Citation: Pingping LU, Shuguang ZHANG, Peipei ZHANG, Aiyun NI. Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411 shu

Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions

Figures(5)

  • A zinc sulfate open framework matrix, [Zn(SO4)(DMSO)] (1), was synthesized by solvothermal evaporation using dimethyl sulfoxide (DMSO) as the solvent. A composite P@1, which exhibits fluorescence and room temperature phosphorescence (RTP) properties, was prepared by doping 2, 6-naphthalic acid (P) into matrix 1 at a low concentration. P@1 emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s. P@1 exhibited selective phosphorescence enhancement response towards Pb2+, with a detection limit of 2.52 μmol·L-1. The main detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system. Interestingly, P@1 also functioned as a dualchannel probe for the rapid detection of Fe3+ ions through fluorescence quenching with a detection limit of 0.038 μmol·L-1. The recognition mechanism may be attributed to the competitive energy absorption between P@1 and Fe3+ ions.
  • 加载中
    1. [1]

      TANG Q, LI L Y, ZHANG S, ZHENG L, MIAO C H. Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area[J]. J. Geochem. Explor., 2018,186:1-11. doi: 10.1016/j.gexplo.2017.11.018

    2. [2]

      LIU X Y, BAI Z K, SHI H D, ZHOU W, LIU X C. Heavy metal pollu-tion of soils from coal mines in China[J]. Nat. Hazards, 2019,99(2):1163-1177. doi: 10.1007/s11069-019-03771-5

    3. [3]

      USMAN K, ABU-DIEYEH M H, ZOUARI N, AL-GHOUTI M A. Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse[J]. Sci. Rep., 2020,10(1)17070. doi: 10.1038/s41598-020-73621-z

    4. [4]

      YANG C Y, DU C Y, YUAN F Y, YU P T, WANG B X, SU C S, ZOU R Q, WANG J Y, YAN X, SUN C Y, LI H X. CRISPR/Cas12a-derived ratiometric fluorescence sensor for high-sensitive Pb2+ detec-tion based on CDs@ZIF-8 and DNAzyme[J]. Biosens. Bioelectron., 2024,251116089. doi: 10.1016/j.bios.2024.116089

    5. [5]

      AHMED H E H, MOHAMMED A M A, SOYLAK M. A magnetic sol-id phase extraction procedure for Pb(Ⅱ) at trace levels on magnetic Luffa@TiO 2 in food and water samples[J]. Food Chem., 2023,428136794. doi: 10.1016/j.foodchem.2023.136794

    6. [6]

      ZHANG N, SHEN K, YANG X M, LI Z X, ZHOU T K, ZHANG Y, SHENG Q L, ZHENG J B. Simultaneous determination of arsenic, cadmium and lead in plant foods by ICP-MS combined with automated focused infrared ashing and cold trap[J]. Food Chem., 2018,264:462-470. doi: 10.1016/j.foodchem.2018.05.058

    7. [7]

      TIGHE M, BIELSKI M, WILSON M, RUSCIO-ATKINSON G, PEASLEE G F, LIEBERMAN M. A sensitive XRF screening method for lead in drinking water[J]. Anal. Chem., 2020,92(7):4949-4953. doi: 10.1021/acs.analchem.9b05058

    8. [8]

      XU J M, LIU M B, ZHAO W H, WANG S Q, GUI M F, LI H B, YU R Q. DNAzyme-based cascade signal amplification strategy for highly sensitive detection of lead ions in the environment[J]. J. Hazard. Mater., 2022,429128347. doi: 10.1016/j.jhazmat.2022.128347

    9. [9]

      DU X X, LIU Y J, WANG F, ZHAO D Y, GLEESON H F, LUO D. A fluorescence sensor for Pb2+ detection based on liquid crystals and aggregation-induced emission luminogens[J]. ACS Appl. Mater. Inter-faces, 2021,13(19):22361-22367. doi: 10.1021/acsami.1c02585

    10. [10]

      YANG C Y, YU P T, LI Y, WANG J Y, MA X Y, LIU N, LV T, ZHENG H R, WU H, LI H X, SUN C Y. Platform formed from ZIF-8 and DNAzyme: "Turn-on" fluorescence assay for simple, high-sensi-tivity, and high-selectivity detection of Pb2+[J]. J. Agric. Food Chem., 2022,70(30):9567-9576. doi: 10.1021/acs.jafc.2c03503

