr.2024.216238
ZERADJANIN A R, POLYMEROS G, TOPARLI C, LEDENDECKER M, HODNIK N, ERBE A, ROHWERDER M, LA MANTIA F. What is the trigger for the hydrogen evolution reaction? ‒Towards electrocatalysis beyond the Sabatier principle[J]. Phys. Chem. Chem. Phys., 2020, 22(16): 8768-8780 doi: 10.1039/D0CP01108H
KUO D Y, PAIK H, KLOPPENBURG J, FAETH B, SHEN K M, SCHLOM D G, HAUTIER G, SUNTIVICH J. Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): A discussion of the Sabatier principle and its role in electrocatalysis[J]. J. Am. Chem. Soc., 2018, 140(50): 17597-17605 doi: 10.1021/jacs.8b09657
NØRSKOV J K, BLIGAARD T, LOGADOTTIR A, KITCHIN J R, CHEN J G, PANDELOV S, STIMMING U. Trends in the exchange current for hydrogen evolution[J]. J. Electrochem. Soc., 2005, 152(3): J23 doi: 10.1149/1.1856988
MAN I C, SU H Y, CALLE-VALLEJO F, HANSEN H A, MARTÍNEZ J I, INOGLU N G, KITCHIN J, JARAMILLO T F, NØRSKOV J K, ROSSMEISL J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165 doi: 10.1002/cctc.201000397
KOPER M T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem. Sci., 2013, 4(7): 2710-2723 doi: 10.1039/c3sc50205h
CHEN X H, ASCHAFFENBURG D J, CUK T J. Selecting between two transition states by which water oxidation intermediates decay on an oxide surface[J]. Nat. Catal., 2019, 2(9): 820-827 doi: 10.1038/s41929-019-0332-5
MUELLER D N, MACHALA M L, BLUHM H, CHUEH W C. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions[J]. Nat. Commun., 2015, 6(1): 6097 doi: 10.1038/ncomms7097
MONTOYA J H, SEITZ L C, CHAKTHRANONT P, VOJVODIC A, JARAMILLO T F, NØRSKOV J K. Materials for solar fuels and chemicals[J]. Nat. Mater., 2017, 16(1): 70-81 doi: 10.1038/nmat4778
SEH Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NØRSKOV J K, JARAMILLO T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998 doi: 10.1126/science.aad4998
RONG X, PAROLIN J, KOLPAK A M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution[J]. ACS Catal., 2016, 6(2): 1153-1158 doi: 10.1021/acscatal.5b02432
LU M, ZHENG Y, HU Y, HUANG B L, JI D G, SUN M Z, LI J Y, PENG Y, SI R, XI P X, YAN C H. Artificially steering electrocatalytic oxygen evolution reaction mechanism by regulating oxygen defect contents in perovskites[J]. Sci. Adv., 2022, 8(30): eabq3563 doi: 10.1126/sciadv.abq3563
REN X R, ZHAI Y Y, YANG N, WANG B L, LIU S Z. Lattice oxygen redox mechanisms in the alkaline oxygen evolution reaction[J]. Adv. Funct. Mater., 2024, 34(32): 2401610 doi: 10.1002/adfm.202401610
WU J W, WANG H C, LIU N Y, JIA B B, ZHENG J L. High-entropy materials in electrocatalysis: Understanding, design, and development[J]. Small, 2024, 20(43): 2403162 doi: 10.1002/smll.202403162
KIM H K, JANG H, JIN X, KIM M G, HWANG S J. A crucial role of enhanced Volmer-Tafel mechanism in improving the electrocatalytic activity via synergetic optimization of host, interlayer, and surface features of 2D nanosheets[J]. Appl. Catal. B‒Environ., 2022, 312: 121391 doi: 10.1016/j.apcatb.2022.121391
JIANG T L, ZHANG Z W, WEI S Y, TAN S X, LIU H X, CHEN W. Rechargeable hydrogen gas batteries: Fundamentals, principles, materials, and applications[J]. Adv. Mater., 2024, 37(1): 2412108
WANG H, ZHAI T T, WU Y F, ZHOU T, ZHOU B B, SHANG C X, GUO Z X. High-valence oxides for high performance oxygen evolution electrocatalysis[J]. Adv. Sci., 2023, 10(22): 2301706 doi: 10.1002/advs.202301706
NOOR T, YAQOOB L, IQBAL N. Recent advances in electrocatalysis of oxygen evolution reaction using noble-metal, transition-metal, and carbon-based materials[J]. ChemElectroChem, 2021, 8(3): 447-483 doi: 10.1002/celc.202001441
ARALEKALLU S, SANNEGOWDA LOKESH K, SINGH V. Advanced bifunctional catalysts for energy production by electrolysis of earth-abundant water[J]. Fuel, 2024, 357: 129753 doi: 10.1016/j.fuel.2023.129753
QIN Y C, WANG F Q, WANG X M, WANG M W, ZHANG W L, AN W K, WANG X P, REN Y L, ZHENG X, LV D C, AHMAD A. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion[J]. Rare Metals, 2021, 40(9): 2354-2368 doi: 10.1007/s12598-021-01727-y
HUANG X F, YANG G X, LI S, WANG H J, CAO Y H, PENG F, YU H. Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis[J]. J. Energy Chem., 2022, 68: 721-751 doi: 10.1016/j.jechem.2021.12.026
