Citation: Bin SUN, Heyan JIANG. Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428 shu

Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy

  • Corresponding author: Bin SUN, sunbin@ctbu.edu.cn
  • Received Date: 4 December 2024
    Revised Date: 1 June 2025

Figures(8)

  • The dyshomeostasis of metal ions is one of the pathogeneses of Alzheimer′s disease (AD), and metal chelation therapy is a promising approach for the treatment of AD. In this work, three glucose-modified bis-Schiff bases were designed and synthesized. Their biological activities in treating AD in vitro were measured by turbidity assay, HRP/Amplex Red assay, fluorescent probe of DCFH-DA, NBT analysis, and MTT assay. The results were compared with cliquinol (CQ) and non-glucose-modified analogues. It was found that the glucose modified bis-Schiff bases had more efficient bio-activities in inhibiting metal ions (Cu2+, Zn2+) induced Aβ1-40 aggregation, decreasing the level of reactive oxygen species (ROS) in Cu2+-Aβ treated PC 12 cells, increasing the activity of superoxide dismutase in Cu2+-Aβ treated PC 12 cells and attenuating the cytotoxicity mediated by metal ions induced Aβ aggregation than CQ. The toxicity of glucose-modified bis-Schiff bases was lower than that of non-glucose functionalized analogues. The bio-activities of glucose-modified bis-Schiff bases on anti-oxidative and improving the survival rate of PC12 cells treated with Aβ and metal ions, were superior to those of non-glucose-modified analogues.
  • 加载中
    1. [1]

      BARNHAM K J, MASTERS C L, BUSH A I. Neurodegenerative diseases and oxidative stress[J]. Nat. Rev. Drug Discov., 2004, 3: 205-214  doi: 10.1038/nrd1330

    2. [2]

      BINOLFI A, RASIA R M, BERTONCINI C W, CEOLIN M, ZWECKSTETTER M, GRIESINGER C, JOVIN T M, FERNANDEZ C O. Interaction of α-synuclein with divalent metal ions reveals key differences:   A link between structure, binding specificity and fibrillation enhancement[J]. J. Am. Chem. Soc., 2006, 128: 9893-9901  doi: 10.1021/ja0618649

    3. [3]

      PASIEKA A, PANEK D, SZALAJ N, ESPARGARΌ A, WIEKOWSKA A, MALAWSKA B, SABATĖ R, BAJDA M. Dual inhibitors of amyloid-β and Tau aggregation with amyloid-β disaggregating properties: Extended in cellulo, in silico, and kinetic studies of multifunctional anti-Alzheimer′s agents[J]. ACS Chem. Neurosci., 2021, 12: 2057-2068  doi: 10.1021/acschemneuro.1c00235

    4. [4]

      CHOI Y, TOH Y, RYU J S, KIM K, SEO D, KIM D S. Endogenous Aβ peptide promote Aβ oligomerization tendency of spiked synthetic Aβ in Alzheimer′s disease plasma[J]. Mol. Cell Neurosci., 2021, 111: 103588  doi: 10.1016/j.mcn.2021.103588

    5. [5]

      REDDY P H, OLIVER D M A. Amyloid beta and phosphorylated Tau-induced defective autophagy and mitophagy in Alzheimer′s disease[J]. Cells, 2019, 8: 488  doi: 10.3390/cells8050488

    6. [6]

      MORQCA F, VESPOLI L, MASTROIANNI D, PISCOPO V, GAGLIONE R, ARCIELLO A, DE NISCO M, PACIFICO S, CATALANOTTI B, PEDATELLA S. Synthesis, biological evaluation and metadynamics simulations of novel N-methyl β-sheet breaker peptides as inhibitors of Alzheimer′s β-amyloid fibrillogenesis[J]. RSC Med. Chem., 2024, 15: 2286-2299  doi: 10.1039/D4MD00057A

    7. [7]

      DRINKWATER E, DAVIES C, SPIRES-JONES T L. Potential neurobiological links between social isolation and Alzheimer′s disease risk[J]. Eur. J. Neurosci., 2022, 56(9): 5397-5412  doi: 10.1111/ejn.15373

    8. [8]

      DAS N, RAYMICK J, SARKAR S. Role of metals in Alzheimer′s disease[J]. Metab. Brain Dis., 2021, 36: 1627-1639  doi: 10.1007/s11011-021-00765-w

    9. [9]

      LIU F, ZHANG Z, ZHANG L, MENG R N, GAO J, JIN M, LI M, WANG X P. Effect of metal ions on Alzheimer′s disease[J]. Brain Behav., 2022, 12(3): e2527  doi: 10.1002/brb3.2527

    10. [10]

