Citation: Chuang LIU, Lichao SUN, Qingfeng ZHANG. Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406 shu

Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing

Figures(12)

  • 近年来,手性无机纳米材料在传感、催化、生物医学和光子学等领域显现出了巨大应用潜力。具有本征手性结构的等离激元纳米材料因其等离激元光学特性与手性的精妙融合,展现出了高度可调且极为优越的手性光学特质。近年来,手性无机纳米材料在合成及结构调控方面取得了大量成果,有力地推动了其在众多新兴技术领域广泛应用的进程,从而衍生出大量前所未有的机遇与可能。本文介绍了手性无机纳米材料在生物传感方面的最新研究进展,其中特别关注了电化学和酶模拟催化方法。首先本文回顾了手性纳米催化剂的基本原理,包括手性配体诱导机制和固有手性纳米结构。其次,文中分别系统地介绍了手性纳米催化剂在电化学和酶模拟催化生物传感中的应用。最后,展望了将手性纳米探针用于新兴生物传感应用的挑战和机遇。通过合理设计手性纳米探针,可以实现单分子水平的灵敏度和分辨率不断提高的生物传感,这将大大促进许多新兴跨学科领域的传感应用。
  • 加载中
    1. [1]

      BENTLEY R. From optical-activity in quartz to chiral drugs-molecular handedness in biology and medicine[J]. Perspect. Biol. Med, 1995,38(2):188-229. doi: 10.1353/pbm.1995.0069

    2. [2]

      MEIERHENRICH U J. Amino acids and the asymmetry of life[J]. Eur. Rev., 2013,21(2):190-199. doi: 10.1017/S106279871200035X

    3. [3]

      HAZEN R M, SHOLL D S. Chiral selection on inorganic crystalline surfaces[J]. Nat. Mater., 2003,2(6):367-374. doi: 10.1038/nmat879

    4. [4]

      GOVOROV A O, FAN Z Y, HERNANDEZ P, SLOCIK J M, NAIK R R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano Lett., 2010,10(4):1374-1382. doi: 10.1021/nl100010v

    5. [5]

      ZHANG Q F, HERNANDEZ T, SMITH K W, JEBELI S A H, DAI A X, WARNING L, BAIYASI R, MCCARTHY L A, GUO H, CHEN D H, DIONNE J A, LANDES C F, LINK S. Unraveling the origin of chirality from plasmonic nanoparticle protein complexes[J]. Science, 2019,365(6460)1475.

    6. [6]

      FAN Z Y, GOVOROV A O. Chiral nanocrystals: Plasmonic spectra and circular dichroism[J]. Nano Lett., 2012,12(6):3283-3289. doi: 10.1021/nl3013715

    7. [7]

      AMDURSKY N, STEVENS M M. Circular dichroism of amino acids: Following the structural formation of phenylalanine[J]. ChemPhysChem, 2015,16(13):2768-2774. doi: 10.1002/cphc.201500260

    8. [8]

      YU Y, YANG G, ZHANG S, LIU M, XU S, WANG C, LI M, ZHANG S X A. Wide-range and highly sensitive chiral sensing by discrete 2D chirality transfer on confined surfaces of Au(Ⅰ)-thiolate nanosheets[J]. ACS Nano, 2021,16(1):148-159.

    9. [9]

      CHENG Q Q, YANG J, SUN L C, LIU C, YANG G Z, TAO Y L, SUN X H, ZHANG B B, XU H X, ZHANG Q F. Tuning the plexcitonic optical chirality using discrete structurally chiral plasmonic nanoparticles[J]. Nano Lett., 2023,23(23):11376-11384. doi: 10.1021/acs.nanolett.3c04265

    10. [10]

      SUN L C, TAO Y L, YANG G Z, LIU C, SUN X H, ZHANG Q F. Geometric control and optical properties of intrinsically chiral plasmonic nanomaterials[J]. Adv. Mater., 20232306297. doi: 10.1002/adma.202306297

    11. [11]

      YANG G, SUN L, ZHANG Q. Multicomponent chiral plasmonic hybrid nanomaterials: Recent advances in synthesis and applications[J]. Nanoscale Adv., 2024,6(2):318-336. doi: 10.1039/D3NA00808H

    12. [12]

      WANG C, LU D D, SUN L C, ZHANG Q F. Rational design of plasmonic nanoparticle molecule complexes for chirality sensing[J]. Chin. J. Chem., 2024,42(8):903-919. doi: 10.1002/cjoc.202300602

    13. [13]

      LIU P Z, BATTIE Y, OKAZAKI Y, RYU N, POUGET E, NLATE S, SAGAWA T, ODA R. Chiral optical scattering from helical and twisted silica nanoribbons[J]. Chem. Commun., 2021,57(90):12024-12027. doi: 10.1039/D1CC04200A