FENG G, NING F H, SONG J, SHANG H F, ZHANG K, DING Z P, GAO P, CHU W S, XIA D G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution[J]. J. Am. Chem. Soc., 2021, 143(41): 17117-17127 doi: 10.1021/jacs.1c07643
FU X B, ZHANG J H, ZHAN S Q, XIA F J, WANG C G, MA D S, YUE Q, WU J S, KANG Y J. High-entropy alloy nanosheets for fine-tuning hydrogen evolution[J]. ACS Catal., 2022, 12(19): 11955-11959 doi: 10.1021/acscatal.2c02778
LIU H, QIN H Y, KANG J L, MA L Y, CHEN G X, HUANG Q, ZHANG Z J, LIU E Z, LU H M, LI J X, ZHAO N Q. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting[J]. Chem. Eng. J., 2022, 435: 134898 doi: 10.1016/j.cej.2022.134898
WANG C Y, ZHAO S, HAN G Q, BIAN H W, ZHAO X R, WANG L N, XIE G W. Hierarchical porous nonprecious high-entropy alloys for ultralow overpotential in hydrogen evolution reaction[J]. Small Methods, 2024, 8(10): 2301691
YAO R Q, ZHOU Y T, SHI H, WAN W B, ZHANG Q H, GU L, ZHU Y F, WEN Z, LANG X Y, JIANG Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction[J]. Adv. Funct. Mater., 2021, 31(10): 2009613 doi: 10.1002/adfm.202009613
FENG D Y, DONG Y B, NIE P, ZHANG L, QIAO Z A. CoNiCuMgZn high entropy alloy nanoparticles embedded onto graphene sheets via anchoring and alloying strategy as efficient electrocatalysts for hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 430: 132883 doi: 10.1016/j.cej.2021.132883
SHI H, SUN X Y, ZENG S P, LIU Y, HAN G F, WANG T H, WEN Z, FANG Q R, LANG X Y, JIANG Q. Nanoporous nonprecious high-entropy alloys as multisite electrocatalysts for ampere-level current-density hydrogen evolution[J]. Small Struct., 2023, 4(9): 2300042 doi: 10.1002/sstr.202300042
MAULANA A L, CHEN P C, SHI Z, YANG Y, LIZANDARA-PUEYO C, SEELER F, ABRUÑA H D, MULLER D, SCHIERLE-ARNDT K, YANG P D. Understanding the structural evolution of IrFeCoNiCu high-entropy alloy nanoparticles under the acidic oxygen evolution reaction[J]. Nano Lett., 2023, 23(14): 6637-6644 doi: 10.1021/acs.nanolett.3c01831
ZHU H, ZHU Z F, HAO J C, SUN S H, LU S L, WANG C, MA P M, DONG W F, DU M L. High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution[J]. Chem. Eng. J., 2022, 431: 133251 doi: 10.1016/j.cej.2021.133251
CHANG S Q, CHENG C C, CHENG P Y, HUANG C L, LU S Y. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting[J]. Chem. Eng. J., 2022, 446: 137452 doi: 10.1016/j.cej.2022.137452
YI L Y, XIAO S M, WEI Y P, LI D Z, WANG R F, GUO S F, HU W H. Free-standing high-entropy alloy plate for efficient water oxidation catalysis: Structure/composition evolution and implication of high-valence metals[J]. Chem. Eng. J., 2023, 469: 144015 doi: 10.1016/j.cej.2023.144015
MEI Y J, FENG Y B, ZHANG C X, ZHANG Y, QI Q L, HU J. High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction[J]. ACS Catal., 2022, 12(17): 10808-10817 doi: 10.1021/acscatal.2c02604
XIAO L Y, WANG Z L, GUAN J Q. Optimization strategies of high-entropy alloys for electrocatalytic applications[J]. Chem. Sci., 2023, 14(45): 12850-12868 doi: 10.1039/D3SC04962K
HUANG K, ZHANG B W, WU J S, ZHANG T Y, PENG D D, CAO X, ZHANG Z, LI Z, HUANG Y Z. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst[J]. J. Mater. Chem. A, 2020, 8(24): 11938-11947 doi: 10.1039/D0TA02125C
WEI H H, WANG Q, ZHANG Y, LI J, LIU P, WANG N N, GONG X Q. Engineering high-entropy alloy nanosheets toward efficient electrocatalytic water oxidation[J]. Fuel, 2024, 358: 130011 doi: 10.1016/j.fuel.2023.130011
WU Q N, WANG Y N, ZHANG K X, XIE Z B, SUN K, AN W, LIANG X, ZOU X X. Advances and status of anode catalysts for proton exchange membrane water electrolysis technology[J]. Mat. Chem. Front., 2023, 7(6): 1025-1045 doi: 10.1039/D3QM00010A
DOMALANTA M R, BAMBA J N, MATIENZO D J D, DEL ROSARIO-PARAGGUA J A, OCON J. Pathways towards achieving high current density water electrolysis: From material perspective to system configuration[J]. ChemSusChem, 2023, 16(13): e202300310 doi: 10.1002/cssc.202300310
XU H G, ZHANG X Y, DING Y, FU H Q, WANG R, MAO F, LIU P F, YANG H G. Rational design of hydrogen evolution reaction electrocatalysts for commercial alkaline water electrolysis[J]. Small Struct., 2023, 4(8): 2200404 doi: 10.1002/sstr.202200404
SUN H N, XU X M, KIM H, JUNG W, ZHOU W, SHAO Z P. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications[J]. Energy Environ. Mater., 2023, 6(5): e12441 doi: 10.1002/eem2.12441
