Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing
- Corresponding author: Lichao SUN, lichaosun@whu.edu.cn Qingfeng ZHANG, zhangqf@whu.edu.cn
Citation:
Chuang LIU, Lichao SUN, Qingfeng ZHANG. Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 59-78.
doi:
10.11862/CJIC.20240406
BENTLEY R. From optical-activity in quartz to chiral drugs-molecular handedness in biology and medicine[J]. Perspect. Biol. Med, 1995,38(2):188-229. doi: 10.1353/pbm.1995.0069
MEIERHENRICH U J. Amino acids and the asymmetry of life[J]. Eur. Rev., 2013,21(2):190-199. doi: 10.1017/S106279871200035X
HAZEN R M, SHOLL D S. Chiral selection on inorganic crystalline surfaces[J]. Nat. Mater., 2003,2(6):367-374. doi: 10.1038/nmat879
GOVOROV A O, FAN Z Y, HERNANDEZ P, SLOCIK J M, NAIK R R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano Lett., 2010,10(4):1374-1382. doi: 10.1021/nl100010v
ZHANG Q F, HERNANDEZ T, SMITH K W, JEBELI S A H, DAI A X, WARNING L, BAIYASI R, MCCARTHY L A, GUO H, CHEN D H, DIONNE J A, LANDES C F, LINK S. Unraveling the origin of chirality from plasmonic nanoparticle protein complexes[J]. Science, 2019,365(6460)1475.
FAN Z Y, GOVOROV A O. Chiral nanocrystals: Plasmonic spectra and circular dichroism[J]. Nano Lett., 2012,12(6):3283-3289. doi: 10.1021/nl3013715
AMDURSKY N, STEVENS M M. Circular dichroism of amino acids: Following the structural formation of phenylalanine[J]. ChemPhysChem, 2015,16(13):2768-2774. doi: 10.1002/cphc.201500260
YU Y, YANG G, ZHANG S, LIU M, XU S, WANG C, LI M, ZHANG S X A. Wide-range and highly sensitive chiral sensing by discrete 2D chirality transfer on confined surfaces of Au(Ⅰ)-thiolate nanosheets[J]. ACS Nano, 2021,16(1):148-159.
CHENG Q Q, YANG J, SUN L C, LIU C, YANG G Z, TAO Y L, SUN X H, ZHANG B B, XU H X, ZHANG Q F. Tuning the plexcitonic optical chirality using discrete structurally chiral plasmonic nanoparticles[J]. Nano Lett., 2023,23(23):11376-11384. doi: 10.1021/acs.nanolett.3c04265
SUN L C, TAO Y L, YANG G Z, LIU C, SUN X H, ZHANG Q F. Geometric control and optical properties of intrinsically chiral plasmonic nanomaterials[J]. Adv. Mater., 20232306297. doi: 10.1002/adma.202306297
YANG G, SUN L, ZHANG Q. Multicomponent chiral plasmonic hybrid nanomaterials: Recent advances in synthesis and applications[J]. Nanoscale Adv., 2024,6(2):318-336. doi: 10.1039/D3NA00808H
WANG C, LU D D, SUN L C, ZHANG Q F. Rational design of plasmonic nanoparticle molecule complexes for chirality sensing[J]. Chin. J. Chem., 2024,42(8):903-919. doi: 10.1002/cjoc.202300602
LIU P Z, BATTIE Y, OKAZAKI Y, RYU N, POUGET E, NLATE S, SAGAWA T, ODA R. Chiral optical scattering from helical and twisted silica nanoribbons[J]. Chem. Commun., 2021,57(90):12024-12027. doi: 10.1039/D1CC04200A
LV X L, WU F X, TIAN Y, ZUO P, LI F H, XU G B, NIU W X. Engineering the intrinsic chirality of plasmonic Au@Pd metamaterials for highly sensitive chiroplasmonic hydrogen sensing[J]. Adv. Mater., 2023,35(51)2305429. doi: 10.1002/adma.202305429
HAN B, SUN C, ZHOU Y L, GAO X Q. Geometry-modulated magnetoplasmonic circular dichroism of gold nanobipyramids[J]. J. Phys. Chem. C, 2022,126(7):3600-3605. doi: 10.1021/acs.jpcc.1c10808
WANG Y W, TAY A. Advances in enantiomer-dependent nanotherapeutics[J]. ACS Nano, 2023,17(11):9850-9869. doi: 10.1021/acsnano.3c02798
MA W, XU L G, DE MOURA A F, WU X L, KUANG H, XU C L, KOTOV N A. Chiral inorganic nanostructures[J]. Chem. Rev., 2017,117(12):8041-8093. doi: 10.1021/acs.chemrev.6b00755
WANG P P, YU S J, GOVOROV A O, OUYANG M. Cooperative expression of atomic chirality in inorganic nanostructures[J]. Nat. Commun., 2017,8(4)14312.
