Citation: Chen LU, Qinlong HONG, Haixia ZHANG, Jian ZHANG. Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407 shu

Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials

Figures(4)

  • Two examples of copper-iodine cluster-based boron imidazolate framework (BIFs) were obtained using cuprous iodide, pre-synthesized boron imidazolate ligands, and quaternary ammonium salts. Their structures and properties were characterized. X-ray single crystal diffraction results show that [N(C4H9)4]{Cu6I6[BH(im)3]Cu[BH(im)3]}·0.5CH3OH (BIF-155, im=imidazolate) is a (3, 4)-connected two-dimensional layer network formed by alternately connecting four-connected Cu6I6 clusters, single core Cu atoms and triple-connected boron imidazolate ligands BH(im)3-. [N(C4H9)4]{Cu3I3 [BH(im)3]} (BIF-156) is a 3-connected two-dimensional layer network with fes topology obtained by connecting Cu3I3 clusters and BH(im)3- boronazole ligands. The corresponding crystals of the two compounds had good crystallinity. Under ultraviolet lamp illumination, the two showed different fluorescence properties, that is, BIF-155 emited red light and BIF-156 emited yellow light.
  • 加载中
    1. [1]

      ZHAO X, BU X H, WU T, ZHENG S T, WANG L, FENG P Y. Selective anion exchange with nanogated isoreticular positive metal-organic frameworks[J]. Nat. Commun., 2013, 4: 2344  doi: 10.1038/ncomms3344

    2. [2]

      LI H L, EDDAOUDI M, O′KEEFFE M, YAGHI O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402: 276-279  doi: 10.1038/46248

    3. [3]

      CAVKA J H, JAKOBSEN S, OLSBYE U, GUILLOU N, LAMBERTI C, BORDIGA S, LILLERUD K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J. Am. Chem. Soc., 2008, 130(42): 13850-13851  doi: 10.1021/ja8057953

    4. [4]

      LIU C H, FANG W H, ZHANG J. Synthetic strategies, diverse structures and properties of copper halide cluster-based materials[J]. Chinese J. Struct. Chem., 2020, 12: 2091-2101

    5. [5]

      WU Y, XIE M, JIN J K, ZHANG Z Y, HAN H, TIAN Y P, XIAO Y Q, NING G H, LI D, JIANG X F. A copper iodide cluster-based metal-organic polyhedra for photocatalytic click chemistry[J]. Small Struct., 2022, 3(5): 2100155  doi: 10.1002/sstr.202100155

    6. [6]

      PENG Q C, SI Y B, YUAN J W, YANG Q, GAO Z Y, LIU Y Y, WANG Z Y, LI K, ZANG S Q, TANG B Z. High performance dynamic X-ray flexible imaging realized using a copper iodide cluster-based MOF microcrystal scintillator[J]. Angew. Chem. ‒Int. Edit., 2023, 62(40): e202308194  doi: 10.1002/anie.202308194

    7. [7]

      KANG Y, WANG F, ZHANG J, BU X H. Luminescent MTN-type cluster-organic framework with 2.6 nm cages[J]. J. Am. Chem. Soc., 2012, 134(43): 17881-17884  doi: 10.1021/ja308801n

    8. [8]

      ZHANG J, WU T, ZHOU C, CHEN S M, FENG P Y, BU X H. Zeolitic boron imidazolate frameworks[J]. Angew. Chem. ‒Int. Edit., 2009, 8(14): 2542-2545

    9. [9]

      ZHENG S T, WU T, ZHANG J, MINA C, RUBEN A N, FENG P Y, BU X H. Porous metal carboxylate boron imidazolate frameworks (MC-BIFs)[J]. Angew. Chem. ‒Int. Edit., 2010, 49(31): 5362-5366  doi: 10.1002/anie.201001675

    10. [10]

      ZHANG H X, LIU M, WEN T, ZHANG J. Synthetic design of functional boron imidazolate frameworks[J]. Coord. Chem. Rev., 2016, 307(2): 255-266

    11. [11]

      ZHANG H X, WANG F, YANG H, TAN Y X, ZHANG J, BU X H. Interrupted zeolite LTA and ATN-type boron imidazolate frameworks[J]. J. Am. Chem. Soc., 2011, 133(31): 11884-11887  doi: 10.1021/ja2040927

    12. [12]

      WANG F, SHU Y B, BU X H, ZHANG J. Zeolitic boron imidazolate frameworks with 4-connected octahedral metal centers[J]. Chem. ‒Eur. J., 2012, 18(38): 11876-11879  doi: 10.1002/chem.201202377

    13. [13]

      ZHANG H X, FU H R, LI H Y, ZHANG J, BU X H. Porous ctn-type boron imidazolate framework for gas storage and separation[J]. Chem. Eur. J., 2013, 19(35): 11527-11530  doi: 10.1002/chem.201301212

    14. [14]

      ZHANG H X, LU C, ZHANG J. Recent applications of multifunctional boron imidazolate framework materials[J]. Acc. Mater. Res., 2023, 4(11): 995-1007  doi: 10.1021/accountsmr.3c00168

    15. [15]

      ZHANG H X, LIU M, XU G L, LIU L Y, ZHANG J. Selectivity of CO2 via pore space partition in zeolitic boron imidazolate frameworks[J]. Chem. Commun., 2016, 52(17): 3552-3555  doi: 10.1039/C6CC00185H

    16. [16]

      YANG E, WANG L, ZHANG J. A luminescent neutral cadmium􀃭-boron􀃮-imidazolate framework with sql net[J]. CrystEngComm, 2014, 16: 2889-2891  doi: 10.1039/c3ce42604a

    17. [17]

      WEN T, ZHENG Y, XU C C, ZHANG J, MIETEK J, QIAO S Z. A boron imidazolate framework with mechanochromic and electrocatalytic properties[J]. Mater. Horiz., 2018, 5(6): 1151-1155  doi: 10.1039/C8MH00859K

    18. [18]

      ZHANG H X, HONG Q L, LI J, WANG F, HUANG X S, CHEN S M, TU W G, YU D S, XU R, ZHOU T H, ZHANG J. Isolated square-planar copper center in boron imidazolate nanocages for photocatalytic reduction of CO2 to CO[J]. Angew. Chem. ‒Int. Edit., 2019, 58(34): 11752-11756  doi: 10.1002/anie.201905869

    19. [19]

      SHAO P, ZHOU W, HONG Q L, YI L C, ZHENG L R, WANG W J, ZHANG H X, ZHANG W B, ZHANG J. Synthesis of a boron-imidazolate framework nanosheet with dimer copper units for CO2 electroreduction to ethylene[J]. Angew. Chem. ‒Int. Edit., 2021, 60(30): 16687-16692  doi: 10.1002/anie.202106004

    20. [20]

      WEN T, ZHANG D X, ZHANG H X, ZHANG H B, ZHANG J, LI D S. Redox-active Cu(Ⅰ) boron imidazolate framework for mechanochromic and catalytic applications[J]. Chem. Commun., 2014, 50: 8754-8756  doi: 10.1039/C4CC02057J

    21. [21]

      WANG Z R, CHEN J Q, LI Q H, ZHANG H X, ZHANG J. Multicolor fluorescent lead-MOFs for white-light-emitting and anticounterfeiting applications[J]. Adv. Opt. Mater., 2023, 11(8): 2202743  doi: 10.1002/adom.202202743

  • 加载中
    1. [1]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    7. [7]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    8. [8]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    9. [9]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    10. [10]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    11. [11]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    12. [12]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    15. [15]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    16. [16]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    19. [19]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(2)
  • Abstract views(331)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return