    14. [14]

      LV X L, WU F X, TIAN Y, ZUO P, LI F H, XU G B, NIU W X. Engineering the intrinsic chirality of plasmonic Au@Pd metamaterials for highly sensitive chiroplasmonic hydrogen sensing[J]. Adv. Mater., 2023,35(51)2305429. doi: 10.1002/adma.202305429

    15. [15]

      HAN B, SUN C, ZHOU Y L, GAO X Q. Geometry-modulated magnetoplasmonic circular dichroism of gold nanobipyramids[J]. J. Phys. Chem. C, 2022,126(7):3600-3605. doi: 10.1021/acs.jpcc.1c10808

    16. [16]

      WANG Y W, TAY A. Advances in enantiomer-dependent nanotherapeutics[J]. ACS Nano, 2023,17(11):9850-9869. doi: 10.1021/acsnano.3c02798

    17. [17]

      MA W, XU L G, DE MOURA A F, WU X L, KUANG H, XU C L, KOTOV N A. Chiral inorganic nanostructures[J]. Chem. Rev., 2017,117(12):8041-8093. doi: 10.1021/acs.chemrev.6b00755

    18. [18]

      WANG P P, YU S J, GOVOROV A O, OUYANG M. Cooperative expression of atomic chirality in inorganic nanostructures[J]. Nat. Commun., 2017,8(4)14312.

    19. [19]

      GAO Q, TAN L L, WEN Z H, FAN D D, HUI J F, WANG P P. Chiral inorganic nanomaterials: Harnessing chirality-dependent interactions with living entities for biomedical applications[J]. Nano Res., 2023,16(8):11107-11124. doi: 10.1007/s12274-023-5831-7

    20. [20]

      FU W L, TAN L L, WANG P P. Chiral inorganic nanomaterials for photo (electro) catalytic conversion[J]. ACS Nano, 2023,17(17):16326-16347. doi: 10.1021/acsnano.3c04337

    21. [21]

      ABBAS S U, LI J J, LIU X, SIDDIQUE A, SHI Y X, HOU M, YANG K, NOSHEEN F, CUI X Y, ZHENG G C, ZHANG Z C. Chiral metal nanostructures: Synthesis, properties and applications[J]. Rare Met., 2023,42(8):2489-2515. doi: 10.1007/s12598-023-02274-4

    22. [22]

      HAO C L, XU C L, KUANG H. Chiral probes for biosensing[J]. Chem. Commun., 2023,59(87):12959-12971. doi: 10.1039/D3CC03660J

    23. [23]

      ZHANG M J, WANG Y X, ZHOU Y J, YUAN H G, GUO Q, ZHUANG T T. Amplifying inorganic chirality using liquid crystals[J]. Nanoscale, 2022,14(3):592-601. doi: 10.1039/D1NR06036HyType=xml&restype=unixref&xml=|Polymer Degradation and Stability||158||102|2018|||

    24. [24]

      FENG Z Y, HE C L, XIE Y F, ZHANG C T, LI J H, LIU D D, JIANG Z F, CHEN X, ZOU G. Chiral biosensing at both interband transition and plasmonic extinction regions using twisted stacked nanowire arrays[J]. Nanoscale, 2022,14(29):10524-10530. doi: 10.1039/D2NR03357G

    25. [25]

      ZHENG G C, HE J J, KUMAR V, WANG S L, PASTORIZA-SANTOS I, PÉREZ-JUSTE J, LIZ-MARZÁN L M, WONG K Y. Discrete metal nanoparticles with plasmonic chirality[J]. Chem. Soc. Rev., 2021,50(6):3738-3754. doi: 10.1039/C9CS00765B

    26. [26]

      KNEER L M, ROLLER E M, BESTEIRO L V, SCHREIBER R, GOVOROV A O, LIEDL T. Circular dichroism of chiral molecules in DNA assembled plasmonic hotspots[J]. ACS Nano, 2018,12(9):9110-9115. doi: 10.1021/acsnano.8b03146

    27. [27]

      LIU W L, HAN H, WANG J Q. Recent advances in the 3D chiral plasmonic nanomaterials[J]. Small, 2023,20(8)2305725.