GAO Q, TAN L L, WEN Z H, FAN D D, HUI J F, WANG P P. Chiral inorganic nanomaterials: Harnessing chirality-dependent interactions with living entities for biomedical applications[J]. Nano Res., 2023,16(8):11107-11124. doi: 10.1007/s12274-023-5831-7
FU W L, TAN L L, WANG P P. Chiral inorganic nanomaterials for photo (electro) catalytic conversion[J]. ACS Nano, 2023,17(17):16326-16347. doi: 10.1021/acsnano.3c04337
ABBAS S U, LI J J, LIU X, SIDDIQUE A, SHI Y X, HOU M, YANG K, NOSHEEN F, CUI X Y, ZHENG G C, ZHANG Z C. Chiral metal nanostructures: Synthesis, properties and applications[J]. Rare Met., 2023,42(8):2489-2515. doi: 10.1007/s12598-023-02274-4
HAO C L, XU C L, KUANG H. Chiral probes for biosensing[J]. Chem. Commun., 2023,59(87):12959-12971. doi: 10.1039/D3CC03660J
ZHANG M J, WANG Y X, ZHOU Y J, YUAN H G, GUO Q, ZHUANG T T. Amplifying inorganic chirality using liquid crystals[J]. Nanoscale, 2022,14(3):592-601. doi: 10.1039/D1NR06036HyType=xml&restype=unixref&xml=|Polymer Degradation and Stability||158||102|2018|||
FENG Z Y, HE C L, XIE Y F, ZHANG C T, LI J H, LIU D D, JIANG Z F, CHEN X, ZOU G. Chiral biosensing at both interband transition and plasmonic extinction regions using twisted stacked nanowire arrays[J]. Nanoscale, 2022,14(29):10524-10530. doi: 10.1039/D2NR03357G
ZHENG G C, HE J J, KUMAR V, WANG S L, PASTORIZA-SANTOS I, PÉREZ-JUSTE J, LIZ-MARZÁN L M, WONG K Y. Discrete metal nanoparticles with plasmonic chirality[J]. Chem. Soc. Rev., 2021,50(6):3738-3754. doi: 10.1039/C9CS00765B
KNEER L M, ROLLER E M, BESTEIRO L V, SCHREIBER R, GOVOROV A O, LIEDL T. Circular dichroism of chiral molecules in DNA assembled plasmonic hotspots[J]. ACS Nano, 2018,12(9):9110-9115. doi: 10.1021/acsnano.8b03146
LIU W L, HAN H, WANG J Q. Recent advances in the 3D chiral plasmonic nanomaterials[J]. Small, 2023,20(8)2305725.
