Citation: Xinxin YU, Yongxing LIU, Xiaohong YI, Miao CHANG, Fei WANG, Peng WANG, Chongchen WANG. Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438 shu

Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels

Figures(10)

  • Particulate matters collected from subway tunnels, were identified as predominant zero-valent iron (ZVI) via powder X ray diffraction and X ray photoelectron spectroscopy, which was innovatively adopted to activate peroxodisulfate (PDS) for degrading organic dye pollutants. The as-obtained ZVI exhibited exceptional catalytic performance under diverse light sources, including low-power LED ultraviolet light (UVL), visible light (VL), and real solar light (SL), achieving complete rhodamine B (RhB, 10.0 mg·L-1) degradation within 2.0 min. Radical quenching experiments confirmed the synergistic roles of sulfate radicals (SO4·-), hydroxyl radicals (·OH), superoxide radicals (·O2-), and holes (h+). Systematic parametric studies revealed that boosted RhB removal efficiencies were accomplished across a wide pH range (2.0-10.0), in the presence of common interfering ions (Cl-, SO42-, HCO3-, H 2PO4-, and NO3-), humic acid, and real water matrices, demonstrating remarkable environmental adaptability. Notably, ZVI maintained high catalytic activity even under complicated aqueous conditions, underscoring its resistance to matrix influence. The magnetic properties of ZVI enabled its facile recovery and reuse for multiple cycles without significant performance loss, aligning with sustainable resource utilization principles. This study not only presents a cost-effective strategy for valorizing urban particulate waste but also advances solar-driven advanced oxidation processes (AOPs) for practical water treatment applications.
  • 加载中
    1. [1]

      XIA C J, ZHANG Q, CHEN J Y, ZANG J B. Distribution of particu-late matter concentration in metro tunnel during the winter and corre-lation analysis[J]. Urban Mass Transit, 2017,20(7):35-39.

    2. [2]

      NAN C Z, HE G H, MAI C M. A review and analysis of the pollution status and removal technologies of particulate matter in underground subway[J]. Environmental Pollution & Control, 2020,42(12):1569-1574.

    3. [3]

      CONLEY D J, PAERL H W, HOWARTH R W, BOESCH D F, SEITZINGER S P, HAVENS K E, LANCELOT C, LIKENS G E. Con-trolling eutrophication: Nitrogen and phosphorus[J]. Science, 2009,323(5917):1014-1015. doi: 10.1126/science.1167755

    4. [4]

      KUMAR A, KHAN M, HE J, LO I M C. Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: A critical review[J]. Water Res., 2020,170115356. doi: 10.1016/j.watres.2019.115356

    5. [5]

      AKRAM N, GUO J, MA W L, GUO Y, HASSAN A, WANG J D. Syn-ergistic catalysis of Co (OH)2/CuO for the degradation of organic pollutant under visible light irradiation[J]. Sci. Rep., 2020,10(1)1939. doi: 10.1038/s41598-020-59053-9

    6. [6]

      SHEN Y, ZHANG Z H, XIAO K J. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants[J]. RSC Adv., 2015,5(111):91846-91854. doi: 10.1039/C5RA18923C

    7. [7]

      VOROSMARTY C J, MCINTYRE P B, GESSNER M O, DUDGEON D, PRUSEVICH A, GREEN P, GLIDDEN S, BUNN S E, SULLIVAN C A, LIERMANN C R, DAVIES P M. Global threats to human water security and river biodiversity[J]. Nature, 2010,467(7315):555-561. doi: 10.1038/nature09440

    8. [8]

      ZENG H J, YU Z X, SHAO L Y, LI X H, ZHU M, LIU Y C, FENG X F, ZHU X M. Ag2CO3@UiO-66-NH2 embedding graphene oxide sheets photocatalytic membrane for enhancing the removal perfor-mance of Cr(Ⅵ) and dyes based on filtration[J]. Desalination, 2020,491114558z. doi: 10.1016/j.desal.2020.114558

    9. [9]

      XU H B, ZHANG H, HUANG J C, ZHANG L, WANG F, LIU G B, YU X M, LIU W J, HUANG C K. Optimization of Fenton combined with membrane bioreactor in the treatment of printing and dyeing wastewater[J]. Int. Biodeterior. Biodegrad., 2025,196105945. doi: 10.1016/j.ibiod.2024.105945