      BUSH A I. Metals and neuroscience[J]. Curr. Opin. Chem. Biol., 2000, 4: 184-191  doi: 10.1016/S1367-5931(99)00073-3

    11. [11]

      METAXAS A. Imbalances in copper or zinc concentrations trigger further trace metal dyshomeostasis in amyloid-beta producing Caenorhabditis elegans[J]. Front. Neuosci., 2021, 15: 755475  doi: 10.3389/fnins.2021.755475

    12. [12]

      ARNAL N, DOMINICI L, DE TACCONI M J T, MARRA C A. Copper-induced alterations in rat brain depends on route of overload and basal copper levels[J]. Nutrition, 2014, 30: 96-106  doi: 10.1016/j.nut.2013.06.009

    13. [13]

      PETAL R, ASCHNER M. Commonalities between copper neurotoxicity and Alzheimer′s disease[J]. Toxics, 2021, 9(1): 4  doi: 10.3390/toxics9010004

    14. [14]

      BUSH A I, MASTERS C L, TANZI R. Copper, β-amyloid, and Alzheimer′s disease: Tapping a sensitive connection[J]. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 11193-11194  doi: 10.1073/pnas.2135061100

    15. [15]

      BUSH A I. Drug development based on the metals hypothesis of Alzheimer′s disease[J]. J. Alzheimers Dis., 2008, 15: 223-240  doi: 10.3233/JAD-2008-15208

    16. [16]

      KEPP K P. Alzheimer′s disease: How metal ions define β-amyloid function[J]. Coord. Chem. Rev., 2017, 351: 127-159  doi: 10.1016/j.ccr.2017.05.007

    17. [17]

      KUMAR R, PAVLOV P F, WINBLAD B. Metal binding by GMP-1 and its pyrimido[1, 2]benzimidazole analogs confirms protection against amyloid-β associated neurotoxicity[J]. J. Alzheimers Dis., 2020, 73(2): 695-705  doi: 10.3233/JAD-190695

    18. [18]

      BUDIMIR A. Metal ions, Alzheimer′s disease and chelation therapy[J]. Acta Pharm., 2011, 61: 1-14  doi: 10.2478/v10007-011-0006-6

    19. [19]

      ZATTA P, DRAGO D, BOLOGNIN S, SENCI S L. Alzheimer′s disease, metal ions and metal homeostatic therapy[J]. Trends Pharmcol. Sci., 2009, 30(7): 346-355  doi: 10.1016/j.tips.2009.05.002

    20. [20]

      CUI Z, LOCKMAN P R, ATWOOD C S, HSU C H, GUPTE A, ALLEN D D, MUMPER R J. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer′s and other CNS diseases[J]. Eur. J. Pharm. Biopharm., 2005, 59: 263-2772  doi: 10.1016/j.ejpb.2004.07.009

    21. [21]

      SAVELIEFF M G, NEM G, KANG J, LEE H J, LEE M, LIM M H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer′s disease, Parkinson′s disease, and amyotrophic lateral sclerosis in the last decade[J]. Chem. Rev., 2019, 119: 1221-1322  doi: 10.1021/acs.chemrev.8b00138

    22. [22]

      SANTOS M A, CHAND K, CHAVES S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer′s disease[J]. Coord. Chem. Rev., 2016, 327-328: 287-303  doi: 10.1016/j.ccr.2016.04.013

    23. [23]

      PAVLIDIS N, KOFINAS A, PAPANIKOLAOU M G, MIRAS H N, DROUZA C, KALAMPOUNIAS A G, KABANOS T A, KONSTANDI M, LEONDARITIS G. Synthesis, characterization and pharmacological evaluation of quinoline derivatives and their complexes with copper(Ⅱ) in in vitro cell models of Alzheimer′s disease[J]. J. Inorg. Biochem., 2021, 217: 111393  doi: 10.1016/j.jinorgbio.2021.111393

    24. [24]

      HODA N, MANZOOR S. A comprehensive review of monoamine oxidase inhibitors as anti-Alzheimer′s disease agents: A review[J]. Eur. J. Med. Chem., 2020, 206: 112787  doi: 10.1016/j.ejmech.2020.112787

    25. [25]

      SANG Z P, SONG Q, CAO Z C, DENG Y, ZHANG L. Design, synthesis, and evaluation of chalcone-vitamin E-donepezil hybrids as multi-target-directed ligands for the treatment of Alzheimer′s disease[J]. J. Enzym. Inhib. Med. Chem., 2022, 37(1): 69-85  doi: 10.1080/14756366.2021.1993845

    26. [26]

      KILLIC B, DOGRUER D S. Synthesis and investigation of the cholinesterase inhibitory and antioxidant capacities of some novel N′-(quinolin-4-ylmethylene)propanehydrazides against Alzheimer′s disease[J]. Drug Dev. Res., 2024, 85: e22183  doi: 10.1002/ddr.22183