KIM Y, KIM H, YANG Y, BADLOE T, JEON N, RHO J. Three dimensional artificial chirality towards lowcost and ultra-sensitive enantioselective sensing[J]. Nanoscale, 2022,14(10):3720-3730. doi: 10.1039/D1NR05805C
LEE H E, KIM R M, AHN H Y, LEE Y Y, BYUN G H, IM S W, MUN J, RHO J, NAM K T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles[J]. Nat. Commun., 2020,11(1)263. doi: 10.1038/s41467-019-14117-x
SUN X H, SUN L C, LIN L F, GUO S Y, YANG Y M, ZHANG B B, LIU C, TAO Y L, ZHANG Q F. Tuning the geometry and optical chirality of pentatwinned Au nanoparticles with 5-fold rotational symmetry[J]. ACS Nano, 2024,18(13):9543-9556. doi: 10.1021/acsnano.3c12637
YANG L, MA Y C, LIN C, QU G P, BAI X P, HUANG Z F. Nanohelixinduced optical activity of liquid metal nanoparticles[J]. Small, 2022,18(17)2200620. doi: 10.1002/smll.202200620
GANSEL J K, THIEL M, RILL M S, DECKER M, BADE K, SAILE V, VON FREYMANN G, LINDEN S, WEGENER M. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009,325(5947):1513-1515. doi: 10.1126/science.1177031
ESPOSITO M, TASCO V, CUSCUNà M, TODISCO F, BENEDETTI A, TARANTINI I, DE GIORGI M, SANVITTO D, PASSASEO A. Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies[J]. ACS Photonics, 2015,2(1):105-114. doi: 10.1021/ph500318p
JI C Y, CHEN S S, HAN Y, LIU X, LIU J, LI J F, YAO Y G. Artificial propeller chirality and counterintuitive reversal of circular dichroism in twisted meta molecules[J]. Nano Lett., 2021,21(16):6828-6834. doi: 10.1021/acs.nanolett.1c01802
LU J, XUE Y, BERNARDINO K, ZHANG N N, GOMES W R, RAMESAR N S, LIU S H, HU Z, SUN T M, DE MOURA A F, KOTOV N A, LIU K. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long range order[J]. Science, 2021,371(6536)1368. doi: 10.1126/science.abd8576
JUNG S H, JEON J, KIM H, JAWORSKI J, JUNG J H. Chiral arrangement of achiral Au nanoparticles by supramolecular assembly of helical nanofiber templates[J]. J. Am. Chem. Soc., 2014,136(17):6446-6452. doi: 10.1021/ja5018199
ZHANG N N, SHEN X X, LIU K, NIE Z H, KUMACHEVA E. Polymer-tethered nanoparticles: From surface engineering to directional self-assembly[J]. Acc. Chem. Res., 2022,55(11):1503-1513. doi: 10.1021/acs.accounts.2c00066
LU J, CHANG Y X, ZHANG N N, WEI Y, LI A J, TAI J, XUE Y, WANG Z Y, YANG Y, ZHAO L, LU Z Y, LIU K. Chiral plasmonic nanochains the self-assembly of gold nanorods and helical glutathione oligomers facilitated by cetyltrimethylammonium bromide micelles[J]. ACS Nano, 2017,11(4):3463-3475. doi: 10.1021/acsnano.6b07697
GONG Y J, CAO Z Z, ZHANG Z Z, LIU R J, ZHANG F H, WEI J J, YANG Z J. Chirality inversion in self assembled nanocomposites directed by curvature-mediated interactions[J]. Angew. Chem.-Int. Edit., 2022,61(10)e202117406. doi: 10.1002/anie.202117406
PAN J H, WANG X Y, ZHANG J J, ZHANG Q, WANG Q B, ZHOU C. Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles[J]. Nano Res., 2022,15(10):9447-9453. doi: 10.1007/s12274-022-4520-2
WANG S, ZHENG L H, CHEN W J, JI L K, ZHANG L, LU W S, FANG Z Y, GUO F C, QI L M, LIU M H. Helically grooved gold nanoarrows: Controlled fabrication, superhelix, and transcribed chiroptical switching[J]. CCS Chem., 2021,3(9):2473-2484. doi: 10.31635/ccschem.020.202000472
KUZYK A, SCHREIBER R, FAN Z Y, PARDATSCHER G, ROLLER E M, HÖGELE A, SIMMEL F C, GOVOROV A O, LIEDL T. DNAbased self-assembly of chiral plasmonic nanostructures with tailored optical response[J]. Nature, 2012,483(7389):311-314. doi: 10.1038/nature10889
LEE H E, AHN H Y, MUN J, LEE Y Y, KIM M, CHO N H, CHANG K, KIM W S, RHO J, NAM K T. Amino-acidand peptide-directed synthesis of chiral plasmonic gold nanoparticles[J]. Nature, 2018,556(7701)360. doi: 10.1038/s41586-018-0034-1
SUN X H, YANG J, SUN L C, YANG G Z, LIU C, TAO Y L, CHENG Q Q, WANG C, XU H X, ZHANG Q F. Tunable reversal of circular dichroism in the seed-mediated growth of bichiral plasmonic nanoparticles[J]. ACS Nano, 2022,16(11):19174-19186. doi: 10.1021/acsnano.2c08381