    11. [11]

      NIU X F, ZHONG Y B, CHEN R, WANG F, LIU Y J, LUO D. A "turn-on" fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles[J]. Sens. Actuator B -Chem., 2018,255:1577-1581. doi: 10.1016/j.snb.2017.08.167

    12. [12]

      LIU T Q, WAN X J, YAO Y W. Dual sensitive and selective sensor for Pb2+ and Al3+ with distinctive fluorescence response[J]. Sens. Ac-tuator B-Chem., 2018,254:1094-1100. doi: 10.1016/j.snb.2017.07.114

    13. [13]

      XUE T, SHI Y Y, GUO J, GUO M X, YAN Y. Preparation of AgInS2 quantum dots and their application for Pb2+ detection based on fluo-rescence quenching effect[J]. Vacuum, 2021,193110514. doi: 10.1016/j.vacuum.2021.110514

    14. [14]

      WANG H Y, MIAO L, ZHANG B L, SUN Y J, CHEN J, LIU S Q, ZHANG W Q, WANG T, ZHANG J J. Coordinated solvent mole-cules enable the excellent capabilities of two Zn2+-based complexes in detecting L-arginine via long-lived luminescence recovery[J]. Adv. Funct. Mater., 2024202403734.

    15. [15]

      ZHANG B L, ZHANG P P, NI A Y, ZHANG J J, WANG H Y, FENG K X, LIU S Q, ZHAO Z B, DUAN C Y. Efficient, multicolored, and stable room-temperature phosphorescence doped materials based on a lead halide matrix: A coordination-driven doping strategy[J]. Adv. Opt. Mater., 2023,11(21)2300717. doi: 10.1002/adom.202300717

    16. [16]

      JIN J B, JIANG H, YANG Q Q, TANG L I, TAO Y, LI Y Y, CHEN R F, ZHENG C, FAN Q L, ZHANG K Y, ZHAO Q, HUANG W. Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow[J]. Nat. Commun., 2020,11(1)842. doi: 10.1038/s41467-020-14669-3

    17. [17]

      YAN Z A, LIN X H, SUN S Y, MA X, TIAN H. Activating room-tem-perature phosphorescence of organic luminophores via external heavy-atom effect and rigidity of ionic polymer matrix[J]. Angew. Chem.-Int. Edit., 2021,60(36):19735-19739. doi: 10.1002/anie.202108025

    18. [18]

      CHEN T H, MA Y J, YAN D P. Single-component 0D metal-organic halides with color-variable long-afterglow toward multi-level informa-tion security and white-light LED[J]. Adv. Funct. Mater., 2023,33(18)2214962. doi: 10.1002/adfm.202214962

    19. [19]

      LIU S Y, LIN Y H, YAN D P. Dynamic multi-color long-afterglow and cold-warm white light through phosphorescence resonance energy transfer in host-guest metal-organic frameworks[J]. Sci. Chin. Chem., 2023,66(12):3532-3538. doi: 10.1007/s11426-023-1656-y

    20. [20]

      XING C, ZHOU B, YAN D P, FANG W H. Integrating full-color 2D optical waveguide and heterojunction engineering in halide microsheets for multichannel photonic logical gates[J]. Adv. Sci., 2024,11(17)202310262.

    21. [21]

      TIAN S A, MA H L, WANG X, LV A Q, SHI H, GENG Y, LI J, LIANG F S, SU Z M, AN Z F, HUANG W. Utilizing d-pπ bonds for ultralong organic phosphorescence[J]. Angew. Chem. -Int. Edit., 2019,58(20):6645-6649. doi: 10.1002/anie.201901546

    22. [22]

      YANG Z, XU C, LI W L, MAO Z, GE X Y, HUANG Q Y, DENG H J, ZHAO J, GU F L, ZHANG Y, CHI Z G. Boosting the quantum effi-ciency of ultralong organic phosphorescence up to 52% via intramo-lecular halogen bonding[J]. Angew. Chem. -Int. Edit., 2020,59(40):17451-17455. doi: 10.1002/anie.202007343

    23. [23]

      YANG Y S, WANG K Z, YAN D P. Ultralong persistent room tem-perature phosphorescence of metal coordination polymers exhibiting reversible pH-responsive emission[J]. ACS Appl. Mater. Interfaces, 2016,8(24):15489-15496. doi: 10.1021/acsami.6b03956