    28. [28]

      KIM Y, KIM H, YANG Y, BADLOE T, JEON N, RHO J. Three dimensional artificial chirality towards lowcost and ultra-sensitive enantioselective sensing[J]. Nanoscale, 2022,14(10):3720-3730. doi: 10.1039/D1NR05805C

    29. [29]

      LEE H E, KIM R M, AHN H Y, LEE Y Y, BYUN G H, IM S W, MUN J, RHO J, NAM K T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles[J]. Nat. Commun., 2020,11(1)263. doi: 10.1038/s41467-019-14117-x

    30. [30]

      SUN X H, SUN L C, LIN L F, GUO S Y, YANG Y M, ZHANG B B, LIU C, TAO Y L, ZHANG Q F. Tuning the geometry and optical chirality of pentatwinned Au nanoparticles with 5-fold rotational symmetry[J]. ACS Nano, 2024,18(13):9543-9556. doi: 10.1021/acsnano.3c12637

    31. [31]

      YANG L, MA Y C, LIN C, QU G P, BAI X P, HUANG Z F. Nanohelixinduced optical activity of liquid metal nanoparticles[J]. Small, 2022,18(17)2200620. doi: 10.1002/smll.202200620

    32. [32]

      GANSEL J K, THIEL M, RILL M S, DECKER M, BADE K, SAILE V, VON FREYMANN G, LINDEN S, WEGENER M. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009,325(5947):1513-1515. doi: 10.1126/science.1177031

    33. [33]

      ESPOSITO M, TASCO V, CUSCUNà M, TODISCO F, BENEDETTI A, TARANTINI I, DE GIORGI M, SANVITTO D, PASSASEO A. Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies[J]. ACS Photonics, 2015,2(1):105-114. doi: 10.1021/ph500318p

    34. [34]

      JI C Y, CHEN S S, HAN Y, LIU X, LIU J, LI J F, YAO Y G. Artificial propeller chirality and counterintuitive reversal of circular dichroism in twisted meta molecules[J]. Nano Lett., 2021,21(16):6828-6834. doi: 10.1021/acs.nanolett.1c01802

    35. [35]

      LU J, XUE Y, BERNARDINO K, ZHANG N N, GOMES W R, RAMESAR N S, LIU S H, HU Z, SUN T M, DE MOURA A F, KOTOV N A, LIU K. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long range order[J]. Science, 2021,371(6536)1368. doi: 10.1126/science.abd8576

    36. [36]

      JUNG S H, JEON J, KIM H, JAWORSKI J, JUNG J H. Chiral arrangement of achiral Au nanoparticles by supramolecular assembly of helical nanofiber templates[J]. J. Am. Chem. Soc., 2014,136(17):6446-6452. doi: 10.1021/ja5018199

    37. [37]

      ZHANG N N, SHEN X X, LIU K, NIE Z H, KUMACHEVA E. Polymer-tethered nanoparticles: From surface engineering to directional self-assembly[J]. Acc. Chem. Res., 2022,55(11):1503-1513. doi: 10.1021/acs.accounts.2c00066

    38. [38]

      LU J, CHANG Y X, ZHANG N N, WEI Y, LI A J, TAI J, XUE Y, WANG Z Y, YANG Y, ZHAO L, LU Z Y, LIU K. Chiral plasmonic nanochains the self-assembly of gold nanorods and helical glutathione oligomers facilitated by cetyltrimethylammonium bromide micelles[J]. ACS Nano, 2017,11(4):3463-3475. doi: 10.1021/acsnano.6b07697

    39. [39]

      GONG Y J, CAO Z Z, ZHANG Z Z, LIU R J, ZHANG F H, WEI J J, YANG Z J. Chirality inversion in self assembled nanocomposites directed by curvature-mediated interactions[J]. Angew. Chem.-Int. Edit., 2022,61(10)e202117406. doi: 10.1002/anie.202117406

    40. [40]

      PAN J H, WANG X Y, ZHANG J J, ZHANG Q, WANG Q B, ZHOU C. Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles[J]. Nano Res., 2022,15(10):9447-9453. doi: 10.1007/s12274-022-4520-2

    41. [41]

      WANG S, ZHENG L H, CHEN W J, JI L K, ZHANG L, LU W S, FANG Z Y, GUO F C, QI L M, LIU M H. Helically grooved gold nanoarrows: Controlled fabrication, superhelix, and transcribed chiroptical switching[J]. CCS Chem., 2021,3(9):2473-2484. doi: 10.31635/ccschem.020.202000472

    42. [42]

      KUZYK A, SCHREIBER R, FAN Z Y, PARDATSCHER G, ROLLER E M, HÖGELE A, SIMMEL F C, GOVOROV A O, LIEDL T. DNAbased self-assembly of chiral plasmonic nanostructures with tailored optical response[J]. Nature, 2012,483(7389):311-314. doi: 10.1038/nature10889

    43. [43]

      LEE H E, AHN H Y, MUN J, LEE Y Y, KIM M, CHO N H, CHANG K, KIM W S, RHO J, NAM K T. Amino-acidand peptide-directed synthesis of chiral plasmonic gold nanoparticles[J]. Nature, 2018,556(7701)360. doi: 10.1038/s41586-018-0034-1

    44. [44]

