Citation: Cun WANG, Shaohan XU, Yuqian ZHANG, Yaoyao ZHANG, Tao GONG, Rong WEN, Yuhang LIAO, Yanrong REN. Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427 shu

Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine

  • Corresponding author: Yanrong REN, renyr@cque.edu.cn
  • Received Date: 4 December 2024
    Revised Date: 6 May 2025

Figures(8)

  • To accurately detect epinephrine (EP), in this work, three lanthanide terbium complexes (α-Tb-CCP, β-Tb-CCP, and γ-Tb-CCP) as cathode electrochemiluminescence (ECL) luminophores were synthesized via a simple hydrothermal synthesis method, and the β-Tb-CCP with the highest ECL intensity was chosen. The highest ECL signal of β-Tb-CCP is mainly attributed to its small size and surface aperture. Finally, a sensitive ECL sensor for EP detection was constructed with β-Tb-CCP as the luminophore, EP as the signal quencher, and flower-shaped zinc oxide as the ECL signal stabilizer and co-reaction accelerator. In a range of 0.1 pmol·L-1 to 10 mmol·L-1, the ECL intensity difference ΔII=I0-I, where I0 and I correspond to the blank ECL intensity without EP and with EP, respectively) showed a good quantitative linear relationship with the logarithm of EP concentration (lg c). The linear equation was ΔI=684.3lg c+9 443.0 (R2=0.9978), and the detection limit was 18.2 fmol·L-1 (S/N=3). In addition, the detection results of EP hydrochloride injection were 0.954 mg: 1 mL and 4.883 mg: 5 mL, which were close to the declared EP contents in the injection.
  • 加载中
    1. [1]

      PAN T M, LIN L A, DING H Y, HER J L, PANG S T. A simple and highly sensitive flexible sensor with extended-gate field-effect transistor for epinephrine detection utilizing InZnSnO sensing films[J]. Talanta, 2024, 275: 126178  doi: 10.1016/j.talanta.2024.126178

    2. [2]

      DASI A, ASADPOUR-ZEYNALI K, SAEB E. Preparation of a fast and simple electrochemical sensor of bismuth telluride decorated on graphitic carbon nitride nanosheets for determination of epinephrine in biological samples[J]. Synth. Met., 2024, 304: 117589  doi: 10.1016/j.synthmet.2024.117589

    3. [3]

      JIA Z Y, ZHANG H, CHEN Y X, FANG Y, ZHANG J N, HU S W. Perovskite-based electrochemiluminescence analysis of H2O2[J]. RSC Adv., 2024, 14(28): 19744-19751  doi: 10.1039/D4RA03652B

    4. [4]

      WANG C, HU F X, ZOU X C, WANG Y Q, REN Y R, TAN J. Lanthanide Ce(Ⅲ)/Tb(Ⅲ) bimetallic coordination polymer as an advanced electrochemiluminescence emitter for epinephrine sensing application[J]. Talanta, 2022, 248: 123621  doi: 10.1016/j.talanta.2022.123621

    5. [5]

      HAN Q, SHI X R, KANG K, CAO Y B, CONG L, WANG J. Silver nanoparticles in situ enhanced electrochemiluminescence of the porphyrin organic matrix for highly sensitive and rapid monitoring of tetracycline residues[J]. J. Agric. Food Chem., 2024, 72(16): 9498-9506

    6. [6]

      GAO J W, CHEN M M, WEN W, ZHANG X H, WANG S F, HUANG W H. Au luminol decorated porous carbon nanospheres for the electrochemiluminescence biosensing of MUC1[J]. Nanoscale, 2019, 11(36): 38-45

    7. [7]

      ZHAO L, WANG M, SONG X Z, LIU X J, JU H X, AI H Q, WEI Q, WU D. Annihilation luminescent Eu-MOF as a near-infrared electrochemiluminescence probe for trace detection of trenbolone[J]. Chem. Eng. J., 2022, 434: 134691  doi: 10.1016/j.cej.2022.134691

    8. [8]

      HAN Q, WANG C, LIU P K, ZHANG G, SONG L, FU Y Z. Functionalized europium-porphyrin coordination polymer: Rational design of high performance electrochemiluminescence emitter for mucin 1 sensing[J]. Biosens. Bioelectron., 2021, 191: 113422  doi: 10.1016/j.bios.2021.113422

    9. [9]