    24. [24]

      WIBOWO A H, SURYANDARI Y, MASYKUR A, PÉREZ-YÁÑEZ S, RODRíGUEZ-DIÉGUEZ A, CEPEDA J. Zinc/itaconate coordina-tion polymers as first examples with long-lasting phosphorescence based on acyclic ligands[J]. J. Mater. Chem. C, 2018,6(40):10870-10880. doi: 10.1039/C8TC03598A

    25. [25]

      YIN Y J, ZHAO H, ZHANG L W, HUANG J X, ZHANG J J, CHEN J, NI J, SONG B, LIU S Q, DUAN C Y. Color-tunable long-lived room-temperature phosphorescence in a coordination polymer based on a nonaromatic ligand and its phosphor/coordination polymer-doped systems[J]. Chem. Mater., 2021,33(18):7272-7282. doi: 10.1021/acs.chemmater.1c01514

    26. [26]

      LUCENTI E, FORNI A, BOTTA C, CARLUCCI L, GIANNINI C, MARINOTTO D, PAVANELLO A, PREVITALI A, RIGHETTO S, CARIATI E. Cyclic triimidazole derivatives: Intriguing examples of multiple emissions and ultralong phosphorescence at room tempera-ture[J]. Angew. Chem.-Int. Edit., 2017,56(51):16302-16307. doi: 10.1002/anie.201710279

    27. [27]

      LI M K, CAI X Y, CHEN Z J, LIU K K, QIU W D, XIE W T, WANG L Y, SU S J. Boosting purely organic room-temperature phosphores-cence performance through a host-guest strategy[J]. Chem. Sci., 2021,12(40):13580-13587. doi: 10.1039/D1SC03420K

    28. [28]

      SHI H F, SONG L L, MA H L, SUN C, HUANG K W, LV A Q, YE W P, WANG H, CAI S Z, YAO W, ZHANG Y J, ZHENG R L, AN Z F, HUANG W. Highly efficient ultralong organic phosphorescence through intramolecular-space heavy-atom effect[J]. J. Phys. Chem. Lett., 2019,10(3):595-600. doi: 10.1021/acs.jpclett.8b03712

    29. [29]

      ZHU C Y, WANG Z, MO J T, FAN Y N, PAN M. A long persistent phosphorescent metal-organic framework for multi-level sensing of oxygen[J]. J. Mater. Chem. C, 2020,8(29):9916-9922. doi: 10.1039/D0TC02391D

    30. [30]

      XU S F, ZHAN L H, HONG C Y, CHEN X M, CHEN X, OYAMA M. Metal-organic framework-5 as a novel phosphorescent probe for the highly selective and sensitive detection of Pb(Ⅱ) in mussels[J]. Sens. Actuator B-Chem., 2020,308127733. doi: 10.1016/j.snb.2020.127733

    31. [31]

      NIE Y J, CHEN X W, WANG Y Q, LAI W Q, ZHENG N, WENG W. Matrix-free nitrogen-doped carbon dots with room temperature phos-phorescence for information encryption and temperature detection[J]. Microchem. J., 2022,175107126. doi: 10.1016/j.microc.2021.107126

    32. [32]

      ZHANG X P, LIU J K, CHEN B, HE X W, LI X Y, WEI P F, GAO P F, ZHANG G Q, LAM J W Y, TANG B Z. Highly efficient and persistent room temperature phosphorescence from cluster exciton enables ultrasensitive off-on VOC sensing[J]. Matter, 2022,5(10):3499-3512. doi: 10.1016/j.matt.2022.07.010

    33. [33]

      ANDREWS N C. Iron metabolism: Iron deficiency and iron overload[J]. Annu. Rev. Genomics Hum., 2000,1:75-98. doi: 10.1146/annurev.genom.1.1.75

    34. [34]

      FLEMING ROBERT E, PONKA P. Iron overload in human disease[J]. N. Engl. J. Med., 2012,366(4):348-359. doi: 10.1056/NEJMra1004967

    35. [35]

      PASRICHA S R, TYE-DIN J, MUCKENTHALER M U, SWINKELS D W. Iron deficiency[J]. Lancet, 2021,397(10270):233-248. doi: 10.1016/S0140-6736(20)32594-0

    36. [36]

      STOLTZFUS R J. Iron-deficiency anemia: Reexamining the nature and magnitude of the public health problem. Summary: Implications for research and programs[J]. J. Nutr., 2001,131(2S-2):697S-700S.