TAO Y L, SUN L C, LIU C, YANG G Z, SUN X H, ZHANG Q F. Siteselective chiral growth of anisotropic Au triangular nanoplates for tuning the optical chirality[J]. Small, 2023,19(30)2301218. doi: 10.1002/smll.202301218
YANG G Z, SUN L C, TAO Y L, CHENG Q Q, SUN X H, LIU C, ZHANG Q F. Chiral AuCu heterostructures with site specific geometric control and tailored plasmonic chirality[J]. Sci. China Chem., 2023,66(11):3280-3289. doi: 10.1007/s11426-023-1685-3
WAN J L, SUN L C, SUN X H, LIU C, YANG G Z, ZHANG B B, TAO Y L, YANG Y H, ZHANG Q F. Cu-dominated chirality transfer from chiral molecules to concave chiral Au nanoparticles[J]. J. Am. Chem. Soc., 2024,146(15):10640-10654. doi: 10.1021/jacs.4c00322
CHEN J Q, GAO X S, ZHENG Q, LIU J B, MENG D J, LI H Y, CAI R, FAN H Z, JI Y L, WU X C. Bottom-up synthesis of helical plasmonic nanorods and their application in generating circularly polarized luminescence[J]. ACS Nano, 2021,15(9):15114-15122. doi: 10.1021/acsnano.1c05489
ZHANG L L, CHEN Y L, ZHENG J P, LEWIS G R, XIA X Y, RINGE E, ZHANG W, WANG J F. Chiral gold nanorods with fivefold rotational symmetry and orientation-dependent chiroptical properties of their monomers and dimers[J]. Angew. Chem.-Int. Edit., 2023,62(52)e202312615. doi: 10.1002/anie.202312615
KIM H, IM S W, KIM R M, CHO N H, LEE H E, AHN H Y, NAM K T. Chirality control of inorganic materials and metals by peptides or amino acids[J]. Mater. Adv., 2020,1(4):512-524. doi: 10.1039/D0MA00125B
ZHANG N N, SHEN Z L, GAO S Y, PENG F, CAO Z J, WANG Y, WANG Z Z, ZHANG W, YANG Y, LIU K, SUN T M. Synthesis and plasmonic chiroptical properties of double helical gold nanorod enantiomers[J]. Adv. Opt. Mater., 2023,11(18)2203119. doi: 10.1002/adom.202203119
ZHENG Y L, LI X Y, HUANG L P, LI X X, YANG S H, WANG Q, DU J X, WANG Y W, DING W Q, GAO B, CHEN H Y. Homochiral nanopropeller via chiral active surface growth[J]. J. Am. Chem. Soc., 2023,146(1):410-418.
ZHENG Y L, WANG Q, SUN Y W, HUANG J, JI J, WANG Z J, WANG Y W, CHEN H Y. Chiral active surface growth via glutathione control[J]. Adv. Opt. Mater., 2023,11(18)2202858. doi: 10.1002/adom.202202858
ZHANG N N, SUN H R, XUE Y, PENG F, LIU K. Tuning the chiral morphology of gold nanoparticles with oligomeric gold glutathione complexes[J]. J. Phys. Chem. C, 2021,125(19):10708-10715. doi: 10.1021/acs.jpcc.1c01641
WEN X, WANG S, LIU R L, DUAN R, HU S, JIAO T F, ZHANG L, LIU M H. Selenocystine and photo irradiation directed growth of helically grooved gold nanoarrows[J]. Small, 2021,18(5)2104301.
VAN GORDON K, BAÚLDE S, MYCHINKO M, HEYVAERT W, OBELLEIRO-LIZ M, CRIADO A, BALS S, LIZ-MARZÁN L M, MOSQUERA J. Tuning the growth of chiral gold nanoparticles through rational design of a chiral molecular inducer[J]. Nano Lett., 2023,23(21):9880-9886. doi: 10.1021/acs.nanolett.3c02800
GONZÁLEZ-RUBIO G, MOSQUERA J, KUMAR V, PEDRAZO-TARDAJOS A, LLOMBART P, SOLÍS D M, LOBATO I, NOYA E G, GUERRERO-MARTÍNEZ A, TABOADA J M, OBELLEIRO F, MACDOWELL L G, BALS S, LIZ-MARZÁN L M. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals[J]. Science, 2020,368(6498):1472-1477. doi: 10.1126/science.aba0980
ZHUO X L, MYCHINKO M, HEYVAERT W, LARIOS D, OBELLEIRO-LIZ M, TABOADA J M, BALS S, LIZ-MARZÁN L M. Morphological and optical transitions during micelle seeded chiral growth on gold nanorods[J]. ACS Nano, 2022,16(11):19281-19292. doi: 10.1021/acsnano.2c08668
SPAETH P, ADHIKARI S, HEYVAERT W, ZHUO X L, GARCÍA I, LIZ-MARZÁN L M, BALS S, ORRIT M, ALBRECHT W. Photothermal circular dichroism measurements of single chiral gold nanoparticles correlated with electron tomography[J]. ACS Photonics, 2022,9(12):3995-4004. doi: 10.1021/acsphotonics.2c01457
HEYVAERT W, PEDRAZO-TARDAJOS A, KADU A, CLAES N, GONZÁLEZ-RUBIO G, LIZ-MARZÁN L M, ALBRECHT W, BALS S. Quantification of the helical morphology of chiral gold nanorods[J]. ACS Mater. Lett., 2022,4(4):642-649. doi: 10.1021/acsmaterialslett.2c00055
LI S, VEKSLER M, XU Z J, XU L G, XU C L, KOTOV N A. Selfassembly of earth-abundant supraparticles with chiral interstices for enantioselective photocatalysis[J]. ACS Energy Lett., 2021,6(4):1405-1412.