LI P, WAN X H, SU J H, LIU W, GUO Y Z, YIN H Y, WANG D H. A single-phase FeCoNiMnMo high-entropy alloy oxygen evolution anode working in alkaline solution for over 1 000 h[J]. ACS Catal., 2022, 12(19): 11667-11674 doi: 10.1021/acscatal.2c02946
CUI Y F, JIANG S D, FU Q, WANG R, XU P, SUI Y, WANG X J, NING Z L, SUN J F, SUN X, NIKIFOROV A, SONG B. Cost-effective high entropy core-shell fiber for stable oxygen evolution reaction at 2 A cm-2[J]. Adv. Funct. Mater., 2023, 33(50): 2306889 doi: 10.1002/adfm.202306889
CUI P, WANG T H, ZHANG X H, WANG X Y, WU H, WU Y K, BA C Y, ZENG Y Q, LIU P, JIANG J Q. Rapid formation of epitaxial oxygen evolution reaction catalysts on dendrites with high catalytic activity and stability[J]. ACS Nano, 2023, 17(22): 22268-22276 doi: 10.1021/acsnano.3c02662
CUI P, WANG T H, ZHANG X H, BA C Y, WU Y K, PENG K, ZENG Y Q, JIANG J Q. NiCoCuP foam with a 3D hierarchical porous structure as all-pH efficient and stable HER electrocatalyst[J]. Int. J. Hydrog. Energy, 2023, 48(44): 16725-16732 doi: 10.1016/j.ijhydene.2023.01.100
LI Y Y, ZHANG Q W, ZHAO X R, WU H F, WANG X Y, ZENG Y Q, CHEN Q, CHEN M W, LIU P. Vapor phase dealloying derived nanoporous Co@CoO/RuO2 composites for efficient and durable oxygen evolution reaction[J]. Adv. Funct. Mater., 2023, 33(17): 2214124 doi: 10.1002/adfm.202214124
ZHANG X H, CAO C T, LING T, YE C, LU J, SHAN J Q. Developing practical catalysts for high-current-density water electrolysis[J]. Adv. Energy Mater., 2024, 14(45): 2402633 doi: 10.1002/aenm.202402633
ZHANG H M, ZHANG S F, ZUO L H, LI J K, GUO J X, WANG P, SUN J F, DAI L. Recent advances of high-entropy electrocatalysts for water electrolysis by electrodeposition technology: A short review[J]. Rare Metals, 2024, 43(6): 2371-2390 doi: 10.1007/s12598-024-02619-7
SCHWEIDLER S, BOTROS M, STRAUSS F, WANG Q S, MA Y J, VELASCO L, CADILHA MARQUES G, SARKAR A, KÜBEL C, HAHN H, AGHASSI-HAGMANN J, BREZESINSKI T, BREITUNG B. High-entropy materials for energy and electronic applications[J]. Nat. Rev. Mater., 2024, 9(4): 266-281 doi: 10.1038/s41578-024-00654-5
KANTE M V, WEBER M L, NI S, VAN DEN BOSCH I C G, VAN DER MINNE E, HEYMANN L, FALLING L J, GAUQUELIN N, TSVETANOVA M, CUNHA D M, KOSTER G, GUNKEL F, NEMŠÁK S, HAHN H, VELASCO ESTRADA L, BAEUMER C. A high-entropy oxide as high-activity electrocatalyst for water oxidation[J]. ACS Nano, 2023, 17(6): 5329-5339 doi: 10.1021/acsnano.2c08096
KARTHIKEYAN S C, RAMAKRISHNAN S, PRABHAKARAN S, SUBRAMANIAM M R, MAMLOUK M, KIM D H, YOO D J. Low-cost self-reconstructed high entropy oxide as an ultra-durable OER electrocatalyst for anion exchange membrane water electrolyzer[J]. Small, 2024, 20(45): 2402241 doi: 10.1002/smll.202402241
SAIRAM K V R S, AZIZ S K T, KARAJAGI I, SAINI A, PAL M, GHOSH P C, DUTTA A. A quinary high entropy metal oxide exhibiting robust and efficient bidirectional O2 reduction and water oxidation[J]. Int. J. Hydrog. Energy, 2023, 48(28): 10521-10531 doi: 10.1016/j.ijhydene.2022.12.034
DING S, SUN Y T, LOU F Q, YU L C, XIA B K, DUAN J J, ZHANG Y Z, CHEN S. Plasma-regulated two-dimensional high entropy oxide arrays for synergistic hydrogen evolution: From theoretical prediction to electrocatalytic applications[J]. J. Power Sources, 2022, 520: 230873 doi: 10.1016/j.jpowsour.2021.230873
NGUYEN T X, LIAO Y C, LIN C C, SU Y H, TING J M. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction[J]. Adv. Funct. Mater., 2021, 31(27): 2101632 doi: 10.1002/adfm.202101632
LIU D, GUO P F, YAN X X, HE Y F, WU R B. Manipulating the configuration entropy of layered hydroxides toward efficient oxygen evolution reaction for anion exchange membrane electrolyzer[J]. Mater. Today, 2024, 80: 101-112 doi: 10.1016/j.mattod.2024.08.008
ZHANG L J, CAI W W, BAO N Z, YANG H. Implanting an electron donor to enlarge the d-p hybridization of high-entropy (oxy)hydroxide: A novel design to boost oxygen evolution[J]. Adv. Mater., 2022, 34(26): 2110511 doi: 10.1002/adma.202110511
LIU D, YAN X X, GUO P F, YANG Y X, HE Y F, LIU J, CHEN J, PAN H G, WU R B. Inert Mg incorporation to break the activity/stability relationship in high-entropy layered hydroxides for the electrocatalytic oxygen evolution Reaction[J]. ACS Catal., 2023, 13(11): 7698-7706 doi: 10.1021/acscatal.3c00786
