Citation: Jiali CHEN, Guoxiang ZHAO, Yayu YAN, Wanting XIA, Qiaohong LI, Jian ZHANG. Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408 shu

Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves

Figures(6)

  • Using machine learning for high-throughput screening is a new material screening method. The gas adsorption on zeolite molecular sieves was studied using the grand canonical Monte Carlo (GCMC) simulation and machine learning methods. The GCMC simulation method was used to calculate the absolute adsorption capacity of 12 types of electron gases on 240 varieties of silica zeolite molecular sieves. In comparison, the Zeo++ program was employed to analyze 17 types of structural characteristics of these zeolite molecular sieves. On this basis, multiple linear regression and random forest regression were established to predict the adsorption capacity of zeolite molecular sieves for electronic gases. Through correlation analysis and model performance evaluation, the impact degree of different structural characteristics on gas adsorption capacity was revealed, and the stability and prediction accuracy of the model were discussed.
  • 加载中
    1. [1]

      ZHANG M, LIU L, LI Q, GONG H, CHEN Y. Theoretical design of MOFs and PSA process for efficient separation of CF4/NF3[J]. Ind. Eng. Chem. Res., 2023, 62(18): 7103-7113  doi: 10.1021/acs.iecr.2c04592

    2. [2]

      ZHANG W X, LI Y H, WU Y, FU Y, CHEN S H, ZHANG Z H, HE S J, YAN T, MA H P. Fluorinated porous organic polymers for efficient recovery perfluorinated electronic specialty gas from exhaust gas of plasma etching[J]. Sep. Purif. Technol., 2022, 287: 120561  doi: 10.1016/j.seppur.2022.120561

    3. [3]

      FUNKE H H, GRISSOM B L, MCGREW C E, RAYNOR M W. Techniques for the measurement of trace moisture in high-purity electronic specialty gases[J]. Rev. Sci. Instrum., 2003, 74(9): 3909-3933  doi: 10.1063/1.1597939

    4. [4]

      WU Q, LUAN H, XIAO F S. Targeted synthesis of zeolites from calculated interaction between zeolite structure and organic template[J]. Natl. Sci. Rev., 2022, 9(9): nwac023  doi: 10.1093/nsr/nwac023

    5. [5]

      TONG X Q, LU H Y, HUANG P, YAN W F, YU J H, XU R R. Synthesis and characterization of a new three-dimensional open-framework aluminophosphate [C4H14N2][Al4P5O19OH] and investigation of the structure-directing effect[J]. Chinese. J. Inorg. Chem., 2013, 29(8): 1639-1644  doi: 10.3969/j.issn.1001-4861.2013.08.009

    6. [6]

      LIN Q F, GAO Z R, LIN C, ZHANG S, CHEN J, LI Z, LIU X, FAN W, LI J, CHEN X, CAMBLOR M A, CHEN F J. A stable aluminosilicate zeolite with intersecting three-dimensional extra-large pores[J]. Science, 2021, 374(6575): 1605-1608  doi: 10.1126/science.abk3258

    7. [7]

      MERCURY M, DENOYEL R, SIMON-MASSERON A, CARETTE M, ZEREGA Y, PATARIN J, SOULARD M, REYNARD C, JANULYTE A. Selective adsorption of 2, 3-DCDD and 1, 2, 3, 4-TCDD on *BEA, EMT, FAU and MFI-type zeolites as alternative adsorbents for on-line dioxin monitoring[J]. Adsorption, 2011, 17(4): 747-758  doi: 10.1007/s10450-011-9349-z

    8. [8]

      AZIZI B, VESSALLY E, AHMADI S, EBADI A G, AZAMAT J. Separation of CH4/N2 gas mixture using MFI zeolite nanosheet: Insights from molecular dynamics simulation[J]. Colloid Surf. A‒Physicochem. Eng. Asp., 2022, 641: 128527  doi: 10.1016/j.colsurfa.2022.128527

    9. [9]

      PECHAR T W, KIM S, VAUGHAN B, MARAND E, TSAPATSIS M, JEONG H K, CORNELIUS C J. Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations[J]. J. Membr. Sci., 2006, 277(1): 195-202

    10. [10]

      SCHWALBE-KODA D, KWON S, PARIS C, BELLO-JURADO E, JENSEN Z, OLIVETTI E, WILLHAMMAR T, CORMA A, ROMAN-LESHKOV Y, MOLINER M, GOMEZ-BOMBARELLI R. A priori control of zeolite phase competition and intergrowth with high-throughput simulations[J]. Science, 2021, 374(6565): 308-315  doi: 10.1126/science.abh3350

    11. [11]

      HU H Y, BAI Y K, YUAN Z H. Improved graph-based multitask learning model with sparse sharing for quantitative structure-property relationship prediction of drug molecules[J]. AICHE J., 2023, 69(2): e17968  doi: 10.1002/aic.17968

    12. [12]

      CHEN C H, TANAKA K, KOTERA M, FUNATSU K. Comparison and improvement of the predictability and interpretability with ensemble learning models in QSPR applications[J]. J. Cheminformatics, 2020, 12(1): 19  doi: 10.1186/s13321-020-0417-9

    13. [13]

      FERNANDEZ M, BOYD P G, DAFF T D, AGHAJI M Z, WOO T K. Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO2 capture[J]. J. Phys. Chem. Lett, 2014, 5(17): 3056-3060  doi: 10.1021/jz501331m