      SUN X H, YANG J, SUN L C, YANG G Z, LIU C, TAO Y L, CHENG Q Q, WANG C, XU H X, ZHANG Q F. Tunable reversal of circular dichroism in the seed-mediated growth of bichiral plasmonic nanoparticles[J]. ACS Nano, 2022,16(11):19174-19186. doi: 10.1021/acsnano.2c08381

    45. [45]

      TAO Y L, SUN L C, LIU C, YANG G Z, SUN X H, ZHANG Q F. Siteselective chiral growth of anisotropic Au triangular nanoplates for tuning the optical chirality[J]. Small, 2023,19(30)2301218. doi: 10.1002/smll.202301218

    46. [46]

      YANG G Z, SUN L C, TAO Y L, CHENG Q Q, SUN X H, LIU C, ZHANG Q F. Chiral AuCu heterostructures with site specific geometric control and tailored plasmonic chirality[J]. Sci. China Chem., 2023,66(11):3280-3289. doi: 10.1007/s11426-023-1685-3

    47. [47]

      WAN J L, SUN L C, SUN X H, LIU C, YANG G Z, ZHANG B B, TAO Y L, YANG Y H, ZHANG Q F. Cu-dominated chirality transfer from chiral molecules to concave chiral Au nanoparticles[J]. J. Am. Chem. Soc., 2024,146(15):10640-10654. doi: 10.1021/jacs.4c00322

    48. [48]

      CHEN J Q, GAO X S, ZHENG Q, LIU J B, MENG D J, LI H Y, CAI R, FAN H Z, JI Y L, WU X C. Bottom-up synthesis of helical plasmonic nanorods and their application in generating circularly polarized luminescence[J]. ACS Nano, 2021,15(9):15114-15122. doi: 10.1021/acsnano.1c05489

    49. [49]

      ZHANG L L, CHEN Y L, ZHENG J P, LEWIS G R, XIA X Y, RINGE E, ZHANG W, WANG J F. Chiral gold nanorods with fivefold rotational symmetry and orientation-dependent chiroptical properties of their monomers and dimers[J]. Angew. Chem.-Int. Edit., 2023,62(52)e202312615. doi: 10.1002/anie.202312615

    50. [50]

      KIM H, IM S W, KIM R M, CHO N H, LEE H E, AHN H Y, NAM K T. Chirality control of inorganic materials and metals by peptides or amino acids[J]. Mater. Adv., 2020,1(4):512-524. doi: 10.1039/D0MA00125B

    51. [51]

      ZHANG N N, SHEN Z L, GAO S Y, PENG F, CAO Z J, WANG Y, WANG Z Z, ZHANG W, YANG Y, LIU K, SUN T M. Synthesis and plasmonic chiroptical properties of double helical gold nanorod enantiomers[J]. Adv. Opt. Mater., 2023,11(18)2203119. doi: 10.1002/adom.202203119

    52. [52]

      ZHENG Y L, LI X Y, HUANG L P, LI X X, YANG S H, WANG Q, DU J X, WANG Y W, DING W Q, GAO B, CHEN H Y. Homochiral nanopropeller via chiral active surface growth[J]. J. Am. Chem. Soc., 2023,146(1):410-418.

    53. [53]

      ZHENG Y L, WANG Q, SUN Y W, HUANG J, JI J, WANG Z J, WANG Y W, CHEN H Y. Chiral active surface growth via glutathione control[J]. Adv. Opt. Mater., 2023,11(18)2202858. doi: 10.1002/adom.202202858

    54. [54]

      ZHANG N N, SUN H R, XUE Y, PENG F, LIU K. Tuning the chiral morphology of gold nanoparticles with oligomeric gold glutathione complexes[J]. J. Phys. Chem. C, 2021,125(19):10708-10715. doi: 10.1021/acs.jpcc.1c01641

    55. [55]

      WEN X, WANG S, LIU R L, DUAN R, HU S, JIAO T F, ZHANG L, LIU M H. Selenocystine and photo irradiation directed growth of helically grooved gold nanoarrows[J]. Small, 2021,18(5)2104301.

    56. [56]

      VAN GORDON K, BAÚLDE S, MYCHINKO M, HEYVAERT W, OBELLEIRO-LIZ M, CRIADO A, BALS S, LIZ-MARZÁN L M, MOSQUERA J. Tuning the growth of chiral gold nanoparticles through rational design of a chiral molecular inducer[J]. Nano Lett., 2023,23(21):9880-9886. doi: 10.1021/acs.nanolett.3c02800

    57. [57]

      GONZÁLEZ-RUBIO G, MOSQUERA J, KUMAR V, PEDRAZO-TARDAJOS A, LLOMBART P, SOLÍS D M, LOBATO I, NOYA E G, GUERRERO-MARTÍNEZ A, TABOADA J M, OBELLEIRO F, MACDOWELL L G, BALS S, LIZ-MARZÁN L M. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals[J]. Science, 2020,368(6498):1472-1477. doi: 10.1126/science.aba0980