YUE X, LI S, LIN H, XU C, XU L. Heterogeneous agxcdys agcd nanoparticles with chiral bias for enhanced photocatalytic efficiency[J]. Adv. Funct. Mater., 2022,33(4)2210046.
TIAN Y, WU F X, LV X L, LUAN X X, LI F H, XU G B, NIU W X. Enantioselective surface enhanced Raman scattering by chiral Au nanocrystals with finely modulated chiral fields and internal standards[J]. Adv. Mater., 2024,36(35)2403373. doi: 10.1002/adma.202403373
NIU X H, YANG X, LI H X, LIU J, LIU Z Y, WANG K J. Application of chiral materials in electrochemical sensors[J]. Microchim. Acta, 2020,187(12)676. doi: 10.1007/s00604-020-04646-4
WANG S, SHI Y, HOU Y, SHAN S L, WANG H, LU J X. Electrocatalytic asymmetric reduction of ethyl benzoylformate on bimetallic Ag-Cu cathodes[J]. J. Appl. Electrochem., 2020,50(9):973-978. doi: 10.1007/s10800-020-01449-6
BUTCHA S, ASSAVAPANUMAT S, ITTISANRONNACHAI S, LAPEYRE V, WATTANAKIT C, KUHN A. Nanoengineered chiral Pt Ir alloys for high performance enantioselective electrosynthesis[J]. Nat. Commun., 2021,12(1)1314. doi: 10.1038/s41467-021-21603-8
HUANG L, LIN Q, LI Y X, ZHENG G C, CHEN Y T. Study of the enantioselectivity and recognition mechanism of sulfhydrylcompound functionalized gold nanochannel membranes[J]. Anal. Bioanal. Chem., 2019,411(2):471-478. doi: 10.1007/s00216-018-1464-1
ZHAO Q Q, ZHU W K, CAI W R, LI J Y, WU D T, KONG Y. TiO nanotubes decorated with CdSe quantum dots: A bifunctional electrochemiluminescent platform for chiral discrimination and chiral sensing[J]. Anal. Chem., 2022,94(26):9399-9406. doi: 10.1021/acs.analchem.2c01383
LIN H, MITOMO H, YONAMINE Y, GUO Z, IJIRO K. Coregapshell nanoparticles@polyaniline with tunable plasmonic chiroptical activities by pH and electric potential dual modulation[J]. Chem. Mater., 2022,34(9):4062-4072. doi: 10.1021/acs.chemmater.2c00313
CAI J R, ZHANG W, XU L G, HAO C L, MA W, SUN M Z, WU X L, QIN X, COLOMBARI F M, DE MOURA A F, XU J H, SILVA M C, CARNEIRO-NETO E B, GOMES W R, VALLÉE R A L, PEREIRA E C, LIU X G, XU C L, KLAJN R, KOTOV N A, KUANG H. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles[J]. Nat. Nanotechnol., 2022,17(4)408. doi: 10.1038/s41565-022-01079-3
SONG Y X, LU S Y, HAI J, LIANG K, SUN S A, MENG G P, WANG B D. Nitrogen-doped chiral CuO/CoO nanofibers: An enhanced electrochemiluminescence sensing strategy for detection of 3, 4-dihydroxy-phenylalanine enantiomers[J]. Anal. Chem., 2021,93(33):11470-11478. doi: 10.1021/acs.analchem.1c01497
SHUKLA N, GELLMAN A J. Chiral metal surfaces for enantioselective processes[J]. Nat. Mater., 2020,19(9):939-945. doi: 10.1038/s41563-020-0734-4
GREBER T, SLJIVANCANIN Z, SCHILLINGER R, WIDER J, HAMMER B. Chiral recognition of organic molecules by atomic kinks on surfaces[J]. Phys. Rev. Lett., 2006,96(5)056103. doi: 10.1103/PhysRevLett.96.056103