WANG F Q, ZOU P C, ZHANG Y T, PAN W L, LI Y, LIANG L M, CHEN C, LIU H, ZHENG S. Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation[J]. Nat. Commun., 2023, 14(1): 6019 doi: 10.1038/s41467-023-41706-8
ZHAO X H, XUE Z M, CHEN W J, WANG Y Q, MU T C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting[J]. ChemSusChem, 2020, 13(8): 2038-2042 doi: 10.1002/cssc.202000173
WANG Z, LI J Z, YUAN S, YANG J S, JIN Z Q, TAN X J, DANG J, MU W Z, LI G J, WANG Q. Sabatier principle based design of high performance FeCoNiMnMoP high entropy electrocatalysis for alkaline water splitting[J]. Chem. Eng. J., 2024, 497: 154650 doi: 10.1016/j.cej.2024.154650
WANG Z C, ZHANG X Y, WU X K, PAN Y, LI H D, HAN Y, XU G R, CHI J Q, LAI J P, WANG L. High-entropy phosphate/C hybrid nanosheets for efficient acidic hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 437: 135375 doi: 10.1016/j.cej.2022.135375
LAI D W, KANG Q L, GAO F, LU Q. High-entropy effect of a metal phosphide on enhanced overall water splitting performance[J]. J. Mater. Chem. A, 2021, 9(33): 17913-17922 doi: 10.1039/D1TA04755H
WU L F, HOFMANN J P. High-entropy transition metal chalcogenides as electrocatalysts for renewable energy conversion[J]. Curr. Opin. Electrochem., 2022, 34: 101010 doi: 10.1016/j.coelec.2022.101010
MOHILI R, HEMANTH N R, JIN H, LEE K, CHAUDHARI N. Emerging high entropy metal sulphides and phosphides for electrochemical water splitting[J]. J. Mater. Chem. A, 2023, 11(20): 10463-10472 doi: 10.1039/D2TA10081A
LEI Y T, ZHANG L L, XU W J, XIONG C L, CHEN W X, XIANG X, ZHANG B, SHANG H S. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting[J]. Nano Res., 2022, 15(7): 6054-6061 doi: 10.1007/s12274-022-4304-8
NGUYEN T X, SU Y H, LIN C C, TING J M. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-Performance oxygen evolution reaction electrocatalyst[J]. Adv. Funct. Mater., 2021, 31(48): 2106229 doi: 10.1002/adfm.202106229
HAUSMANN J N, MENEZES P W. Why should transition metal chalcogenides be investigated as water splitting precatalysts even though they transform into (oxyhydr)oxides?[J]. Curr. Opin. Electrochem., 2022, 34: 100991 doi: 10.1016/j.coelec.2022.100991
JIANG Z Q, YUAN Y, TAN L, LI M J, PENG K. Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction[J]. Appl. Surf. Sci., 2023, 627: 157282 doi: 10.1016/j.apsusc.2023.157282
WANG T, CHEN H, YANG Z Z, LIANG J Y, DAI S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis[J]. J. Am. Chem. Soc., 2020, 142(10): 4550-4554 doi: 10.1021/jacs.9b12377
NIU S Y, YANG Z W, QI F G, HAN Y, SHI Z Z, QIU Q W, HAN X P, WANG Y, DU X W. Electrical discharge induced bulk-to-nanoparticle transformation: Nano high-entropy carbide as catalysts for hydrogen evolution reaction[J]. Adv. Funct. Mater., 2022, 32(35): 2203787 doi: 10.1002/adfm.202203787
DONG S Z, LI Q J, HU H Y, ZHANG X, LI Y S, YE K, HOU W J, HE J Q, ZHAO H W. Application of rare-earth high entropy boride in electrocatalytic hydrogen evolution reaction[J]. Appl. Surf. Sci., 2023, 615: 156413 doi: 10.1016/j.apsusc.2023.156413
WU Q F, WANG Z J, ZHENG T, CHEN D, YANG Z S, LI J J, KAI J J, WANG J C. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268-271 doi: 10.1016/j.matlet.2019.06.067
GUO W M, LIU B, LIU Y, LI T C, FU A, FANG Q H, NIE Y. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy[J]. J. Alloy. Compd., 2019, 776: 428-436 doi: 10.1016/j.jallcom.2018.10.230
KANG Y Q, CRETU O, KIKKAWA J, KIMOTO K, NARA H, NUGRAHA A S, KAWAMOTO H, EGUCHI M, LIAO T, SUN Z Q, ASAHI T, YAMAUCHI Y. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites[J]. Nat. Commun., 2023, 14(1): 4182 doi: 10.1038/s41467-023-39157-2
WANG D D, LIU Z J, DU S Q, ZHANG Y Q, LI H, XIAO Z H, CHEN W, CHEN R, WANG Y Y, ZOU Y Q, WANG S Y. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation[J]. J. Mater. Chem. A, 2019, 7(42): 24211-24216 doi: 10.1039/C9TA08740K
GU K Z, ZHU X Y, WANG D D, ZHANG N N, HUANG G, LI W, LONG P, TIAN J, ZOU Y Q, WANG Y Y, CHEN R, WANG S Y. Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation[J]. J. Energy Chem., 2021, 60: 121-126 doi: 10.1016/j.jechem.2020.12.029
CARNÉ-SÁNCHEZ A, IMAZ I, CANO-SARABIA M, MASPOCH D. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures[J]. Nat. Chem., 2013, 5(3): 203-211 doi: 10.1038/nchem.1569