    58. [58]

      ZHUO X L, MYCHINKO M, HEYVAERT W, LARIOS D, OBELLEIRO-LIZ M, TABOADA J M, BALS S, LIZ-MARZÁN L M. Morphological and optical transitions during micelle seeded chiral growth on gold nanorods[J]. ACS Nano, 2022,16(11):19281-19292. doi: 10.1021/acsnano.2c08668

    59. [59]

      SPAETH P, ADHIKARI S, HEYVAERT W, ZHUO X L, GARCÍA I, LIZ-MARZÁN L M, BALS S, ORRIT M, ALBRECHT W. Photothermal circular dichroism measurements of single chiral gold nanoparticles correlated with electron tomography[J]. ACS Photonics, 2022,9(12):3995-4004. doi: 10.1021/acsphotonics.2c01457

    60. [60]

      HEYVAERT W, PEDRAZO-TARDAJOS A, KADU A, CLAES N, GONZÁLEZ-RUBIO G, LIZ-MARZÁN L M, ALBRECHT W, BALS S. Quantification of the helical morphology of chiral gold nanorods[J]. ACS Mater. Lett., 2022,4(4):642-649. doi: 10.1021/acsmaterialslett.2c00055

    61. [61]

      LI S, VEKSLER M, XU Z J, XU L G, XU C L, KOTOV N A. Selfassembly of earth-abundant supraparticles with chiral interstices for enantioselective photocatalysis[J]. ACS Energy Lett., 2021,6(4):1405-1412.

    62. [62]

      YUE X, LI S, LIN H, XU C, XU L. Heterogeneous agxcdys agcd nanoparticles with chiral bias for enhanced photocatalytic efficiency[J]. Adv. Funct. Mater., 2022,33(4)2210046.

    63. [63]

      TIAN Y, WU F X, LV X L, LUAN X X, LI F H, XU G B, NIU W X. Enantioselective surface enhanced Raman scattering by chiral Au nanocrystals with finely modulated chiral fields and internal standards[J]. Adv. Mater., 2024,36(35)2403373. doi: 10.1002/adma.202403373

    64. [64]

      NIU X H, YANG X, LI H X, LIU J, LIU Z Y, WANG K J. Application of chiral materials in electrochemical sensors[J]. Microchim. Acta, 2020,187(12)676. doi: 10.1007/s00604-020-04646-4

    65. [65]

      WANG S, SHI Y, HOU Y, SHAN S L, WANG H, LU J X. Electrocatalytic asymmetric reduction of ethyl benzoylformate on bimetallic Ag-Cu cathodes[J]. J. Appl. Electrochem., 2020,50(9):973-978. doi: 10.1007/s10800-020-01449-6

    66. [66]

      BUTCHA S, ASSAVAPANUMAT S, ITTISANRONNACHAI S, LAPEYRE V, WATTANAKIT C, KUHN A. Nanoengineered chiral Pt Ir alloys for high performance enantioselective electrosynthesis[J]. Nat. Commun., 2021,12(1)1314. doi: 10.1038/s41467-021-21603-8

    67. [67]

      HUANG L, LIN Q, LI Y X, ZHENG G C, CHEN Y T. Study of the enantioselectivity and recognition mechanism of sulfhydrylcompound functionalized gold nanochannel membranes[J]. Anal. Bioanal. Chem., 2019,411(2):471-478. doi: 10.1007/s00216-018-1464-1

    68. [68]

      ZHAO Q Q, ZHU W K, CAI W R, LI J Y, WU D T, KONG Y. TiO nanotubes decorated with CdSe quantum dots: A bifunctional electrochemiluminescent platform for chiral discrimination and chiral sensing[J]. Anal. Chem., 2022,94(26):9399-9406. doi: 10.1021/acs.analchem.2c01383

    69. [69]

      LIN H, MITOMO H, YONAMINE Y, GUO Z, IJIRO K. Coregapshell nanoparticles@polyaniline with tunable plasmonic chiroptical activities by pH and electric potential dual modulation[J]. Chem. Mater., 2022,34(9):4062-4072. doi: 10.1021/acs.chemmater.2c00313

    70. [70]

      CAI J R, ZHANG W, XU L G, HAO C L, MA W, SUN M Z, WU X L, QIN X, COLOMBARI F M, DE MOURA A F, XU J H, SILVA M C, CARNEIRO-NETO E B, GOMES W R, VALLÉE R A L, PEREIRA E C, LIU X G, XU C L, KLAJN R, KOTOV N A, KUANG H. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles[J]. Nat. Nanotechnol., 2022,17(4)408. doi: 10.1038/s41565-022-01079-3

