Citation: Yahui HAN, Jinjin ZHAO, Ning REN, Jianjun ZHANG. Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395 shu

Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes

Figures(17)

  • Two novel lanthanide complexes, [Sm2(BA)6(4-OH-terpy)2]·2H2O·2EtOH (1) and [Pr2(BA)6(4-OH-terpy)2 (H2O)2]·HBA·H2O (2), where HBA=benzoic acid, 4-OH-terpy=4-hydroxy-2, 2'∶6', 2″-terpyridine, were successfully synthesized using ultrasonic dissolution and the conventional solution method with two mixed ligands HBA and 4OH-terpy. During the synthesis, 4-OH-terpy was involved in the reaction as a neutral ligand, while HBA, in its deprotonated form (BA-), coordinated with the lanthanide ions as an acidic ligand. The crystal structures of these two complexes were precisely determined by single crystal X ray diffraction. Elemental analysis, infrared and Raman spectroscopy, and powder X-ray diffraction techniques were also employed to further explore the physicochemical properties of the two complexes. The single-crystal X-ray diffraction data indicate that, despite their structural differences, both complexes belong to the triclinic crystal system $P \overline{1}$ space group. The central lanthanide ions have the same coordination number but exhibit different coordination environments. To comprehensively evaluate the thermal stability of these two complexes, comprehensive tests including thermogravimetric analysis, differential thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and mass spectrometry were conducted. Meanwhile, an in depth investigation was conducted into the 3D infrared stacked images and mass spectra of the gases emitted from the complexes. In addition, studies of the fluorescence properties of complex 1 showed that it exhibited fluorescence emission matching the Sm3+ characteristic transition.
  • 加载中
    1. [1]

      YANG Y L, HU X M, YANG Z, HUANG W. Insights into molecular lanthanide complexes: Construction, properties and bioimaging and biosensing applications[J]. Adv. Funct. Mater., 2024,21202412970.

    2. [2]

      ZHONG Y, WU Z N, ZHANG Y, DONG B, BAI X. Circularly polar-ized luminescence of lanthanide complexes: From isolated individu-als, discrete oligomers, to hierarchical assemblies[J]. InfoMat, 2023,5e12392. doi: 10.1002/inf2.12392

    3. [3]

      FAN M Y, YU H H, FU P, SU Z M, LI X, HU X L, GAO F W, PAN Q Q. Luminescent Cd(Ⅱ) metal-organic frameworks with anthracene ni-trogen-containing organic ligands as novel multifunctional chemosen-sors for the detection of picric acid, pesticides, and ferric ions[J]. Dyes Pigment., 2021,185108834. doi: 10.1016/j.dyepig.2020.108834

    4. [4]

      TRUPP L, BRUTTOMESSO A C, VARDE M, ELISEEVA S V, RAMIREZ J A, PETOUD S, BARJA B C. Innovative multipodal ligands derived from Troger's bases for the sensitization of lanthanide(Ⅲ) luminescence[J]. Chem.-Eur. J., 2020,26:16900-16909. doi: 10.1002/chem.202003524

    5. [5]

      SHENG Y, JIANG Y J, CHENG Z H, LIU R C, GE J Y, GAO F. Syn-theses, structures, and magnetic properties of acetate-bridged lantha-nide complexes based on a tripodal oxygen ligand[J]. Front. Chem., 2022,101021358. doi: 10.3389/fchem.2022.1021358

    6. [6]

      KOSINSKA-PEZDA M, ZAPALA L, MACIOLEK U, BYCZYNSKI L, WOZNICKA E, ZAPALA W. Thermal study, temperature diffraction patterns and evolved gas analysis during pyrolysis and oxidative de-composition of novel ternary complexes of light lanthanides with mefe-namic acid and 1, 10-phenanthroline[J]. J. Anal. Appl. Pyrolysis, 2021,159105293. doi: 10.1016/j.jaap.2021.105293

    7. [7]

      ROMANENKO G V, FOKIN S V, LETYAGIN G A, BOGOMYAKOV A S, OVCHARENKOV I. Structure of lanthanide semiquinolates with nitrogen-containing ligands[J]. J. Struct. Chem., 2020,61:1594-1598. doi: 10.1134/S002247662010011X

    8. [8]