    27. [27]

      WANG W, PAN T, SU R, CHEN M, XIONG W, XU C, HUANG L. Discovery of novel melatonin-mydroxyquinoline hybrids as multitarget strategies for Alzheimer′s disease therapy[J]. Front. Chem., 2024, 12: 1374930  doi: 10.3389/fchem.2024.1374930

    28. [28]

      HARIK S I, LAMANNA J C. Regional comparisons of brain glucose influx. Brain Res., 1985, 326(2): 299-305  doi: 10.1016/0006-8993(85)90039-3

    29. [29]

      QUTUB A A, HUNT C A. Glucose transport to the brain: A systems model[J]. Brain Res. Rev., 2005, 49(3): 595-617  doi: 10.1016/j.brainresrev.2005.03.002

    30. [30]

      SUN B, WANG J L. Benzothiazole functionalized metal chelators: Synthesis and bioactivities[J]. Chinese J. Inorg. Chem., 2020, 56(7): 1257-1282  doi: 10.11862/CJIC.2020.158

    31. [31]

      GUO L X, SUN B. N, N′-1, 10-bis(naringin)triethylenetetraamine, synthesis and as a Cu(Ⅱ) chelator for Alzheimer′s disease therapy[J]. Biol. Pharm. Bull., 2021, 44: 51-56  doi: 10.1248/bpb.b20-00574

    32. [32]

      SUN B, JIANG H Y. Synthesis and bio-activities of bifunctional tetrahydrosalen Cu(Ⅱ) chelators with potential efficacy in Alzheimer′s disease therapy[J]. J. Inorg. Biochem., 2024, 259: 112636  doi: 10.1016/j.jinorgbio.2024.112636

    33. [33]

      LAMOUR E, ROUTIER S, BEMIER J L, CATTEAU J P, BAILLY C, VEZIN H. Oxidation of Cu to Cu, free radical production, and DNA cleavage hydroxy-salen-copper complexes. Isomeric effects studied by ESR and electrochemistry[J]. J. Am. Chem. Soc., 1999, 121(19): 1862-1869

    34. [34]

      SANATKAR T H, KHORSHIDI A, JANCZAK J. Dinuclear Zn(Ⅱ) and tetranuclear Co(Ⅱ) complexes of a tetradentate N2O2 Schiff base ligand: Synthesis, crystal structure, characterization, DFT studies, cytotoxicity evaluation, and catalytic activity toward benzyl alcohol oxidation[J]. Appl. Organomet. Chem., 2020, 34: e5493  doi: 10.1002/aoc.5493

    35. [35]

      ZHAI L, JIANG Y, SHI Y, LV M, PU Y L, CHENG H L, ZHU J Y, YANG K W. Aromatic Schiff bases confer inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1)[J]. Bioorg. Chem., 2022, 126: 105910  doi: 10.1016/j.bioorg.2022.105910

    36. [36]

      SUN B, WANG J L. Microwave-promoted C—C coupling reactions in water catalyzed by made in situ water-soluble salen-Pd complex[J]. Journal of Molecular Catalysis(China), 2019, 33(1): 58-65

    37. [37]

      SUN B, JIANG H Y. Total synthesis of dansyl and biotin functionalized ganglioside GM3 by chemoenzymetic method[J]. Sci. China‒Chem., 2013, 56: 933-938  doi: 10.1007/s11426-013-4838-4

    38. [38]

      WEI X, LIANG D L, NING M H, WANG Q, MENG C B, LI Z J. Semi-synthesis of neomangiferin from mangiferin[J]. Tetrahedron Lett., 2014, 55(19): 3083-3086  doi: 10.1016/j.tetlet.2014.03.129

    39. [39]

      SHI T S, WANG M L, HONG S C, CAO X Z. Determination of stability constant of copper(Ⅱ) tetra-(p-trimethylammoniumphenyl) porphyrin iodide by three wavelength spectrophotometry[J]. Journal of Jilin University(Science Edition), 1987(2): 100-104

    40. [40]

      LI S X, LI J Z, XIE J Q, CHEN Y, MENG X G, HU C W, ZENG X C. Studies of Schiff bases complexes containing Cu(Ⅱ) used as mimetic peroxidase[J]. Acta Chim. Sinica, 2004, 62(6): 567-572

    41. [41]

      YANG T, WANG X H, ZHANG C L, MA X, WANG K, WANG Y Q, LUO J, YANG L, YAO C, WANG X Y. Specific self-monitoring of metal-associated amyloid-β peptide disaggregation by a fluorescent chelator[J]. Chem. Commun., 2016, 52: 2245-2248