FANG Y X, LIU X, LIU Z P, HAN L, AI J, ZHAO G, TERASAKI O, CUI C H, YANG J Z, LIU C Y, ZHOU Z Y, CHEN L W, CHE S A. Synthesis of amino acids by electrocatalytic reduction of Co on chiral Cu surfaces[J]. Chem, 2023,9(2):460-471. doi: 10.1016/j.chempr.2022.10.017
LI F H, WU F X, LUAN X X, YUAN Y L, ZHANG L, XU G B, NIU W X. Highly enantioselective electrochemical sensing based on helicoid Au nanoparticles with intrinsic chirality[J]. Sensors Actuator B-Chemical, 2022,362131757. doi: 10.1016/j.snb.2022.131757
LI R Y, WANG X B, PENG Y F, XU P W, ZHU H Y, LI Z J, SUN X L. Synthesis of gold nanocrystals with chiral morphology, chiral ligand and more exposed high-index facets as electrocatalyst for the oxidation of glucose enantiomers with high enantioselectivity and catalytic activity[J]. Catal. Sci. Technol., 2022,12(7):2097-2105. doi: 10.1039/D1CY01764K
ZHOU Y L, ZOU Y, JIANG J. Synthesis of chorogi-like Au nanoparticles with chiral plasmonic response and enantioselective electrocatalytic activity[J]. Mater. Lett., 2023,331133432. doi: 10.1016/j.matlet.2022.133432
WU F X, LI F H, TIAN Y, LV X L, LUAN X X, XU G B, NIU W X. Surface topographical engineering of chiral Au nanocrystals with chiral hot spots for plasmon enhanced chiral discrimination[J]. Nano Lett., 2023,23(17):8233-8240. doi: 10.1021/acs.nanolett.3c02385
WU F X, LI F H, LV X L, ZHANG Q X, XU G B, NIU W X. Heteroepitaxial growth of Au@Pd core-shell nanocrystals with intrinsic chiral surfaces for enantiomeric recognition[J]. Rare Met., 2023,43(1):225-235.
WU F X, TIAN Y, LUAN X X, LV X L, LI F H, XU G B, NIU W X. Synthesis of chiral Au nanocrystals with precise homochiral facets for enantioselective surface chemistry[J]. Nano Lett., 2022,22(7):2915-2922. doi: 10.1021/acs.nanolett.2c00094
CHOI S, LIU C, SEO D, IM S W, KIM R M, JO J, KIM J W, PARK G S, KIM M, BRINCK T, NAM K T. Kink-controlled gold nanoparticles for electrochemical glucose oxidation[J]. Nano Lett., 2024,24(15):4528-4536. doi: 10.1021/acs.nanolett.4c00413
GAO L Z, ZHUANG J, NIE L, ZHANG J B, ZHANG Y, GU N, WANG T H, FENG J, YANG D L, PERRETT S, YAN X. Intrinsic peroxidase like activity of ferromagnetic nanoparticles[J]. Nat. Nanotechnol., 2007,2(9):577-583. doi: 10.1038/nnano.2007.260
GAO L Z, WEI H, DONG S J, YAN X Y. Nanozymes[J]. Adv. Mater., 2024,36(10)2305249. doi: 10.1002/adma.202305249
CHEN J X, MA Q, LI M H, CHAO D Y, HUANG L, WU W W, FANG Y X, DONG S J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes[J]. Nat. Commun., 2021,12(1)3375. doi: 10.1038/s41467-021-23737-1
SANG X Q, XIA S Y, CHENG L, WU F X, TIAN Y, GUO C X, XU G B, YUAN Y L, NIU W X. Deciphering the mechanisms of photoenhanced catalytic activities in plasmonic Pd-Au heteromeric nanozymes for colorimetric analysis[J]. Small, 2023,20(3)2305369.