    10. [10]

      LIU P, HUANG H M, YU T, CHEN S Y, BI J P, DING H, ZENG T J, WU X W, LUO Z Q. Present situation, problems and treatment countermeasures of emerging pollutants in China[J]. Environmental Monitoring and Forewarning, 2022,14(05):27-30. doi: 10.3969/j.issn.1674-6732.2022.05.004

    11. [11]

      KALLI M, NOUTSOPOULOS C, MAMAIS D. The fate and occur-rence of antibiotic-resistant bacteria and antibiotic resistance genes during advanced wastewater treatment and disinfection: A review[J]. Water, 2023,15(11)2084. doi: 10.3390/w15112084

    12. [12]

      LECH M, GALA O, HELINSKA K, KOLODZINSKA K, KONCZAK H, MROCZYNSKI L, SIARKA E. Membrane separation in the nickel-contaminated wastewater treatment[J]. Waste, 2023,1(2):482-496. doi: 10.3390/waste1020029

    13. [13]

      DU L Q, AHMAD S, LIU L N, WANG L, TANG J C. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by bio-char and modified biochar in water[J]. Sci. Total Environ., 2022,858(P2)159815.

    14. [14]

      MA L P, YANG H Y, GUAN L, LIU X Y, ZHANG T. Risks of antibi-otic resistance genes and antimicrobial resistance under chlorination disinfection with public health concerns[J]. Environ. Int., 2022,158106978. doi: 10.1016/j.envint.2021.106978

    15. [15]

      NASROLLAHI N, VATANPOUR V, KHATAEE A. Removal of anti-biotics from wastewaters by membrane technology: Limitations, suc-cesses, and future improvements[J]. Sci. Total Environ., 2022,838(P1)156010.

    16. [16]

      KIM T, LEE H, KIM C M, JANG A. Elucidating the relation between residual oxidants formation behavior and quinolone antibiotic remov-al efficiency on catalytic ozonation in seawater-based aquaculture wastewater[J]. J. Clean. Prod., 2023,426138779. doi: 10.1016/j.jclepro.2023.138779

    17. [17]

      GAYA U I, ABDULLAH A H. Heterogeneous photocatalytic degra-dation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. J. Photochem. Photobiol. C-Photochem. Rev., 2007,9(1):1-12.

    18. [18]

      MOTAMEDI M, YERUSHALMI L, HAGHIGHAT F, CHEN Z. Recent developments in photocatalysis of industrial effluents: A review and example of phenolic compounds degradation[J]. Chemosphere, 2022,296133688. doi: 10.1016/j.chemosphere.2022.133688

    19. [19]

      MIKLOS D B, REMY C, JEKEL M, LINDEN K G, DREWES J E, HUBNER U. Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review[J]. Water Res., 2018,139:118-131. doi: 10.1016/j.watres.2018.03.042

    20. [20]

      HAN S, XIAO P F. Application progress of persulfate activation technology in degradation of tetracycline antibiotics[J]. Environmental Chemistry, 2021,40(9):2873-2883.

    21. [21]

      LIAO B, XU W, YE Q Y. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment[J]. Chemical Industry and Engineering Progress, 2022,41(06):3235-3248.

    22. [22]

      MENG F Y, SONG M, SONG B, WEI Y X, CAO Q, CAO Y. Enhanced degradation of rhodamine B via α-Fe2O3 microspheres induced persulfate to generate reactive oxidizing species[J]. Chemosphere, 2020,243125322. doi: 10.1016/j.chemosphere.2019.125322

    23. [23]

      WANG F X, WANG C C. Fabrication approaches and organic pollut-ants degradation performances via advanced oxidation processes of MIL-88A (Fe) and its composites[J]. Research of Environmental Sciences, 2021,34(12):2924-2934.

    24. [24]

      XIAO P F, LU X Y, WANG K, DING H W, ZHANG G S. Research progress on advanced oxidation process of percarbonate in water treatment[J]. Fine Chemicals, 2024,41(2):277-291.