    71. [71]

      SONG Y X, LU S Y, HAI J, LIANG K, SUN S A, MENG G P, WANG B D. Nitrogen-doped chiral CuO/CoO nanofibers: An enhanced electrochemiluminescence sensing strategy for detection of 3, 4-dihydroxy-phenylalanine enantiomers[J]. Anal. Chem., 2021,93(33):11470-11478. doi: 10.1021/acs.analchem.1c01497

    72. [72]

      SHUKLA N, GELLMAN A J. Chiral metal surfaces for enantioselective processes[J]. Nat. Mater., 2020,19(9):939-945. doi: 10.1038/s41563-020-0734-4

    73. [73]

      GREBER T, SLJIVANCANIN Z, SCHILLINGER R, WIDER J, HAMMER B. Chiral recognition of organic molecules by atomic kinks on surfaces[J]. Phys. Rev. Lett., 2006,96(5)056103. doi: 10.1103/PhysRevLett.96.056103

    74. [74]

      FANG Y X, LIU X, LIU Z P, HAN L, AI J, ZHAO G, TERASAKI O, CUI C H, YANG J Z, LIU C Y, ZHOU Z Y, CHEN L W, CHE S A. Synthesis of amino acids by electrocatalytic reduction of Co on chiral Cu surfaces[J]. Chem, 2023,9(2):460-471. doi: 10.1016/j.chempr.2022.10.017

    75. [75]

      LI F H, WU F X, LUAN X X, YUAN Y L, ZHANG L, XU G B, NIU W X. Highly enantioselective electrochemical sensing based on helicoid Au nanoparticles with intrinsic chirality[J]. Sensors Actuator B-Chemical, 2022,362131757. doi: 10.1016/j.snb.2022.131757

    76. [76]

      LI R Y, WANG X B, PENG Y F, XU P W, ZHU H Y, LI Z J, SUN X L. Synthesis of gold nanocrystals with chiral morphology, chiral ligand and more exposed high-index facets as electrocatalyst for the oxidation of glucose enantiomers with high enantioselectivity and catalytic activity[J]. Catal. Sci. Technol., 2022,12(7):2097-2105. doi: 10.1039/D1CY01764K

    77. [77]

      ZHOU Y L, ZOU Y, JIANG J. Synthesis of chorogi-like Au nanoparticles with chiral plasmonic response and enantioselective electrocatalytic activity[J]. Mater. Lett., 2023,331133432. doi: 10.1016/j.matlet.2022.133432

    78. [78]

      WU F X, LI F H, TIAN Y, LV X L, LUAN X X, XU G B, NIU W X. Surface topographical engineering of chiral Au nanocrystals with chiral hot spots for plasmon enhanced chiral discrimination[J]. Nano Lett., 2023,23(17):8233-8240. doi: 10.1021/acs.nanolett.3c02385

    79. [79]

      WU F X, LI F H, LV X L, ZHANG Q X, XU G B, NIU W X. Heteroepitaxial growth of Au@Pd core-shell nanocrystals with intrinsic chiral surfaces for enantiomeric recognition[J]. Rare Met., 2023,43(1):225-235.

    80. [80]

      WU F X, TIAN Y, LUAN X X, LV X L, LI F H, XU G B, NIU W X. Synthesis of chiral Au nanocrystals with precise homochiral facets for enantioselective surface chemistry[J]. Nano Lett., 2022,22(7):2915-2922. doi: 10.1021/acs.nanolett.2c00094

    81. [81]

      CHOI S, LIU C, SEO D, IM S W, KIM R M, JO J, KIM J W, PARK G S, KIM M, BRINCK T, NAM K T. Kink-controlled gold nanoparticles for electrochemical glucose oxidation[J]. Nano Lett., 2024,24(15):4528-4536. doi: 10.1021/acs.nanolett.4c00413

    82. [82]

      GAO L Z, ZHUANG J, NIE L, ZHANG J B, ZHANG Y, GU N, WANG T H, FENG J, YANG D L, PERRETT S, YAN X. Intrinsic peroxidase like activity of ferromagnetic nanoparticles[J]. Nat. Nanotechnol., 2007,2(9):577-583. doi: 10.1038/nnano.2007.260

    83. [83]

      GAO L Z, WEI H, DONG S J, YAN X Y. Nanozymes[J]. Adv. Mater., 2024,36(10)2305249. doi: 10.1002/adma.202305249

    84. [84]

      CHEN J X, MA Q, LI M H, CHAO D Y, HUANG L, WU W W, FANG Y X, DONG S J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes[J]. Nat. Commun., 2021,12(1)3375. doi: 10.1038/s41467-021-23737-1

    85. [85]

      SANG X Q, XIA S Y, CHENG L, WU F X, TIAN Y, GUO C X, XU G B, YUAN Y L, NIU W X. Deciphering the mechanisms of photoenhanced catalytic activities in plasmonic Pd-Au heteromeric nanozymes for colorimetric analysis[J]. Small, 2023,20(3)2305369.