WEI H, WANG E K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes[J]. Chem. Soc. Rev., 2013,42(14):6060-6093. doi: 10.1039/c3cs35486e
WANG Q Q, WEI H, ZHANG Z Q, WANG E K, DONG S J. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay[J]. TrAC Trend. Anal. Chem., 2018,105:218-224. doi: 10.1016/j.trac.2018.05.012
WU J J X, WANG X Y, WANG Q, LOU Z P, LI S R, ZHU Y Y, QIN L, WEI H. Nanomaterials with enzyme like characteristics (nanozymes): Next generation artificial enzymes(Ⅱ)[J]. Chem. Soc. Rev., 2019,48(4):1004-1076. doi: 10.1039/C8CS00457A
LIU C, ZHANG M, GENG H Q, ZHANG P, ZHENG Z, ZHOU Y L, HE W W. NIR enhanced peroxidase-like activity of Au@CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing[J]. Appl. Catal. B-Environ., 2021,295120317. doi: 10.1016/j.apcatb.2021.120317
LIU C, YAN Y Y, ZHANG X W, MAO Y Y, REN X Q, HU C Y, HE W W, YIN J J. Regulating the proand anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe and protection of pigments[J]. Nanoscale, 2020,12(5):3068-3075. doi: 10.1039/C9NR10135G
LIU W L, ZHANG Y H, WEI G, ZHANG M X, LI T, LIU Q Y, ZHOU Z J, DU Y, WEI H. Integrated cascade nanozymes with antisenescence activities for atherosclerosis therapy[J]. Angew. Chem.-Int. Edit., 2023,62(33)e202304465. doi: 10.1002/anie.202304465
CHENG P, WANG H, SHI X H. The effect of phenylalanine ligands on the chiral-selective oxidation of glucose on Au (111)[J]. Nanoscale, 2020,12(5):3050-3057. doi: 10.1039/C9NR09506C
SUN Y H, ZHAO C Q, GAO N, REN J S, QU X G. Stereoselective nanozyme based on ceria nanoparticles engineered with amino acids[J]. Chem.-Eur. J., 2017,23(72):18146-18150. doi: 10.1002/chem.201704579
ZHOU Y, WEI Y, REN J S, QU X G. A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity[J]. Mater. Horiz., 2020,7(12):3291-3297. doi: 10.1039/D0MH01535K
ZHOU Y, WEI W L, CUI F C, YAN Z Q, SUN Y H, REN J S, QU X G. Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells[J]. Chem. Sci., 2020,11(41):11344-11350. doi: 10.1039/D0SC03082A
ZHOU Y, SUN H J, XU H C, MATYSIAK S, REN J S, QU X G. Mesoporous encapsulated chiral nanogold for use in enantioselective reactions[J]. Angew. Chem.-Int. Edit., 2018,57(51):16791-16795. doi: 10.1002/anie.201811118
ZHAN P F, WANG Z G, LI N, DING B Q. Engineering gold nanoparticles with DNA ligands for selective catalytic oxidation of chiral substrates[J]. ACS Catal., 2015,5(3):1489-1498. doi: 10.1021/cs5015805
SHA M, RAO L, XU W Q, QIN Y, SU R A, WU Y, FANG Q, WANG H J, CUI X W, ZHENG L R, GU W L, ZHU C Z. Amino-ligand-coor-dinated dicopper active sites enable catechol oxidase like activity for chiral recognition and catalysis[J]. Nano Lett., 2023,23(2)701709.
FANG Y X, LIU X, AI J, ZHAO G, CHEN L W, CHE S N, HAN L. Enantiospecific affinities of chiral Cu films for both D-ribose and L-amino acids[J]. Chem. Mater., 2023,35(6):2402-2407. doi: 10.1021/acs.chemmater.2c03534
RAO M, FAN C Y, JI J C, LIANG W T, WEI L L, ZHANG D J, YAN Z Q, WU W H, YANG C. Catalytic chiral photochemistry sensitized by chiral hosts grafted upconverted nanoparticles[J]. ACS Appl. Mater. Interfaces, 2022,14(18):21453-21460. doi: 10.1021/acsami.2c02313
NEGRÍN-MONTECELO Y, MOVSESYAN A, GAO J, BURGER S, WANG Z M, NLATE S, POUGET E, ODA R, COMESAÑA-HERMO M, GOVOROV A O, CORREA-DUARTE M A. Chiral generation of hot carriers for polarization sensitive plasmonic photocatalysis[J]. J. Am. Chem. Soc., 2022,144(4):1663-1671. doi: 10.1021/jacs.1c10526
LIU C, SUN L C, YANG G Z, CHENG Q Q, WANG C, TAO Y L, SUN X H, WANG Z X, ZHANG Q F. Chiral Au-Pd alloy nanorods with tunable optical chirality and catalytically active surfaces[J]. Small, 2023,20(23)2310353.