      WANG Y G, ZHAO G H, CHI H, YANG S H, NIU Q F, WU D, CAO W, LI T D, MA H M, WEI Q. Self-luminescent lanthanide metal- organic frameworks as signal probes in electrochemiluminescence immunoassay[J]. J. Am. Chem. Soc., 2021, 143(1): 504-512  doi: 10.1021/jacs.0c12449

    10. [10]

      WANG C, HU F X, FENG X, ZOU X C, ZHAO X, REN Y R. A novel micron europium cluster coordination polymer as a strong electrochemiluminescent emitter for accurate and sensitive detection of tetracycline[J]. Food Chem., 2023, 419: 135887  doi: 10.1016/j.foodchem.2023.135887

    11. [11]

      ZHENG X Y, XIE J, KONG X J, LONG L S, ZHENG L S. Recent advances in the assembly of high-nuclearity lanthanide clusters[J]. Coord. Chem. Rev., 2019, 378: 222-236  doi: 10.1016/j.ccr.2017.10.023

    12. [12]

      WANG K, CHEN Z L, ZOU H H, ZHANG S H, LI Y, ZHANG X Q, SUN W Y, LIANG F P. Diacylhydrazone-assembled {Ln11} nanoclusters featuring a "double-boats conformation" topology: Synthesis, structures and magnetism[J]. Dalton Trans., 2018, 47(7): 2337-2343  doi: 10.1039/C7DT03179C

    13. [13]

      LI X Y, JING Y R, ZHENG J Y, DING H J, LI Q W, YU M H, BU X H. Two luminescent high-nuclearity lanthanide clusters Ln48 (Ln=Eu and Tb) with a nanopillar structure[J]. Cryst. Growth Des., 2020, 20(8): 5294-5301  doi: 10.1021/acs.cgd.0c00522

    14. [14]

      HAN Q, WANG C, LI Z Z, WU J L, LIU P K, MO F J, FU Y Z. Multifunctional zinc oxide promotes electrochemiluminescence of porphyrin aggregates for ultrasensitive detection of copper ion[J]. Anal. Chem., 2020, 92(4): 3324-3331  doi: 10.1021/acs.analchem.9b05262

    15. [15]

      HAN T T, CAO Y, CHEN H Y, ZHU J J. Versatile porous nanomaterials for electrochemiluminescence biosensing: Recent advances and future perspective[J]. J. Electroanal. Chem., 2021, 902: 115821  doi: 10.1016/j.jelechem.2021.115821

    16. [16]

      LI Y, JIANG Z W, XIAO S Y, HUANG C Z, LI Y F. Terbium(Ⅲ) organic gels: Novel antenna effect-induced enhanced electrochemiluminescence emitters[J]. Anal. Chem., 2018, 90(20): 12191-12197  doi: 10.1021/acs.analchem.8b03383

    17. [17]

      SONG X Z, ZHAO L, REN X, FENG T, MA H M, WU D, LI Y Y, LUO C N, WEI Q. Highly efficient PTCA/Co3O4/CuO/S2O82- ternary electrochemiluminescence system combined with a portable chip for bioanalysis[J]. ACS Sens., 2022, 7(8): 2273-2280  doi: 10.1021/acssensors.2c00819

    18. [18]

      LUK H N, CHOU T Y, HUANG B H, LIN Y S, LI H, WU R J. Promotion effect of palladium on BiVO4 sensing material for epinephrine detection[J]. Catalysts, 2021, 11(9): 1083  doi: 10.3390/catal11091083

    19. [19]

      AZIZI S N, CHAICHI M J, SHAKERI P, BEKHRADNIA A. Determination of epinephrine in pharmaceutical formulation by an optimized novel luminescence method using CdS quantum dots as sensitizer[J]. J. Fluoresc., 2013, 23(2): 227-235  doi: 10.1007/s10895-012-1138-x

    20. [20]

      ZHANG M R, ZHANG Y, YANG C K, MA C Y, TANG J G. A smart-phone-assisted portable biosensor using laccase-mineral hybrid microflowers for colorimetric determination of epinephrine[J]. Talanta, 2021, 224: 121840  doi: 10.1016/j.talanta.2020.121840

  • 加载中
    1. [1]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    9. [9]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    10. [10]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    11. [11]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    12. [12]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    13. [13]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    14. [14]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(0)
  • Abstract views(12)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return