ZHU Y J, CHOI S H, FAN X L, SHIN J, MA Z H, ZACHARIAH M R, CHOI J W, WANG C S. Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries[J]. Adv. Energy Mater., 2017, 7(7): 1601578 doi: 10.1002/aenm.201601578
DAI Y F, JU J, LUO L L, JIANG H, HU Y J, LI C Z. Flame spray pyrolysis synthesis of ultra-small high-entropy alloy-supported oxide nanoparticles for CO2 hydrogenation catalysts[J]. Small Methods, 2024, 8(10): 2301768
BRANDT T G, TUOKKOLA A R, YU M, LAINE R M. Liquid-feed flame spray pyrolysis enabled synthesis of Co- and Cr-free, high-entropy spinel oxides as Li-ion anodes[J]. Chem. Eng. J., 2023, 474: 145495 doi: 10.1016/j.cej.2023.145495
ZHENG H N, ZHANG Y R, XU Z, ZHOU G Z, ZHAO X T, HUANG Z, LIN H. One-step synthesis of Pt@(CrMnFeCoNi)3O4 high entropy oxide catalysts through flame spray pyrolysis[J]. J. Energy Inst., 2024, 117: 101804 doi: 10.1016/j.joei.2024.101804
ZHAO P C, CAO Q G, YI W, HAO X D, LI J, ZHANG B S, HUANG L, HUANG Y J, JIANG Y B, XU B S, SHAN Z W, CHEN J L. Facile and general method to synthesize Pt-based high-entropy-alloy nanoparticles[J]. ACS Nano, 2022, 16(9): 14017-14028 doi: 10.1021/acsnano.2c03818
PAVITHRA C L P, JANARDHANA R K S K, REDDY K M, MURAPAKA C, JOARDAR J, SARADA B V, TAMBOLI R R, HU Y, ZHANG Y, WANG X, DEY S R. An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films[J]. Sci. Rep., 2021, 11(1): 8836 doi: 10.1038/s41598-021-87786-8
RITTER T G, PHAKATKAR A H, RASUL M G, SARAY M T, SOROKINA L V, SHOKUHFAR T, GONÇALVES J M, SHAHBAZIAN-YASSAR R. Electrochemical synthesis of high entropy hydroxides and oxides boosted by hydrogen evolution reaction[J]. Cell Rep. Phys. Sci., 2022, 3(4): 100847 doi: 10.1016/j.xcrp.2022.100847
PAVITHRA C L P, JANARDHANA R K S K, REDDY K M, MURAPAKA C, WANG X D, DEY S R. One-dimensional Co-Cu-Fe-Ni-Zn high-entropy alloy nanostructures[J]. Mater. Res. Lett., 2021, 9(7): 285-290 doi: 10.1080/21663831.2021.1896588
ZHANG X L, ZHANG W B, YIN Y, THEINT M M, GUO S B, CHAI S S, ZHOU X, MA X J. Sol-gel method preparation and high-rate energy storage of high-entropy ceramic (FeCoCrMnNi)C porous powder[J]. Ceram. Int., 2023, 49(17, Part B): 29327-29338 doi: 10.1016/j.ceramint.2023.06.228
WANG G, QIN J, FENG Y Y, FENG B X, YANG S J, WANG Z, ZHAO Y X, WEI J. Sol-gel synthesis of spherical mesoporous high-entropy oxides[J]. ACS Appl. Mater. Interfaces, 2020, 12(40): 45155-45164 doi: 10.1021/acsami.0c11899
MUSHIANA T, KHAN M, ABDULLAH M I, ZHANG N, MA M M. Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea[J]. Nano Res., 2022, 15(6): 5014-5023 doi: 10.1007/s12274-022-4186-9
NIU B, ZHANG F, PING H, LI N, ZHOU J Y, LEI L W, XIE J J, ZHANG J Y, WANG W M, FU Z Y. Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys[J]. Sci. Rep., 2017, 7(1): 3421 doi: 10.1038/s41598-017-03644-6
HUSSAIN A, ZHENG Y H, WANG Q Y, CUI Y B. Synthesis of high-entropy oxides derived from metal-organic frameworks and their catalytic performance for total toluene oxidation[J]. New J. Chem., 2024, 48(39): 17237-17245 doi: 10.1039/D4NJ02650K
SIVANANTHAM A, LEE H, HWANG S W, AHN B, CHO I S. Preparation, electrical and electrochemical characterizations of CuCoNiFeMn high-entropy-alloy for overall water splitting at neutral-pH[J]. J. Mater. Chem. A, 2021, 9(31): 16841-16851 doi: 10.1039/D1TA02621F
ZHANG Y, LU T, YE Y K, DAI W J, ZHU Y A, PAN Y. Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for co-prosperity of efficiency and stability in an oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2020, 12(29): 32548-32555 doi: 10.1021/acsami.0c05916
YU Y X, XU J L, ZHANG L W, MA Y C, LUO J M. Electrochemically treated AlCoCrFeNi high entropy alloy as a self-supporting electrode for overall water splitting[J]. Int. J. Hydrog. Energy, 2024, 72: 209-219 doi: 10.1016/j.ijhydene.2024.05.350
YAO Y G, HUANG Z N, XIE P F, LACEY S D, JACOB R J, XIE H, CHEN F J, NIE A, PU T, REHWOLDT M, YU D, ZACHARIAH M R, WANG C, SHAHBAZIAN-YASSAR R, LI J, HU L B. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359(6383): 1489-1494 doi: 10.1126/science.aan5412
CUI X Y, LIU Y C, WANG X Y, TIAN X L, WANG Y X, ZHANG G, LIU T, DING J, HU W B, CHEN Y N. Rapid high-temperature liquid shock synthesis of high-entropy alloys for hydrogen evolution reaction[J]. ACS Nano, 2024, 18(4): 2948-2957 doi: 10.1021/acsnano.3c07703