      KHANAGWAL J, KHATKAR S P, DHANKHAR P, BALA M, KUMAR R, BOORA P, TAXAK V B. Synthesis and photolumines-cence analysis of europium(Ⅲ) complexes with pyrazole acid and nitro-gen containing auxiliary ligands[J]. Spectr. Lett., 2020,53:625-647. doi: 10.1080/00387010.2020.1817093

    9. [9]

      WANG C L, SU S L, REN N, ZHANG J J. Construction, thermochem-istry, and fluorescence properties of novel lanthanide complexes syn-thesized from halogenated aromatic carboxylic acids and nitrogen-con-taining ligands[J]. Acta Phys.-Chim. Sin., 2023,392206035.

    10. [10]

      NIELSEN L G, JUNKER A K R, SORENSEN T J. Composed in the f-block: Solution structure and function of kinetically inert lantha-nide(Ⅲ) complexes[J]. Dalton Trans., 2018,47:10360-10376. doi: 10.1039/C8DT01501E

    11. [11]

      YANG X P, JONES R A, HUANG S M. Luminescent 4f and d-4f polynuclear complexes and coordination polymers with flexible salen-type ligands[J]. Coord. Chem. Rev., 2014,273:63-75.

    12. [12]

      HAYASHI J, SHOJI S, KITAGAWA Y, HASEGAWA Y. Amor-phous lanthanide complexes for organic luminescent materials[J]. Coord. Chem. Rev., 2022,467214607. doi: 10.1016/j.ccr.2022.214607

    13. [13]

      ZHANG L Y, DOU W, LIU W, XU C, JIANG H E, CHEN C Y, GUO L R, TANG X L, LIU W S. Lanthanide complexes with a biphospho-nate ester ligand and their fluorescent properties[J]. Inorg. Chem. Commun., 2015,59:53-56. doi: 10.1016/j.inoche.2015.06.024

    14. [14]

      MA J H, YANG D Q, SONG X F, WANG Y G. Luminescent materi-als of covalent grafting lanthanide complexes to the synthetic clays[J]. J. Lumin., 2019,212:126-132. doi: 10.1016/j.jlumin.2019.04.024

    15. [15]

      LI H R, CHENG W J, WANG Y, LIU B Y, ZHANG W J, ZHANG H J. Surface modification and functionalization of microporous hybrid material for luminescence sensing[J]. Chem.-Eur. J., 2010,16:2125-2130. doi: 10.1002/chem.200901687

    16. [16]

      LI X, LIU Y H, CHI X W, ZHU G Z, GAO F. Synthesis, structures, and magnetic properties of zigzag tetranuclear lanthanide complexes[J]. Z. Anorg. Allg. Chem., 2020,646:1292-1296. doi: 10.1002/zaac.202000235

    17. [17]

      SONG F, ZHANG Y, CHEN J H, HAN T, CHENG P. Syntheses, crystal structures and magnetic properties of three lanthanide-nitronyl nitroxide complexes[J]. J. Rare Earths, 2017,35:24-27. doi: 10.1016/S1002-0721(16)60168-0

    18. [18]

      FENG X, LIU L, WANG L Y, SONG H L, SHI Z Q, WU X H, NG S W. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, lumines-cence and magnetic properties[J]. J. Solid State Chem., 2013,206:277-285. doi: 10.1016/j.jssc.2013.08.029

    19. [19]

      HUANG X D, WEN G H, BAO S S, JIA J G, ZHENG L M. Thermo-and light-triggered reversible interconversion of dysprosium-anthracene complexes and their responsive optical, magnetic and dielectric properties[J]. Chem. Sci., 2021,12:929-937. doi: 10.1039/D0SC04851H

    20. [20]

      ZHANG F H, WANG Y Y, LV C, LI Y C, ZHAO X Q. Luminescent complexes associated with isonicotinic acid[J]. J. Lumin., 2019,207:561-570. doi: 10.1016/j.jlumin.2018.11.051

    21. [21]

      SONG X Q, WANG L, ZHENG Q F, LIU W S. Synthesis, crystal structure and luminescence properties of lanthanide complexes with a new semirigid bridging furfurylsalicylamide ligand[J]. Inorg. Chim. Acta, 2012,391:171-178. doi: 10.1016/j.ica.2012.04.007