    25. [25]

      LEE J, VON GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environ. Sci. Technol., 2020,54(6):3064-3081. doi: 10.1021/acs.est.9b07082

    26. [26]

      HUANG D L, XU W B, LEI L, CHEN S, LAI C, ZHOU W, CHEN Y S, LI R J. Promoted generation strategies and corresponding roles of singlet oxygen in activation of persulfate by nanoscale zero-valent iron systems[J]. Chem. Eng. J., 2022,449137493. doi: 10.1016/j.cej.2022.137493

    27. [27]

      WANG F, GAO Y, FU H F, LIU S S, WEI Y W, WANG P, ZHAO C, WANG J F, WANG C C. Almost 100% electron transfer regime over Fe-Co dual-atom catalyst toward pollutants removal: Regulation of peroxymonosulfate adsorption mode[J]. Appl. Catal. B-Environ., 2023,339123178. doi: 10.1016/j.apcatb.2023.123178

    28. [28]

      NI T T, MENG Y, KOSO A, YAO Y Y, TANG H D, CHEN A M, XIA S J. Photocatalytic degradation of methylene blue by Fe 3O4@MAl layered double hydroxides (M=Zn, Co, Ni) composite: Performance, kinetics, and mechanism[J]. Chinese J. Inorg. Chem., 2022,38(9):1759-1770.

    29. [29]

      AHMADI M, GHANBARI F. Organic dye degradation through per-oxymonosulfate catalyzed by reusable graphite felt/ferriferrous oxide: Mechanism and identification of intermediates[J]. Mater. Res. Bull., 2018,111:43-52.

    30. [30]

      BISWAS B, AHMED M F, RAHMAN M L, KHANAM J, BHUIYAN M H R, SHARMIN N. Investigation of structural, optical, and mag-netic properties of NiFe2O4 for efficient photocatalytic degradation of organic pollutants through photo Fenton reactions[J]. Heliyon, 2024,10(17).

    31. [31]

      LUCIANO A J R, DE SOUSA SOLETTI L, FERREIRA M E C, CUSIOLI L F, DE ANDRADE M B, BERGAMASCO R, YAMAGUCHI N U. Manganese ferrite dispersed over graphene sand composite for methylene blue photocatalytic degradation[J]. J. Environ. Chem. Eng., 2020,8(5)104191. doi: 10.1016/j.jece.2020.104191

    32. [32]

      WANG C C, YI X H, WANG P. Powerful combination of MOFs and C 3N4 for enhanced photocatalytic performance[J]. Appl. Catal. B-Environ., 2019,247:24-48. doi: 10.1016/j.apcatb.2019.01.091

    33. [33]

      WANG G, ZHAO D Y, KOU F Y, OUYANG Q, CHEN J Y, FANG Z Q. Removal of norfloxacin by surface Fenton system (MnFe2O4/H 2O2): Kinetics, mechanism and degradation pathway[J]. Chem. Eng. J., 2018,351:747-755. doi: 10.1016/j.cej.2018.06.033

    34. [34]

      MENG L H, ZHAO C, CHU H Y, LI Y H, FU H F, WANG P, WANG C C, HUANG H W. Synergetic piezo-photocatalysis of g-C 3N4/PCN-224 core-shell heterojunctions for ultrahigh H2O2 genera-tion[J]. Chin. J. Catal., 2024,59(04):346-359.

    35. [35]

      LI S M, SHAN S S, CHEN S, LI H B, LI Z Y, LIANG Y X, FEI J Y, XIE L H, LI J R. Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review[J]. J. Environ. Chem. Eng., 2021,9(5)105967. doi: 10.1016/j.jece.2021.105967

    36. [36]

      YU R, MA R, WANG L Z, BAI L Q, YANG S J, QIAN J. Activation of peroxydisulfate (PDS) by Bi5O7I@MIL-100(Fe) for catalytic degra-dation of aqueous doxycycline (DOX) under UV light irradiation: Characteristic, performance and mechanism[J]. J. Water Process. Eng., 2022,48102903. doi: 10.1016/j.jwpe.2022.102903

    37. [37]

      DIAO Z H, LIU J J, HU Y X, KONG L J, JIANG D, XU X R. Com-parative study of rhodamine B degradation by the systems pyrite/H 2O2 and pyrite/persulfate: Reactivity, stability, products and mech-anism[J]. Sep. Purif. Technol., 2017,184:374-383. doi: 10.1016/j.seppur.2017.05.016