GLASSCOTT M W, PENDERGAST A D, GOINES S, BISHOP A R, HOANG A T, RENAULT C, DICK J E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nat. Commun., 2019, 10(1): 2650 doi: 10.1038/s41467-019-10303-z
GAO S J, HAO S Y, HUANG Z N, YUAN Y F, HAN S, LEI L C, ZHANG X W, SHAHBAZIAN-YASSAR R, LU J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis[J]. Nat. Commun., 2020, 11(1): 2016 doi: 10.1038/s41467-020-15934-1
LAW Z X, TSAI D H. Design of aerosol nanoparticles for interfacial catalysis[J]. Langmuir, 2022, 38(30): 9037-9042 doi: 10.1021/acs.langmuir.2c01155
YANG Y, ROMANO M, FENG G J, WANG X Z, WU T, HOLDREN S, ZACHARIAH M R. Growth of sub-5 nm metal nanoclusters in polymer melt aerosol droplets[J]. Langmuir, 2018, 34(2): 585-594 doi: 10.1021/acs.langmuir.7b02900
KOBAYASHI Y, TEAH H Y, YOKOYAMA S, SHOJI R, HANADA N. A molten salt synthesis method of the high-entropy alloy CrMnFeCoNi for high catalytic performance and low life cycle GHG emissions[J]. ACS Sustain. Chem. Eng., 2022, 10(46): 15046-15057 doi: 10.1021/acssuschemeng.2c04007
YANG Y, SONG B A, KE X, XU F Y, BOZHILOV K N, HU L B, SHAHBAZIAN-YASSAR R, ZACHARIAH M R. Aerosol synthesis of high entropy alloy nanoparticles[J]. Langmuir, 2020, 36(8): 1985-1992 doi: 10.1021/acs.langmuir.9b03392
QIAO H Y, WANG X Z, DONG Q, ZHENG H K, CHEN G, HONG M, YANG C P, WU M, HE K, HU L B. A high-entropy phosphate catalyst for oxygen evolution reaction[J]. Nano Energy, 2021, 86: 106029 doi: 10.1016/j.nanoen.2021.106029
PAN Y D, GAO J K, LV E J, LI T T, XU H, SUN L, NAIRAN A, ZHANG Q C. Integration of alloy segregation and surface Co-O hybridization in carbon-encapsulated CoNiPt alloy catalyst for superior alkaline hydrogen evolution[J]. Adv. Funct. Mater., 2023, 33(41): 2303833 doi: 10.1002/adfm.202303833
CAO J, LI H C, PU J X, ZENG S C, LIU L M, ZHANG L, LUO F H, MA L, ZHOU K C, WEI Q P. Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2019, 44(45): 24712-24718 doi: 10.1016/j.ijhydene.2019.07.229
DA Y M, JIANG R, TIAN Z L, CHEN G W, XIAO Y K, ZHANG J F, XI S B, DENG Y D, CHEN W, HAN X P, HU W B. Development of a novel Pt3V alloy electrocatalyst for highly efficient and durable industrial hydrogen evolution reaction in acid environment[J]. Adv. Energy Mater., 2023, 13(16): 2300127 doi: 10.1002/aenm.202300127
GUO H Y, FANG Z W, LI H, FERNANDEZ D, HENKELMAN G, HUMPHREY S M, YU G H. Rational design of rhodium-iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution[J]. ACS Nano, 2019, 13(11): 13225-13234 doi: 10.1021/acsnano.9b06244
LI L M, WANG Y, NAZMUTDINOV R R, ZAIROV R R, SHAO Q, LU J M. Magnetic field enhanced cobalt iridium alloy catalyst for acidic oxygen evolution reaction[J]. Nano Lett., 2024, 24(20): 6148-6157 doi: 10.1021/acs.nanolett.4c01623
CAI W Z, CHEN R, YANG H B, TAO H B, WANG H Y, GAO J J, LIU W, LIU S, HUNG S F, LIU B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy[J]. Nano Lett., 2020, 20(6): 4278-4285 doi: 10.1021/acs.nanolett.0c00840
SHI Y Y, ZHENG D W, ZHANG X, LV K, WANG F H, DONG B B, WANG S Y, YANG C X, LI J M, YANG F Y, HAO L Y, YIN L J, XU X, XIAN Y X, AGATHOPOULOS S. Self-supported ceramic electrode of 1T-2H MoS2 grown on the TiC membrane for hydrogen production[J]. Chem. Mater., 2021, 33(15): 6217-6226 doi: 10.1021/acs.chemmater.1c01965
ZHANG T, WU M Y, YAN D Y, MAO J, LIU H, HU W B, DU X W, LING T, QIAO S Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution[J]. Nano Energy, 2018, 4: 103-109
ZHAO F Z, MAO X Y, ZHENG X, LIU H C, ZHU L Q, LI W P, WANG Z, CHEN H N. Roles of the self-reconstruction layer in the catalytic stability of a NiFeP catalyst during the oxygen evolution reaction[J]. J. Mater. Chem. A, 2023, 11(1): 276-286 doi: 10.1039/D2TA06514B
WANG B Q, HAN X, GUO C, JING J, YANG C, LI Y P, HAN A J, WANG D S, LIU J F. Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction[J]. Appl. Catal. B‒Environ., 2021, 298: 120580 doi: 10.1016/j.apcatb.2021.120580
图 1 HER机制及ΔGH*对HER的影响: (a) Volmer-Tafel和Volmer-Heyrovsky反应路径; (b) ΔGH*与HER交换电流密度之间的火山型关系[27]
Figure 1 HER pathways and the effect of ΔGH* on the HER kinetics: (a) Volmer-Tafel and Volmer-Heyrovsky pathways; (b) Volcanic relationship between ΔGH* and the HER exchange current density[27]
(a) Outer ring presents the reactions in acid solutions, and the inner ring presents the reactions in alkaline solutions.
