Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves
- Corresponding author: Qiaohong LI, lqh2382@fjirsm.ac.cn Jian ZHANG, zhj@fjirsm.ac.cn
Citation:
Jiali CHEN, Guoxiang ZHAO, Yayu YAN, Wanting XIA, Qiaohong LI, Jian ZHANG. Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 155-164.
doi:
10.11862/CJIC.20240408
ZHANG M, LIU L, LI Q, GONG H, CHEN Y. Theoretical design of MOFs and PSA process for efficient separation of CF4/NF3[J]. Ind. Eng. Chem. Res., 2023, 62(18): 7103-7113
doi: 10.1021/acs.iecr.2c04592
ZHANG W X, LI Y H, WU Y, FU Y, CHEN S H, ZHANG Z H, HE S J, YAN T, MA H P. Fluorinated porous organic polymers for efficient recovery perfluorinated electronic specialty gas from exhaust gas of plasma etching[J]. Sep. Purif. Technol., 2022, 287: 120561
doi: 10.1016/j.seppur.2022.120561
FUNKE H H, GRISSOM B L, MCGREW C E, RAYNOR M W. Techniques for the measurement of trace moisture in high-purity electronic specialty gases[J]. Rev. Sci. Instrum., 2003, 74(9): 3909-3933
doi: 10.1063/1.1597939
WU Q, LUAN H, XIAO F S. Targeted synthesis of zeolites from calculated interaction between zeolite structure and organic template[J]. Natl. Sci. Rev., 2022, 9(9): nwac023
doi: 10.1093/nsr/nwac023
TONG X Q, LU H Y, HUANG P, YAN W F, YU J H, XU R R. Synthesis and characterization of a new three-dimensional open-framework aluminophosphate [C4H14N2][Al4P5O19OH] and investigation of the structure-directing effect[J]. Chinese. J. Inorg. Chem., 2013, 29(8): 1639-1644
doi: 10.3969/j.issn.1001-4861.2013.08.009
LIN Q F, GAO Z R, LIN C, ZHANG S, CHEN J, LI Z, LIU X, FAN W, LI J, CHEN X, CAMBLOR M A, CHEN F J. A stable aluminosilicate zeolite with intersecting three-dimensional extra-large pores[J]. Science, 2021, 374(6575): 1605-1608
doi: 10.1126/science.abk3258
MERCURY M, DENOYEL R, SIMON-MASSERON A, CARETTE M, ZEREGA Y, PATARIN J, SOULARD M, REYNARD C, JANULYTE A. Selective adsorption of 2, 3-DCDD and 1, 2, 3, 4-TCDD on *BEA, EMT, FAU and MFI-type zeolites as alternative adsorbents for on-line dioxin monitoring[J]. Adsorption, 2011, 17(4): 747-758
doi: 10.1007/s10450-011-9349-z
AZIZI B, VESSALLY E, AHMADI S, EBADI A G, AZAMAT J. Separation of CH4/N2 gas mixture using MFI zeolite nanosheet: Insights from molecular dynamics simulation[J]. Colloid Surf. A‒Physicochem. Eng. Asp., 2022, 641: 128527
doi: 10.1016/j.colsurfa.2022.128527
PECHAR T W, KIM S, VAUGHAN B, MARAND E, TSAPATSIS M, JEONG H K, CORNELIUS C J. Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations[J]. J. Membr. Sci., 2006, 277(1): 195-202
SCHWALBE-KODA D, KWON S, PARIS C, BELLO-JURADO E, JENSEN Z, OLIVETTI E, WILLHAMMAR T, CORMA A, ROMAN-LESHKOV Y, MOLINER M, GOMEZ-BOMBARELLI R. A priori control of zeolite phase competition and intergrowth with high-throughput simulations[J]. Science, 2021, 374(6565): 308-315
doi: 10.1126/science.abh3350
HU H Y, BAI Y K, YUAN Z H. Improved graph-based multitask learning model with sparse sharing for quantitative structure-property relationship prediction of drug molecules[J]. AICHE J., 2023, 69(2): e17968
doi: 10.1002/aic.17968
CHEN C H, TANAKA K, KOTERA M, FUNATSU K. Comparison and improvement of the predictability and interpretability with ensemble learning models in QSPR applications[J]. J. Cheminformatics, 2020, 12(1): 19
doi: 10.1186/s13321-020-0417-9
FERNANDEZ M, BOYD P G, DAFF T D, AGHAJI M Z, WOO T K. Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO2 capture[J]. J. Phys. Chem. Lett, 2014, 5(17): 3056-3060
doi: 10.1021/jz501331m
YUAN S, JIAO Z R, QUDDUS N A, KWON J S I, MASHUGA C V. Developing quantitative structure-property relationship models to predict the upper flammability limit using machine learning[J]. Ind. Eng. Chem. Res., 2019, 58(8): 3531-3537
doi: 10.1021/acs.iecr.8b05938
DAEYAERT F, YE F D, DEEM M W. Machine-learning approach to the design of OSDAs for zeolite beta[J]. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(9): 3413-3418
doi: 10.1073/pnas.1818763116