    38. [38]

      DU J K, BAO J G, FU X Y, LU C H, KIM S H. Facile preparation of S/Fe composites as an effective peroxydisulfate activator for RhB degradation[J]. Sep. Purif. Technol., 2016,163:145-152. doi: 10.1016/j.seppur.2016.02.051

    39. [39]

      GU C Y, HU J, ZHANG M, DING J J, GONG T, WANG Z S, ZHU J Y, GAN M. Development of a hydroxyl group-mediated biosynthetic schwertmannite as a persulfate activator for efficient degradation of RhB and Cr(Ⅵ) removal[J]. J. Hazard. Mater., 2021,419126496. doi: 10.1016/j.jhazmat.2021.126496

    40. [40]

      JIAN S Z, SUN S R, ZENG Y, LIU Z W, LIU Y Q, YANG Q F, MA G H. Highly efficient persulfate oxidation process activated with NiO nanosheets with dominantly exposed{110}reactive facets for degra-dation of RhB[J]. Appl. Surf. Sci., 2020,505144318. doi: 10.1016/j.apsusc.2019.144318

    41. [41]

      MA Q L, ZHANG X Y, GUO R N, ZHANG H X, CHENG Q F, XIE M Z, CHENG X W. Persulfate activation by magnetic γ-Fe2O3/Mn 3O4 nanocomposites for degradation of organic pollutants[J]. Sep. Purif. Technol., 2019,210:335-342. doi: 10.1016/j.seppur.2018.06.060

    42. [42]

      YANG C, ZHANG G H, MENG Y, PAN G X, NI Z M, XIA S J. Direct Z-scheme CeO 2@LDH core-shell heterostructure for photo-degradation of rhodamine B by synergistic persulfate activation[J]. J. Hazard. Mater., 2021,408124908. doi: 10.1016/j.jhazmat.2020.124908

    43. [43]

      ZHANG S Q, XU H Y, LI B, XU Y, KOMARNENI S. Constructing a Z-scheme Co 3O4/BiOBr heterojunction to enhance photocatalytic per-oxydisulfate oxidation of high-concentration rhodamine B: Mecha-nism, degradation pathways, and toxicological evaluations[J]. Inorg. Chem., 2024,63(9):4447-4460. doi: 10.1021/acs.inorgchem.4c00265

    44. [44]

      ZHU B Y, CHENG H, MA J F, KONG Y, KOMARNENI S. Efficient degradation of rhodamine B by magnetically separable ZnS-ZnFe2O4 composite with the synergistic effect from persulfate[J]. Chemo-sphere, 2019,237124547. doi: 10.1016/j.chemosphere.2019.124547

    45. [45]

      TANG C Y, WEI X, WANG C C. Photocatalysis-activated SR-AOP over ZIF-NC/PTCDA composites for boosted norfloxacin degradation[J]. J. Mater. Eng., 2023,51(4):48-56.

    46. [46]

      HAN M Q, WANG H, JIN W, CHU W H, XU Z X. The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation[J]. J. Environ. Sci., 2023,128:181-202. doi: 10.1016/j.jes.2022.07.037

    47. [47]

      LI J J, REN M J, ZHANG L L, ZENG L L, WANG H L, MENG X W. UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate[J]. Chinese J. Inorg. Chem., 2024,40(10):1869-1880. doi: 10.11862/CJIC.20240187

    48. [48]

      CHI N P, LIU J J, FENG L, GUO Z C, CHEN Y N, PAN T Y, ZHENG H L. FeS redox power motor for PDS continuous generation of active radicals on efficient degradation and removal of diclofenac: Role of ultrasonic[J]. Chemosphere, 2022,300134574. doi: 10.1016/j.chemosphere.2022.134574

    49. [49]

      WANG D J, SHEN H D, GUO L, ZHANG J, FU F. Synthesis of three-dimensional mesoporous Bi2WO6 photocatalyst and effect of inorganic ion on its photocatalytic activity[J]. J. Mater. Eng., 2016,44(2):8-16.

    50. [50]

      LU H Y, MU R, XIAN G, JIANG H Y, LIU J. The progress in the degradation of organic pollutants in water by metal single atoms/g-C3N4[J]. Materials Reports, 2025,39(17)24050247.