图 2 OER机制及ΔGO*-ΔGOH*对OER的影响: (a) AEM及LOM的反应路径; (b) ΔGO*-ΔGOH*与OER过电位之间的火山型关系[33]
Figure 2 OER pathways and the effect of ΔGO*-ΔGOH* on the OER kinetics: (a) AEM and LOM pathways; (b) Volcanic relationship between ΔGO*-ΔGOH* and OER overpotential[33]
(a) Outer ring presents the reactions in acid solutions, and the inner ring presents the reactions in alkaline solutions; □ stands for oxygen vacancy.
图 3 部分HEAs在HER中的应用: 低贵金属含量的NiCoFePtRh HEA在0.5 mol·L-1 H2SO4溶液中的(a) LSV曲线、(b) Tafel斜率和(c) 质量活性[45]; 无贵金属CuAlNiMoFe HEA在1 mol‧L-1 KOH溶液中的(d) LSV曲线和(e) 稳定性测试[49]
Figure 3 Application of some HEAs in HER: (a) LSV curves, (b) Tafel slopes, and (c) mass activities of the NiCoFePtRh HEA with low noble metal content in 0.5 mol·L-1 H2SO4 solution[45]; LSV curves (d) and stability test (e) of the noble-element-free CuAlNiMoFe HEA in 1 mol·L-1 KOH solution[49]
Inset: LSV curves before and after stability test and the morphology image after stability test.
图 4 部分HEAs在OER中的应用: 低贵金属FeCoNiIrRu HEA在0.5 mol·L-1 H2SO4溶液中的(a) LSV曲线、(b) Tafel斜率和(c) 质量活性[53]; 无贵金属MnFeCoNiCu HEA在1 mol·L-1 KOH溶液中的(d) LSV曲线、(e) η10和(f) Tafel斜率[58]
Figure 4 Application of some HEAs in OER: (a) LSV curves, (b) Tafel slopes, and (c) mass activity of the FeCoNiIrRu HEA with low noble metal content in 0.5 mol·L-1 H2SO4 solution[53]; (d) LSV curves, (e) η10, and (f) Tafel slopes of the noble-element-free MnFeCoNiCu HEA in 1 mol·L-1 KOH solution[58]
图 5 部分高熵氧化物和高熵氢氧化物在电解水中的应用: FeNiCoMnVOx在1 mol·L-1 KOH溶液中的(a) LSV曲线、(b) Tafel斜率和(c) 循环稳定性[75]; AuSA-MnFeCoNiCu LDH (d) 在1 mol·L-1 KOH溶液中的LSV曲线、(e) 表面OER反应自由能和(f) DOS[80]
Figure 5 Application of some high-entropy oxides and high-entropy hydroxides in water splitting: (a) LSV curves, (b) Tafel slopes, and (c) cycle stability of FeNiCoMnVOx in 1 mol·L-1 KOH solution[75]; (d) LSV curves in 1 mol·L-1 KOH solution, (e) surface OER free energy map, and (f) DOS of the AuSA-MnFeCoNiCu LDH[80]
Inset: LSV curves before and after stability test.
图 6 部分高熵磷化物和高熵硫化物在电解水中的应用: NiCoFeMnCrP在1 mol·L-1 KOH溶液中的(a) OER、(b) HER LSV曲线及(c) 全解水稳定性测试[84]; FeNiCoCrMnS2在1 mol·L-1 KOH溶液中的(d) OER LSV曲线、(e) 循环稳定性和(f) 原位拉曼光谱[88]
Figure 6 Application of some high-entropy phosphide and high-entropy sulfide in water splitting: (a) OER, (b) HER LSV curves and (c) overall water splitting durability test of the NiCoFeMnCrP in 1 mol·L-1 KOH solution[84]; (d) OER LSV curves, (e) cycle stability, and (f) in-situ Raman spectra of FeNiCoCrMnS2 in 1 mol·L-1 KOH solution[88]
Inset: schematic diagram of overall water splitting device.