ZHANG M L, ZHANG W R, FAN X, MA Y R, HUANG H, WANG X T, LIU Y, LIN H P, LI Y Y, TIAN H, SHAO M W, KANG Z H. Chiral carbon dots derived from serine with well-defined structure and enantioselective catalytic activity[J]. Nano Lett., 2022,22(17):7203-7211. doi: 10.1021/acs.nanolett.2c02674
ZHANG M L, FAN X, DU X, MA Y R, WANG X T, HUANG H, LIU Y, LI Y Y, KANG Z H. Chiral carbon dots from glucose by room temperature alkali assisted synthesis for electrocatalytic oxidation of tryptophan enantiomers[J]. Nano Res., 2023,16(7):8929-8936. doi: 10.1007/s12274-023-5601-6
LI F, LI S, GUO X C, DONG Y H, YAO C, LIU Y P, SONG Y G, TAN X L, GAO L Z, YANG D Y. Chiral carbon dots mimicking topoisomerase Ⅰ to mediate the topological rearrangement of supercoiled DNA enantioselectively[J]. Angew. Chem.-Int. Edit., 2020,59(27):11087-11092. doi: 10.1002/anie.202002904
WENG Y, WANG Q, ZHANG C, HE Y, RAN X, KUANG Y, LIU R, GUO L. Near-infrared photothermal therapy of chiral Au helicoids with broadband optical absorption[J]. New J. Chem., 2023,47(2):882-890. doi: 10.1039/D2NJ03779C
SUN M Z, XU L G, BANHG J H, KUANG H, ALBEN S, KOTOV N A, XU C L. Intracellular localization of nanoparticle dimers by chirality reversal[J]. Nat. Commun., 2017,8(1)1847. doi: 10.1038/s41467-017-01337-2
ZHANG N N, SUN H R, LIU S, XING Y C, LU J, PENG F, HAN C L, WEI Z, SUN T, YANG B, LIU K. Gold nanoparticle enantiomers and their chiral-morphology dependence of cellular uptake[J]. CCS Chem., 2022,4(2):660-670. doi: 10.31635/ccschem.021.202000637
XU L G, WANG X X, WANG W W, SUN M Z, CHOI W J, KIM J Y, HAO C L, LI S, QU A H, LU M R, WU X L, COLOMBARI F M, GOMES W R, BLANCO A L, DE MOURA A F, GUO X, KUANG H, KOTOV N A, XU C L. Enantiomer dependent immunological response to chiral nanoparticles[J]. Nature, 2022,601(7893)366. doi: 10.1038/s41586-021-04243-2
KIM R M, HUH J H, YOO S, KIM T G, KIM C, KIM H, HAN J H, CHO N H, LIM Y C, IM S W, IM E, JEONG J R, LEE M H, YOON T Y, LEE H Y, PARK Q H, LEE S, NAM K T. Enantioselective sensing by collective circular dichroism[J]. Nature, 2022,612(7940)470. doi: 10.1038/s41586-022-05353-1
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
Ruixue Liu , Xiaobing Ding , Qiwei Lang , Gen-Qiang Chen , Xumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
Yiyang Shen , Zhen Zhang , Ruyi Liang , Tongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638
Zhiwen Li , Jingjing Zhang , Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
Cheng-Shuang Wang , Bing-Yu Zhou , Yi-Feng Wang , Cheng Yuan , Bo-Han Kou , Wei-Wei Zhao , Jing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080
Hejie Zheng , Zhili Wang , Guizhen Luo , Cuicui Du , Xiaohua Zhang , Jinhua Chen . A novel PEC-EC dual-mode biosensing platform for dual target detection of miRNA-133a and cTnI. Chinese Chemical Letters, 2025, 36(4): 110131-. doi: 10.1016/j.cclet.2024.110131
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Wenying Cui , Zhetong Jin , Wentao Fu , Chengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
Cong Gao , Zijian Zhu , Siwei Li , Zheng Xi , Qingqing Sun , Jie Han , Rong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Yongjing Deng , Feiyang Li , Zijian Zhou , Mengzhu Wang , Yongkang Zhu , Jianwei Zhao , Shujuan Liu , Qiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256