MA S C, SHANG C, WANG C M, LIU Z P. Thermodynamic rules for zeolite formation from machine learning based global optimization[J]. Chem. Sci., 2020, 11(37): 10113-10118
doi: 10.1039/D0SC03918G
LIN S R, WANG Y K, ZHAO Y H, PERICCHI L R, HERNANDEZ-MALDONADO A J, CHEN Z F. Machine-learning-assisted screening of pure-silica zeolites for effective removal of linear siloxanes and derivatives[J]. J. Mater. Chem. A, 2020, 8(6): 3228-3237
doi: 10.1039/C9TA11909D
ZHANG L F, LI J M, ZHANG P P, GAO Z, ZHAO Y Y, QIAO X H, CHEN C. PI4KIIα regulates insulin secretion and glucose homeostasis via a PKD-dependent pathway[J]. Biophysics Reports, 2018, 4(1): 25-38
doi: 10.1007/s41048-018-0049-z
KIM S Y, KIM S I, BAE Y S. Machine-learning-based prediction of methane adsorption isotherms at varied temperatures for experimental adsorbents[J]. J. Phys. Chem. C, 2020, 124(36): 19538-19547
doi: 10.1021/acs.jpcc.0c01757
LIANG H, JIANG K, YAN T A, CHEN G H. XGBoost: An optimal machine learning model with just structural features to discover MOF adsorbents of Xe/Kr[J]. ACS Omega, 20216(13): 9066-9076
doi: 10.1021/acsomega.1c00100
DUBBELDAM D, CALERO S, ELLIS D E, SNURR R Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials[J]. Mol. Simul., 2016, 42: 101-81
DUBBELDAM D, TORRES-KNOOP A, WALTON K S. On the inner workings of Monte Carlo codes[J]. Mol. Simul., 2013, 39: 1253-1292
doi: 10.1080/08927022.2013.819102
DUBBELDAM D, SNURR R Q. Recent developments in the molecular modeling of diffusion in nanoporous materials[J]. Mol. Simul., 2007, 33(4/5): 305-325
DUBBELDAM D, WALTON K S, VLUGT T J H, CALERO S. Design, parameterization, and implementation of atomic force fields for adsorption in nanoporous materials[J]. Adv. Theory Simul., 2019, 2(11): 1900135
doi: 10.1002/adts.201900135
WILLEMS T F, RYCROFT C H, KAZI M, MEZA J C, HARANCZYK M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous Mesoporous Mat., 2012, 149(1): 134-141
doi: 10.1016/j.micromeso.2011.08.020
MARTIN R L, SMIT B, HARANCZYK M. Addressing challenges of identifying geometrically diverse sets of crystalline porous materials[J]. J. Chem Inf. Model., 2012, 52(2): 308-318
doi: 10.1021/ci200386x
PINHEIRO M, MARTIN R L, RYCROFT C H, JONES A, IGLESIA E, HARANCZYK M. Characterization and comparison of pore landscapes in crystalline porous materials[J]. J. Mol. Graph., 2013, 44: 208-219
doi: 10.1016/j.jmgm.2013.05.007
PINHEIRO M, MARTIN R L, RYCROFT C H, HARANCZYK M. High accuracy geometric analysis of crystalline porous materials[J]. CrystEngComm, 2013, 15(37): 7531-7538
doi: 10.1039/c3ce41057a
MARTIN R L, HARANCZYK M. Construction and characterization of structure models of crystalline porous polymers[J]. Cryst. Growth Des., 2014, 14: 2431-2440
doi: 10.1021/cg500158c
NETER J, WASSERMANC W, KUTNER M H. Applied linear regression models[M]. Illinois: Richard D. Irwin, Inc., 1983.
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32
doi: 10.1023/A:1010933404324
YANG W Y, LIANG H, QIAO Z W. High-throughput screening of metal-organic frameworks for the separation of hydrogen sulfide and carbon dioxide from natural gas[J]. Acta Chim. Sinica, 2018, 76(10): 785-792
YANG W Y, LIANG H, PENG F, LIU Z L, LIU J, QIAO Z W. Computational screening of metal-organic framework membranes for the separation of 15 gas mixtures[J]. Nanomaterials, 2019, 9(3): 467
doi: 10.3390/nano9030467
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Guangming Yang , Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
Jinkang Jin , Yidian Sheng , Ping Lu , Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
r > 0: positive correlation, r=0: no correlation, r < 0: negative correlation.
The numeric value of the horizontal ordinate represents the position of the data points in the space after the dimensionality reduction; The dots in the diagram represent different zeolite samples, and the colors are encoded based on the results of the clustering algorithm.