    42. [42]

      YANG G J, LIU H, MA D L, LEUNG C H. Rebalancing metal dyshomeostasis for Alzheimer′s disease therapy[J]. J. Biol. Inorg. Chem., 2019, 24: 1159-1170

    43. [43]

      ZHANG C F, COMES L M F, ZHANG T L, STORR T. A small bifunctional chelator that modulates Aβ42 aggregation[J]. Can. J. Chem., 2018, 96: 78-82

    44. [44]

      SHINDE S D, BEHERA S K, KULKARNI N, DEWANGAN B, SAHU B. Bifunctional backbone modified squaramide dipeptides as amyloid beta (Aβ) aggregation inhibitors[J]. Bioorg. Med. Chem., 2024, 97: 117538

    45. [45]

      CHERNY S D, ATWOOD C S, XILINAS M E, GRAY D N, JONES W D, MCLEAN C A, BARNHEM K J, VOLITAKIS I, FRASER F W, KIM Y S, HUANG X, GOLDSREIN L E, MOIR R D, LIM J T, BEYRENTHER K, ZHENG H, TANZI R E, MASTERS C L, BUSH A I. Treatment with a copper-zinc chelator markedly and rapidly inhibits-amyloid accumulation in Alzheimer′s disease transgenic mice[J]. Neuron, 2001, 30: 665-676

    46. [46]

      NAM G, LIM M H. Intertwined pathologies of amyloid-β and metal ions in Alzheimer′s disease: Metal-amyloid-β[J]. Chem. Lett., 2019, 48: 951-960

    47. [47]

      DHAKAL S, KUSHAIRI N, PHAN C W, ADHIKANRI B, SABARATNAM V, MACREADIE I. Dietary polyphenols: A multifactorial strategy to target Alzheimer′s disease[J]. Int. J. Mol. Sci., 2019, 20: 5090

    48. [48]

      RAJESHWARI R, CHAND K, CANDEIAS E, CARDOSO S M, CHAVES S, SANTOS A. New multitarget hybrids bearing tacrine and phenylbenzothiazole motifs as potential drug candidates for Alzheimer′s disease[J]. Molecules, 2019, 24: 587

    49. [49]

      IHRAHIM M M, GABR M T. Multitarget therapeutic strategies for Alzheimer′s disease[J]. Neural Regen. Res., 2019, 14(3): 437-440

    50. [50]

      ZHANG W X, LIU Y, HUREAU C, ROBERT A, MEUNIER B. N4-tetradentate chelators efficiently regulate copper homeostasis and prevent ROS production induced by copper-amyloid-β1-16[J]. Chem. ‒Eur. J., 2018, 24: 7825-7829

    51. [51]

      MARKESBERG W R. Oxidative stress hypothesis in alzheimer′s disease[J]. Free Radic. Biol. Med., 1997, 23(1): 134-147

    52. [52]

      WOJSIAT J, ZDTOWSKA K M, LASKOWSKA-KASZUB K, WOJDA U. Oxidant/antioxidant imbalance in Alzheimer′s disease: Therapeutic and diagnostic prospects[J]. Oxidative Med. Cell. Longev., 2018: 6435861

    53. [53]

      SCHUESSEL K, LEUTNER S, CAIRUS N J, MULLER W E, ECKERT A. Impact of gender on upregulation of antioxidant defense mechanisms in Alzheimer′s disease brain[J]. J. Neural Transm., 2004, 111(9): 1167-1182

    54. [54]

      RANA M, TERPSTRA K, GUTIERREZ C, XU K, ARYA H, BHATT T K, MIRRICA L M, SHARINA A K. Evaluation of anti- Alzheimer′s potential of azo-stilbene thioflavin-T derived multifunctional molecules: Synthesis, metal and Aβ species binding and cholinesterase activity[J]. Chem. ‒Eur. J., 2024, 30: e202402748

    55. [55]

      CHO H J, HUYNH T T, ROGERS B E, MIRICA L M. Design of a multivalent bifunctional chelator for diagnostic 64Cu PET imaging in Alzheimer′s disease[J]. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(49): 30928-30933

    56. [56]

      DU Z, LI M, REN J S, QU X G. Current strategies for modulating Aβ aggregation with multifunctional agents[J]. Accounts Chem. Res., 2021, 54: 2172-2184

    57. [57]

      PATHAK C, KAHRA U D. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer′s disease[J]. Bioorg. Chem., 2024, 114: 107152

    58. [58]

      CHOI J S, BRAYMER J J, NANGA R P R, RAMANOORTHY R, LIM M H. Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity[J]. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(51): 21990-21995

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    5. [5]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    11. [11]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    12. [12]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    13. [13]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Xiaofang LiZhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return