图 7 传统方法合成HEAs和HECs: (a) 溶剂热法制备PtPdRhRuCu HEA[96]; (b) 喷雾干燥-热解法制备PtCoCuRuNiFeIrRhPdW HEA[104]; (c) 电沉积法制备CoCuFeNiZn HEA[107]; (d) 溶胶-凝胶法制备NiCoFeMnCrP[84]; (e) 球磨法制备CuCoNiFeMn HEA[113]; (f) 脱合金法制备AlCoCrFeNi HEA[115]
Figure 7 Synthesis of HEAs and HECs using traditional techniques: (a) PtPdRhRuCu HEA prepared by solvothermal method[96]; (b) PtCoCuRuNiFeIrRhPdW HEA prepared by spray drying-pyrolysis method[104]; (c) CoCuFeNiZn HEA prepared by electrodeposition[107]; (d) NiCoFeMnCrP prepared by sol-gel method[84]; (e) CuCoNiFeMn HEA prepared by ball milling[113]; (f) AlCoCrFeNi HEA prepared by dealloying[115]
图 8 超快制备方法合成HEAs: (a) 碳热冲击法制备PtPdNiCoFeAuCuSn HEAs[116]; (b) 纳米液滴介导电合成法制备CoCrMnNiV-基HEAs[118]; (c) 快速移动床热解法制备CuPdSnPtAu-基HEAs[119]; (d) 气溶胶介导合成制备NiCoCuFePt HEAs[123]
Figure 8 Synthesis of HEAs using the ultrafast preparation methods: (a) PtPdNiCoFeAuCuSn HEAs prepared by carbon thermal shock method[116]; (b) CoCrMnNiV-based HEAs prepared by nanodroplet mediated electrosynthesis[118]; (c) CuPdSnPtAu- based HEAs prepared by fast moving bed pyrolysis[119]; (d) NiCoCuFePt HEAs prepared by aerosol-mediated synthesis[123]
表 1 近年来报道的HEAs、HECs与传统合金、陶瓷体系的催化性能比较
Table 1. Catalytic performance comparison between the recently reported HEAs, HECs and the traditional alloy, ceramic systems
Catalyst | Catalytic reaction | Electrolyte | η10 / mV | Tafel slope / (mV·dec-1) | Stability | Ref. | |
HEAs | NiCoFePtRh | HER | 0.5 mol·L-1 H2SO4 | 20 | 30.1 | -0.2-0.1 V, 10 000 cycles | [45] |
PdMoGaInNi | HER | 0.5 mol·L-1 H2SO4 | 13 | 93.1 | 100 mA·cm-2, 200 h | [46] | |
CuAlNiMoFe | HER | 1 mol·L-1 KOH | 9.7 | 60 | 50 mV, 200 h | [49] | |
CoNiCuMgZn | HER | 1 mol·L-1 KOH | 158 | 36.1 | 10 mA·cm-2, 100 h | [50] | |
IrFeCoNiCu | OER | 0.1 mol·L-1 HClO4 | 302 | 58 | 10 mA·cm-2, 12 h | [52] | |
FeCoNiIrRu | OER | 0.5 mol·L-1 H2SO4 | 241 | 154 | 10 mA·cm-2, 14 h | [53] | |
MnFeCoNiCu | OER | 1 mol·L-1 KOH | 263 | 43 | 10 mA·cm-2, 24 h | [58] | |
FeCoNiMnMo | OER | 1 mol·L-1 KOH | 279 | 56.1 | 10 mA·cm-2, 1 000 h | [64] | |
6 mol·L-1 KOH | 400 mA·cm-2, 60 ℃, 300 h | ||||||
PtPdRhRuCu | HER | 0.5 mol·L-1 H2SO4 | 13 | — | 10-100 mA·cm-2, 100 h | [96] | |
1 mol·L-1 KOH | 10 | 87 | |||||
HECs | FeNiCoMnVOx | HER | 1 mol·L-1 KOH | 81 | 88 | 10 mA·cm-2, 100 h | [75] |
La(CrMnFeCo2Ni)O3 | OER | 1 mol·L-1 KOH | 325 | 51.2 | 10 mA·cm-2, 50 h | [76] | |
(CoCuFeMnNi)3O4 | OER | 1 mol·L-1 KOH | 350 | 59.5 | 1.58 V, 12 h | [97] | |
K0.8Na0.2(MgMnFeCoNi)F3 | OER | 1 mol·L-1 KOH | 314 | 55 | 314 mV, 10 h | [91] | |
AuSA-MnFeCoNiCu LDH | OER | 1 mol·L-1 KOH | 213 | 27.5 | 100 mA·cm-2, 700 h | [80] | |
Fe-Cr-Co-Ni-Cu HE-LDHs-Ar | OER | 1 mol·L-1 KOH | 330 | 63.7 | 10 mA·cm-2, 16 h | [98] | |
CoZnCdCuMnS@CF | HER | 1 mol·L-1 KOH | 173 | 98.5 | 10 mA·cm-2, 70 h | [87] | |
FeNiCoCrMnS2 | OER | 1 mol·L-1 KOH | 199 | 39.1 | 500 mA·cm-2, 55 h | [88] | |
WNiCoMoRuP/C | HER | 0.5 mol·L-1 H2SO4 | 40 | 36 | 10 mA·cm-2, 50 h | [83] | |
NiCoFeMnCrP | HER | 1 mol·L-1 KOH | 220 | 94.5 | 10 mA·cm-2, 24 h | [84] | |
OER | 270 | 52.5 | |||||
(MoWVNbTa)C | HER | 0.5 mol·L-1 H2SO4 | 156 | 78 | 225 mV, 48 h | [92] | |
WMoVNbCeB | HER | 1 mol·L-1 KOH | 117 | 111 | 10 mA·cm-2, 50 h | [93] | |
Alloys with low mixing entropy | CoNiPt alloy | HER | 1 mol·L-1 KOH | 25 | 43 | 10 mA·cm-2, 24 h | [125] |
Ni-Mo alloy | HER | 1 mol·L-1 KOH | 119 | 119 | 200 mV, 10 h | [126] | |
Pt3V alloy | HER | 0.5 mol·L-1 H2SO4 | 20 | 36 | 300 mV, 100 h | [127] | |
Rh-Ir alloy | OER | 0.5 mol·L-1 H2SO4 | 292 | 101 | 0.05-1.00 V, 2 000 cycles | [128] | |
CoIr alloy | OER | 0.5 mol·L-1 H2SO4 | 220 | 70.6 | 10 mA·cm-2, 120 h | [129] | |
NiFe alloy | OER | 1 mol·L-1 KOH | 242 | 24 | 40 mA·cm-2, 200 h | [130] | |
Ceramics with low mixing entropy | MoS2 | HER | 0.5 mol·L-1 H2SO4 | 127 | 41 | 150 mV, 24 h | [131] |
NiO | HER | 1 mol·L-1 KOH | 110 | 100 | 10 mA·cm-2, 10 h | [132] | |
NiFeP | OER | 1 mol·L-1 KOH | 233 | 48.7 | 10 mA·cm-2, 30 h | [133] | |
NiFe-LDH | OER | 1 mol·L-1 KOH | 205 | 41.8 | 100 mA·cm-2, 24 h | [134] |