    51. [51]

      ZHAO Y L, WANG H, LI X D, YUAN X Z, JIANG L B, CHEN X W. Recovery of CuO/C catalyst from spent anode material in battery to activate peroxymonosulfate for refractory organic contaminants degradation[J]. J. Hazard. Mater., 2021,420126552. doi: 10.1016/j.jhazmat.2021.126552

    52. [52]

      GAO K X, HOU L A, AN X Q, HUANG D D, YANG Y. BiOBr/MXene/gC3N4 Z-scheme heterostructure photocatalysts mediated by oxygen vacancies and MXene quantum dots for tetracycline degrada-tion: Process, mechanism and toxicity analysis[J]. Appl. Catal. B-Environ., 2023,323122150. doi: 10.1016/j.apcatb.2022.122150

    53. [53]

      DU X D, YI X H, WANG P, DENG J G, WANG C C. Enhanced pho-tocatalytic Cr(Ⅵ) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunc-tions[J]. Chin. J. Catal., 2019,40(1):70-79. doi: 10.1016/S1872-2067(18)63160-2

    54. [54]

      LIU J, ZHANG X C, ZHONG Q, LI J, WU H Z, ZHANG B, JIN L, TAO H B, LIU B. Electrostatic self-assembly of a AgI/Bi2Ga4O9 p-n junction photocatalyst for boosting superoxide radical generation[J]. J. Mater. Chem. A, 2020,8(7):4083-4090. doi: 10.1039/C9TA13724F

    55. [55]

      GAO T T, QIU L, XIE M H, JIN Z Y, LI P P, YU G H. Defect-stabi-lized and oxygen-coordinated iron single-atom sites facilitate hydro-gen peroxide electrosynthesis[J]. Mater. Horiz., 2023,10(10):4270-4277. doi: 10.1039/D3MH00882G

    56. [56]

      HUANG J Y, ZHOU Z Y, LYU S G. Comparative study on trichloro-ethylene degradation enhanced by three organic acid chelating agents in sodium percarbonate/Fe(Ⅱ) system in the presence of sur-factant[J]. J. Environ. Chem. Eng., 2022,10(5)108464. doi: 10.1016/j.jece.2022.108464

    57. [57]

      MA J, YANG Y Q, JIANG X C H, XIE Z T, LI X X, CHEN C Z, CHEN H K. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water[J]. Chemosphere, 2018,190:296-306. doi: 10.1016/j.chemosphere.2017.09.148

    58. [58]

      WANG Y X, CHEN L L, CHEN C M, XI J X, CAO H B, DUAN X G, XIE Y B, SONG W Y, WANG S B. Occurrence of both hydroxyl radi-cal and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation[J]. Appl. Catal. B-Environ., 2019,254:283-291. doi: 10.1016/j.apcatb.2019.05.008

    59. [59]

      YI X H, JI H D, WANG C C, LI Y, LI Y H, ZHAO C, WANG A, FU H F, WANG P, ZHAO X, LIU W. Photocatalysis-activated SR-AOP over PDINH/MIL-88A (Fe) composites for boosted chloroquine phos-phate degradation: Performance, mechanism, pathway and DFT cal-culations[J]. Appl. Catal. B-Environ., 2021,293120229. doi: 10.1016/j.apcatb.2021.120229

    60. [60]

      ZHANG Z C, WANG F X, WANG F, WANG C C, WANG P. Effi-cient atrazine degradation via photoactivated SR-AOP over S-BUC-21(Fe): The formation and contribution of different reactive oxygen species[J]. Sep. Purif. Technol., 2023,307122864. doi: 10.1016/j.seppur.2022.122864

    61. [61]

      LI Y H, WANG P, WANG C C, LIU Y B. State-of-the-art review of defective metal-organic frameworks for pollutant removal from water[J]. Chinese J. Inorg. Chem., 2022,38(12):2342-2362. doi: 10.11862/CJIC.2022.252

    62. [62]

      LI P P, JIN Z Y, FANG Z W, YU G H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate[J]. Energy Environ. Sci., 2021,14(6):3522-3531. doi: 10.1039/D1EE00545F

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    7. [7]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    10. [10]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    11. [11]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    12. [12]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    18. [18]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    19. [19]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(1)
  • Abstract views(120)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return