    86. [86]

      WEI H, WANG E K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes[J]. Chem. Soc. Rev., 2013,42(14):6060-6093. doi: 10.1039/c3cs35486e

    87. [87]

      WANG Q Q, WEI H, ZHANG Z Q, WANG E K, DONG S J. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay[J]. TrAC Trend. Anal. Chem., 2018,105:218-224. doi: 10.1016/j.trac.2018.05.012

    88. [88]

      WU J J X, WANG X Y, WANG Q, LOU Z P, LI S R, ZHU Y Y, QIN L, WEI H. Nanomaterials with enzyme like characteristics (nanozymes): Next generation artificial enzymes(Ⅱ)[J]. Chem. Soc. Rev., 2019,48(4):1004-1076. doi: 10.1039/C8CS00457A

    89. [89]

      LIU C, ZHANG M, GENG H Q, ZHANG P, ZHENG Z, ZHOU Y L, HE W W. NIR enhanced peroxidase-like activity of Au@CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing[J]. Appl. Catal. B-Environ., 2021,295120317. doi: 10.1016/j.apcatb.2021.120317

    90. [90]

      LIU C, YAN Y Y, ZHANG X W, MAO Y Y, REN X Q, HU C Y, HE W W, YIN J J. Regulating the proand anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe and protection of pigments[J]. Nanoscale, 2020,12(5):3068-3075. doi: 10.1039/C9NR10135G

    91. [91]

      LIU W L, ZHANG Y H, WEI G, ZHANG M X, LI T, LIU Q Y, ZHOU Z J, DU Y, WEI H. Integrated cascade nanozymes with antisenescence activities for atherosclerosis therapy[J]. Angew. Chem.-Int. Edit., 2023,62(33)e202304465. doi: 10.1002/anie.202304465

    92. [92]

      CHENG P, WANG H, SHI X H. The effect of phenylalanine ligands on the chiral-selective oxidation of glucose on Au (111)[J]. Nanoscale, 2020,12(5):3050-3057. doi: 10.1039/C9NR09506C

    93. [93]

      SUN Y H, ZHAO C Q, GAO N, REN J S, QU X G. Stereoselective nanozyme based on ceria nanoparticles engineered with amino acids[J]. Chem.-Eur. J., 2017,23(72):18146-18150. doi: 10.1002/chem.201704579

    94. [94]

      ZHOU Y, WEI Y, REN J S, QU X G. A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity[J]. Mater. Horiz., 2020,7(12):3291-3297. doi: 10.1039/D0MH01535K

    95. [95]

      ZHOU Y, WEI W L, CUI F C, YAN Z Q, SUN Y H, REN J S, QU X G. Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells[J]. Chem. Sci., 2020,11(41):11344-11350. doi: 10.1039/D0SC03082A

    96. [96]

      ZHOU Y, SUN H J, XU H C, MATYSIAK S, REN J S, QU X G. Mesoporous encapsulated chiral nanogold for use in enantioselective reactions[J]. Angew. Chem.-Int. Edit., 2018,57(51):16791-16795. doi: 10.1002/anie.201811118

    97. [97]

      ZHAN P F, WANG Z G, LI N, DING B Q. Engineering gold nanoparticles with DNA ligands for selective catalytic oxidation of chiral substrates[J]. ACS Catal., 2015,5(3):1489-1498. doi: 10.1021/cs5015805

    98. [98]

      SHA M, RAO L, XU W Q, QIN Y, SU R A, WU Y, FANG Q, WANG H J, CUI X W, ZHENG L R, GU W L, ZHU C Z. Amino-ligand-coor-dinated dicopper active sites enable catechol oxidase like activity for chiral recognition and catalysis[J]. Nano Lett., 2023,23(2)701709.

    99. [99]

      FANG Y X, LIU X, AI J, ZHAO G, CHEN L W, CHE S N, HAN L. Enantiospecific affinities of chiral Cu films for both D-ribose and L-amino acids[J]. Chem. Mater., 2023,35(6):2402-2407. doi: 10.1021/acs.chemmater.2c03534

    100. [100]

      RAO M, FAN C Y, JI J C, LIANG W T, WEI L L, ZHANG D J, YAN Z Q, WU W H, YANG C. Catalytic chiral photochemistry sensitized by chiral hosts grafted upconverted nanoparticles[J]. ACS Appl. Mater. Interfaces, 2022,14(18):21453-21460. doi: 10.1021/acsami.2c02313

    101. [101]

