Citation: Zhifeng CAI, Ying WU, Yanan LI, Guiyu MENG, Tianyu MIAO, Yihao ZHANG. Effective detection of malachite green by folic acid stabilized silver nanoclusters[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394 shu

Effective detection of malachite green by folic acid stabilized silver nanoclusters

Figures(6)

  • Herein, a one-pot chemical reduction method was reported to prepare folic acid (FA)-stabilized silver nanoclusters (FA@Ag NCs), in which FA, hydrazine hydrate, and silver nitrate were used as capping agent, reducing agent, and precursor, respectively. Several technologies were employed to investigate the structures and optical properties of FA@Ag NCs, including transmission electron microscopy (TEM), X ray photoelectron spectrometer (XPS), Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), fluorescence spectrometer, and ultraviolet visible absorption spectrometer. FA@Ag NCs were suggested to be highly dispersed and spherical with a size of around 2.8 nm. Moreover, the maximum excitation and emission wavelengths of FA@Ag NCs were 370 and 447 nm, respectively. Under the optimal detection conditions, FA@Ag NCs could be used to effectively detect malachite green with the linear detection range of 0.5-200 μmol·L-1. The detection limit was 0.084 μmol·L-1. The fluorescence-quenching mechanism was ascribed to the static quenching. The detection system based on FA@Ag NCs was successfully used for the detection of malachite green in actual samples with good accuracy and reproducibility.
  • 加载中
    1. [1]

      KEANJUN N, RATTANAWONGWIBOON T, SRICHAROEN P, LAKSEE S, SAENGSANE N, THEPCHUAY Y, PORRAWATKUL P, PIMSEN R, KUYYOGSUY A, NUENGMATCHA P, CHANTHAI S, SUBSADSANA M, LIMCHOOWONG N. Ultrasound-assisted forma-tion of composite materials from fish scale waste hydroxyapatite in the presence of gamma-irradiated chitosan for the removal of malachite green[J]. RSC Adv., 2024,14:29737-29747. doi: 10.1039/D4RA03102D

    2. [2]

      LIANMAWII L, MOHONDAS S N. Effect of additives on the photocat-alytic degradation of malachite green using NiS: Tb3+nanoparticle and their photoluminescence properties[J]. J. Mol. Struct., 2025,1320139748. doi: 10.1016/j.molstruc.2024.139748

    3. [3]

      KONG Y J, HOU G Z, HAN L J. A europium-based CP fluorescent probe for sensing malachite green, ascorbic acid and uric acid[J]. Polyhedron, 2024,261117164. doi: 10.1016/j.poly.2024.117164

    4. [4]

      SHARMA P, SHARMA S, KUMAR S S, SHAO Y F, GUO F Q, ICHIKAWA T, JAIN A, SHRIVASTAVA K. Evaluation of optimized conditions for the adsorption of malachite green by SnO2-modified sugarcane bagasse biochar nanocomposites[J]. RSC Adv., 2024,14:29201-29214. doi: 10.1039/D4RA05442C

    5. [5]

      JOHN C J, SHARMILA L I, SATHIYAN A, PRINCY M J. Fabrica-tion of Cu3Mo2O9 doped MWCNT nanocomposites as efficient photo-catalyst for malachite green dye degradation[J]. Opt. Mater., 2024,156115935. doi: 10.1016/j.optmat.2024.115935

    6. [6]

      CAO Q M, TAO J, SUN Y Q, SUN W Y, ZHAO L P, YANG R, QU L B. A smartphone-assisted on-site colorimetric sensing for total amount determination of leuco-malachite green and malachite green based on nanozyme selected oxidation strategy[J]. Sensor. Actuator B -Chem., 2024,418136180. doi: 10.1016/j.snb.2024.136180

    7. [7]

      LIU Z W, WANG X L, XIAN H J, ZHONG J H, YE X G, YANG Y X, HU Y, CHEN Y, LI D M, HUANG C. Highly efficient malachite green adsorption by bacterial cellulose and bacterial cellulose/locust bean gum composite[J]. Int. J. Biol. Macromol., 2024,279134991. doi: 10.1016/j.ijbiomac.2024.134991

    8. [8]

      CHEN M, HUANG Y Q, MIAO J J, FAN Y X, LAI K Q. A highly sen-sitive surface-enhanced Raman scattering sensor with MIL-100(Fe)/Au composites for detection of malachite green in fish pond water[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2023,292122432. doi: 10.1016/j.saa.2023.122432

    9. [9]

      ZHOU J Y, ZHU J, WENG G J, LI J J, ZHAO J W. Fabrication of SERS composite substrates using Ag nanotriangles-modified SiO2 photonic crystal and the application of malachite green detection[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,318124472. doi: 10.1016/j.saa.2024.124472