    37. [37]

      HOU L L, SONG Y H, XIAO Y J, WU R, WANG L. ZnMOF-74 responsive fluorescence sensing platform for detection of Fe3+[J]. Microchem. J., 2019,150104154. doi: 10.1016/j.microc.2019.104154

    38. [38]

      RUAN B, YANG J, ZHANG Y J, MA N, SHI D, JIANG T, TSAI F C. UiO-66 derivate as a fluorescent probe for Fe3+ detection[J]. Talanta, 2020,218121207. doi: 10.1016/j.talanta.2020.121207

    39. [39]

      ÜÇÜNCÜ M. A phenalenone-based fluorescent probe for the detec-tion of Fe3+ions[J]. 2022, 33(2): 707-712

    40. [40]

      LI Y J, ZHANG X J, WANG Z C, ZHAO L N, LI Y X. Highly sensi-tive Fe3+ luminescence detection via single-ion adsorption[J]. Chin. Chem. Lett., 2024,35(1)108532. doi: 10.1016/j.cclet.2023.108532

    41. [41]

      CHEN Z E, ZANG X F, ZHANG H. An ethyl thioglycolate-based chemosensor: Spectrophotometric detection of Fe3+ and fluorometric detection of Hg2+ with high selectivity[J]. Spectroc. Acta Pt. A -Molec. Biomolec. Spectr., 2021,260119955. doi: 10.1016/j.saa.2021.119955

    42. [42]

      VADIA F Y, GHOSH S, MEHTA V N, JHA S, MALEK N I, PARK T J, KAILASA S K. Fluorescence"turn off-on"detection of Fe3+ and propiconazole pesticide using blue emissive carbon dots from lemon peel[J]. Food Chem., 2023,428136796. doi: 10.1016/j.foodchem.2023.136796

    43. [43]

      ALQADAMI A A, NAUSHAD M, ALOTHMAN Z A, ALSUHYBANI M, ALGAMDI M. Excellent adsorptive performance of a new nano-composite for removal of toxic Pb(Ⅱ) from aqueous environment: Adsorption mechanism and modeling analysis[J]. J. Hazard. Mater., 2020,389121896. doi: 10.1016/j.jhazmat.2019.121896

    44. [44]

      VERPOORT F, HAEMERS T, ROOSE P, MAES J P. Characteriza-tion of a surface coating formed from carboxylic acid-based coolants[J]. Appl. Spectrosc., 1999,531528. doi: 10.1366/0003702991946262

    45. [45]

      BROOKER M H, SUNDER S, TAYLOR P, LOPATA V J. Infrared and Raman spectra and X-ray diffraction studies of solid lead(Ⅱ) car-bonates[J]. Can. J. Chem., 2011,61(3):494-502.

    46. [46]

      OTERO V, SANCHES D, MONTAGNER C, VILARIGUES M, CARLYLE L, LOPES J A, MELO M J. Characterisation of metal car-boxylates by Raman and infrared spectroscopy in works of art[J]. J. Raman Spectrosc., 2015,45(11/12):1197-1206.

    47. [47]

      ZHANG X F, FENG L H, MA S Y, XIA T F, JIAO F F, KONG Z, DUAN X. A microporous Tb-based MOF for multifunctional detec-tion of the α-CHC, Cu2+ and Fe3+[J]. J. Solid State Chem., 2022,312123232. doi: 10.1016/j.jssc.2022.123232

    48. [48]

      ZHAO F H, ZHAO Z H, LI Y S, FENG R, HAN T, HE Y C, LI Z L. Two diverse 3D 6-connected Cd(Ⅱ)/Co(Ⅱ) MOFs based on binuclear clusters as fluorescence sensors for detection of Fe3+, Cr2O72- and nitrobenzene[J]. J. Mol. Struct., 2024,1298137051. doi: 10.1016/j.molstruc.2023.137051

  • 加载中
    1. [1]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    10. [10]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    11. [11]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    12. [12]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    13. [13]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    17. [17]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    20. [20]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

Metrics
  • PDF Downloads(0)
  • Abstract views(66)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return