    22. [22]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2:A complete structure solution, refine-ment and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    23. [23]

      SUNDARESWARAN T, JAGAN R, KARTHIKEYAN N, BOAZ B M. Rational analysis of hydrogen bonding interaction in phenazine, 2-hydroxynaphthalene (1:1) cocrystal: From molecular modeling to photophysical properties[J]. J. Mol. Model., 2024,30351. doi: 10.1007/s00894-024-06128-3

    24. [24]

      DU D D, HAO Y F, WANG X X, ZHAO J J, REN N, ZHANG J J. Crystal structure, spectra, and thermal behavior of lanthanide com-plexes with 2-chloro-4-fluorobenzoic acid and 5, 5'-dimethyl-2, 2'-bipyridine[J]. Chinese J. Inorg. Chem., 2023,39(9):1807-1816.  

    25. [25]

      CEPEDA J, BALDA R, BEOBIDE G, CASTILLO O, FERNÁNDEZ J, LUQUE A, PÉREZ-YÁÑEZ S, ROMÁN P, VALLEJO-SÁNCHEZ D. Lanthanide(Ⅲ)/pyrimidine-4, 6-dicarboxylate/oxalate extended frameworks: A detailed study based on the lanthanide contraction and temperature effects[J]. Inorg. Chem., 2011,50:8437-8451. doi: 10.1021/ic201013v

    26. [26]

      LELLI M, DI BARI L. Solution structure and structural rearrange-ment in chiral dimeric ytterbium(Ⅲ) complexes determined by para-magnetic NMR and NIR-CD[J]. Dalton Trans., 2019,48:882-890. doi: 10.1039/C8DT03090A

    27. [27]

      HE S M, SUN S J, ZHENG J R, ZHANG J J. Molecular spectrum of lanthanide complexes with 2, 3-dichlorobenzoic acid and 2, 2-bipyri-dine[J]. Spectroc. Acta Pt. A -Molec. Biomolec. Spectr., 2014,123:211-215. doi: 10.1016/j.saa.2013.12.023

    28. [28]

      BABU S V, ESWARAMMA S, RAO K. Synthesis, characterization, luminescence and biological activities of lanthanide complexes with a hydrazone ligand[J]. Main Group Chem., 2018,17:99-110. doi: 10.3233/MGC-180251

    29. [29]

      HAO Y F, XU S L, ZHAO J J, GAO J, REN N, ZHANG J J. New nitrogen-containing lanthanide complexes with novel structural, ther-mal, and fluorescence properties[J]. J. Saudi Chem. Soc., 2024,28101792. doi: 10.1016/j.jscs.2023.101792

    30. [30]

      CHEN M H, LIANG B, GUO Y H, LI C F, HE X, HU J H, LI R K, ZENG K, YANG G. Pyrolysis mechanism of polyimide containing bio-molecule adenine building block[J]. Polym. Degrad. Stabil., 2020,175109124. doi: 10.1016/j.polymdegradstab.2020.109124

    31. [31]

      LIU B, LI Y M, WU S B, LI Y H, DENG S S, XIA Z L. Pyrolysis characteristic of tobacco stem studied by Py-GC/MS, TG-FTIR, and TG-MS[J]. BioResources, 2013,8:220-230.

    32. [32]

      SARIOGLU A O, KAHRAMAN D T, KÖSE A, SÖNMEZ M. Synthe-sis, characterization, photoluminescence properties and cytotoxic activities of Sm(Ⅲ) complexes of β-diketones[J]. J. Mol. Struct., 2022,1260132786. doi: 10.1016/j.molstruc.2022.132786

    33. [33]

      QIU S H, XIAO Q Q, TANG H, XIE Q. First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe[J]. Chinese J. Inorg. Chem., 2024,40(11):2250-2258.  

    34. [34]

      WANG C L, ZHANG J Y, LI X Y, REN N, ZHANG J J. Crystal structure, thermodynamic behavior, and luminescence properties of a new series of lanthanide halogenated aromatic carboxylic acid com-plexes[J]. Arab. J. Chem., 2022,15104089.

  • 加载中
    1. [1]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    2. [2]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    3. [3]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    15. [15]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(0)
  • Abstract views(66)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return