      NEGRÍN-MONTECELO Y, MOVSESYAN A, GAO J, BURGER S, WANG Z M, NLATE S, POUGET E, ODA R, COMESAÑA-HERMO M, GOVOROV A O, CORREA-DUARTE M A. Chiral generation of hot carriers for polarization sensitive plasmonic photocatalysis[J]. J. Am. Chem. Soc., 2022,144(4):1663-1671. doi: 10.1021/jacs.1c10526

    102. [102]

      LIU C, SUN L C, YANG G Z, CHENG Q Q, WANG C, TAO Y L, SUN X H, WANG Z X, ZHANG Q F. Chiral Au-Pd alloy nanorods with tunable optical chirality and catalytically active surfaces[J]. Small, 2023,20(23)2310353.

    103. [103]

      ZHANG M L, ZHANG W R, FAN X, MA Y R, HUANG H, WANG X T, LIU Y, LIN H P, LI Y Y, TIAN H, SHAO M W, KANG Z H. Chiral carbon dots derived from serine with well-defined structure and enantioselective catalytic activity[J]. Nano Lett., 2022,22(17):7203-7211. doi: 10.1021/acs.nanolett.2c02674

    104. [104]

      ZHANG M L, FAN X, DU X, MA Y R, WANG X T, HUANG H, LIU Y, LI Y Y, KANG Z H. Chiral carbon dots from glucose by room temperature alkali assisted synthesis for electrocatalytic oxidation of tryptophan enantiomers[J]. Nano Res., 2023,16(7):8929-8936. doi: 10.1007/s12274-023-5601-6

    105. [105]

      LI F, LI S, GUO X C, DONG Y H, YAO C, LIU Y P, SONG Y G, TAN X L, GAO L Z, YANG D Y. Chiral carbon dots mimicking topoisomerase Ⅰ to mediate the topological rearrangement of supercoiled DNA enantioselectively[J]. Angew. Chem.-Int. Edit., 2020,59(27):11087-11092. doi: 10.1002/anie.202002904

    106. [106]

      WENG Y, WANG Q, ZHANG C, HE Y, RAN X, KUANG Y, LIU R, GUO L. Near-infrared photothermal therapy of chiral Au helicoids with broadband optical absorption[J]. New J. Chem., 2023,47(2):882-890. doi: 10.1039/D2NJ03779C

    107. [107]

      SUN M Z, XU L G, BANHG J H, KUANG H, ALBEN S, KOTOV N A, XU C L. Intracellular localization of nanoparticle dimers by chirality reversal[J]. Nat. Commun., 2017,8(1)1847. doi: 10.1038/s41467-017-01337-2

    108. [108]

      ZHANG N N, SUN H R, LIU S, XING Y C, LU J, PENG F, HAN C L, WEI Z, SUN T, YANG B, LIU K. Gold nanoparticle enantiomers and their chiral-morphology dependence of cellular uptake[J]. CCS Chem., 2022,4(2):660-670. doi: 10.31635/ccschem.021.202000637

    109. [109]

      XU L G, WANG X X, WANG W W, SUN M Z, CHOI W J, KIM J Y, HAO C L, LI S, QU A H, LU M R, WU X L, COLOMBARI F M, GOMES W R, BLANCO A L, DE MOURA A F, GUO X, KUANG H, KOTOV N A, XU C L. Enantiomer dependent immunological response to chiral nanoparticles[J]. Nature, 2022,601(7893)366. doi: 10.1038/s41586-021-04243-2

    110. [110]

      KIM R M, HUH J H, YOO S, KIM T G, KIM C, KIM H, HAN J H, CHO N H, LIM Y C, IM S W, IM E, JEONG J R, LEE M H, YOON T Y, LEE H Y, PARK Q H, LEE S, NAM K T. Enantioselective sensing by collective circular dichroism[J]. Nature, 2022,612(7940)470. doi: 10.1038/s41586-022-05353-1

  • 加载中
    1. [1]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    2. [2]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    3. [3]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    4. [4]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    5. [5]

      Yiyang ShenZhen ZhangRuyi LiangTongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638

    6. [6]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    7. [7]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    8. [8]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    9. [9]

      Hejie ZhengZhili WangGuizhen LuoCuicui DuXiaohua ZhangJinhua Chen . A novel PEC-EC dual-mode biosensing platform for dual target detection of miRNA-133a and cTnI. Chinese Chemical Letters, 2025, 36(4): 110131-. doi: 10.1016/j.cclet.2024.110131

    10. [10]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    11. [11]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    12. [12]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    13. [13]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    14. [14]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    15. [15]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    16. [16]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    17. [17]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    18. [18]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    19. [19]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    20. [20]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

Metrics
  • PDF Downloads(0)
  • Abstract views(253)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return