    14. [14]

      YUAN S, JIAO Z R, QUDDUS N A, KWON J S I, MASHUGA C V. Developing quantitative structure-property relationship models to predict the upper flammability limit using machine learning[J]. Ind. Eng. Chem. Res., 2019, 58(8): 3531-3537  doi: 10.1021/acs.iecr.8b05938

    15. [15]

      DAEYAERT F, YE F D, DEEM M W. Machine-learning approach to the design of OSDAs for zeolite beta[J]. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(9): 3413-3418  doi: 10.1073/pnas.1818763116

    16. [16]

      MA S C, SHANG C, WANG C M, LIU Z P. Thermodynamic rules for zeolite formation from machine learning based global optimization[J]. Chem. Sci., 2020, 11(37): 10113-10118  doi: 10.1039/D0SC03918G

    17. [17]

      LIN S R, WANG Y K, ZHAO Y H, PERICCHI L R, HERNANDEZ-MALDONADO A J, CHEN Z F. Machine-learning-assisted screening of pure-silica zeolites for effective removal of linear siloxanes and derivatives[J]. J. Mater. Chem. A, 2020, 8(6): 3228-3237  doi: 10.1039/C9TA11909D

    18. [18]

      ZHANG L F, LI J M, ZHANG P P, GAO Z, ZHAO Y Y, QIAO X H, CHEN C. PI4KIIα regulates insulin secretion and glucose homeostasis via a PKD-dependent pathway[J]. Biophysics Reports, 2018, 4(1): 25-38  doi: 10.1007/s41048-018-0049-z

    19. [19]

      KIM S Y, KIM S I, BAE Y S. Machine-learning-based prediction of methane adsorption isotherms at varied temperatures for experimental adsorbents[J]. J. Phys. Chem. C, 2020, 124(36): 19538-19547  doi: 10.1021/acs.jpcc.0c01757

    20. [20]

      LIANG H, JIANG K, YAN T A, CHEN G H. XGBoost: An optimal machine learning model with just structural features to discover MOF adsorbents of Xe/Kr[J]. ACS Omega, 20216(13): 9066-9076  doi: 10.1021/acsomega.1c00100

    21. [21]

      DUBBELDAM D, CALERO S, ELLIS D E, SNURR R Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials[J]. Mol. Simul., 2016, 42: 101-81

    22. [22]

      DUBBELDAM D, TORRES-KNOOP A, WALTON K S. On the inner workings of Monte Carlo codes[J]. Mol. Simul., 2013, 39: 1253-1292  doi: 10.1080/08927022.2013.819102

    23. [23]

      DUBBELDAM D, SNURR R Q. Recent developments in the molecular modeling of diffusion in nanoporous materials[J]. Mol. Simul., 2007, 33(4/5): 305-325

    24. [24]

      DUBBELDAM D, WALTON K S, VLUGT T J H, CALERO S. Design, parameterization, and implementation of atomic force fields for adsorption in nanoporous materials[J]. Adv. Theory Simul., 2019, 2(11): 1900135  doi: 10.1002/adts.201900135

    25. [25]

      WILLEMS T F, RYCROFT C H, KAZI M, MEZA J C, HARANCZYK M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous Mesoporous Mat., 2012, 149(1): 134-141  doi: 10.1016/j.micromeso.2011.08.020

    26. [26]

      MARTIN R L, SMIT B, HARANCZYK M. Addressing challenges of identifying geometrically diverse sets of crystalline porous materials[J]. J. Chem Inf. Model., 2012, 52(2): 308-318  doi: 10.1021/ci200386x

    27. [27]

      PINHEIRO M, MARTIN R L, RYCROFT C H, JONES A, IGLESIA E, HARANCZYK M. Characterization and comparison of pore landscapes in crystalline porous materials[J]. J. Mol. Graph., 2013, 44: 208-219  doi: 10.1016/j.jmgm.2013.05.007

    28. [28]

      PINHEIRO M, MARTIN R L, RYCROFT C H, HARANCZYK M. High accuracy geometric analysis of crystalline porous materials[J]. CrystEngComm, 2013, 15(37): 7531-7538  doi: 10.1039/c3ce41057a

    29. [29]

      MARTIN R L, HARANCZYK M. Construction and characterization of structure models of crystalline porous polymers[J]. Cryst. Growth Des., 2014, 14: 2431-2440  doi: 10.1021/cg500158c

    30. [30]

      NETER J, WASSERMANC W, KUTNER M H. Applied linear regression models[M]. Illinois: Richard D. Irwin, Inc., 1983.

    31. [31]

      BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32  doi: 10.1023/A:1010933404324

    32. [32]

      YANG W Y, LIANG H, QIAO Z W. High-throughput screening of metal-organic frameworks for the separation of hydrogen sulfide and carbon dioxide from natural gas[J]. Acta Chim. Sinica, 2018, 76(10): 785-792

    33. [33]

      YANG W Y, LIANG H, PENG F, LIU Z L, LIU J, QIAO Z W. Computational screening of metal-organic framework membranes for the separation of 15 gas mixtures[J]. Nanomaterials, 2019, 9(3): 467  doi: 10.3390/nano9030467

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    3. [3]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    8. [8]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    12. [12]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    13. [13]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    14. [14]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    15. [15]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    16. [16]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    17. [17]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    18. [18]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

Metrics
  • PDF Downloads(9)
  • Abstract views(406)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return