    10. [10]

      CHEN G, MIAO S. HPLC determination and MS confirmation of malachite green, gentian violet, and their leuco metabolite residues in channel catfish muscle[J]. J. Agric. Food Chem., 2010,58:7109-7114. doi: 10.1021/jf9043925

    11. [11]

      WANG Y, LIAO K, HUANG X, YUAN D. Simultaneous determina-tion of malachite green, crystal violet and their leuco-metabolites in aquaculture water samples using monolithic fiber-based solid-phase microextraction coupled with high performance liquid chromatogra-phy[J]. Anal. Methods, 2015,7:8138-8145. doi: 10.1039/C5AY01611H

    12. [12]

      NEBOT C, IGLESIAS A, BARREIRO R, MANUEL M J, VÁZQUEZB , MANUEL F C, CEPEDA A. A simple and rapid meth-od for the identification and quantification of malachite green and its metabolite in hake by HPLC-MS/MS[J]. Food Control, 2013,31:102-107. doi: 10.1016/j.foodcont.2012.09.020

    13. [13]

      DENG P H, FENG J X, WEI Y P, XIAO J Y, LI J H, HE Q G. Fast and ultrasensitive trace malachite green detection in aquaculture and fisheries by using hexadecylpyridinium bromide modified elec-trochemical sensor[J]. J. Food Compos. Anal., 2021,102104003. doi: 10.1016/j.jfca.2021.104003

    14. [14]

      LUO Y Z, LI Z Y. A sensitive electrochemical sensor manufactured from multi-wall carbon nanotubes-polyethylenimine nanocomposite for malachite green detection[J]. J. Alloy. Compd., 2022,897163216. doi: 10.1016/j.jallcom.2021.163216

    15. [15]

      MOHAMMAD D N, LAVAEE P, RAMEZANI M, ALIBOLANDI M, KIANFAR M, ALINEZHAD N M, ABNOUS K, MOHAMMAD T S. An electrochemical sensing method based on an oligonucleotide structure for ultrasensitive detection of malachite green[J]. Microchem. J., 2021,160105598. doi: 10.1016/j.microc.2020.105598

    16. [16]

      HU Q, MAO Q Y, CUI Y K, GONG S Y, XIAO L X, GONG X J, GUAN T Z, YANG Z Q. Carbon dots-based fluorescence micro-spheres for ultrasensitive detection of malachite green in fish sam-ples[J]. J. Food Compos. Anal., 2024,134106497. doi: 10.1016/j.jfca.2024.106497

    17. [17]

      HU Y P, GAO Z J, LUO J F. Fluorescence detection of malachite green in fish tissue using red emissive Se, N, Cl-doped carbon dots[J]. Food Chem., 2021,335127677. doi: 10.1016/j.foodchem.2020.127677

    18. [18]

      GU J S, HAN T, PENG X D, KANG H, DONG L J. Highly sensitive fluorescent probe and portable test strip based on polyacrylic acid functionalized quantum dots for rapid visual detection of malachite green[J]. Talanta, 2024,268125359. doi: 10.1016/j.talanta.2023.125359

    19. [19]

      QIU J Y, NA L H, LI Y M, BAI W F, ZHANG J P, JIN L. N, S-GQDs mixed with CdTe quantum dots for ratiometric fluorescence visual detection and quantitative analysis of malachite green in fish[J]. Food Chem., 2022,390133156. doi: 10.1016/j.foodchem.2022.133156

    20. [20]

      HU C C, LIU C, ZHANG X, TONG W, YIN Y, LIU J Q, YANG S Y. "Silver effect"enhanced fluorescence for sensitive detection of crys-tal violet utilizing long wavelength emission bimetallic gold-silver nanoclusters[J]. Microchem. J., 2024,205111304. doi: 10.1016/j.microc.2024.111304

    21. [21]

      SAM S, SWATHY S, GIRISH K K. Lysozyme functionalized silver nanoclusters as a dual channel optical sensor for the effective deter-mination of glutathione[J]. Talanta, 2024,277126326. doi: 10.1016/j.talanta.2024.126326

    22. [22]

      SWATHY S, SAM S, KUMAR K G. Polyethyleneimine capped silver nanoclusters based turn-off-on fluorescence sensor for the determination of glutathione[J]. Talanta, 2024,278126541. doi: 10.1016/j.talanta.2024.126541

    23. [23]

      TIKHOMIROV V K, RODRÍGUEZ V D, KUZNETSOV A, KIRILENKO D, VAN T G, MOSHCHALKOV V V. Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters[J]. Opt. Express, 2010,18(21):22032-22040. doi: 10.1364/OE.18.022032

    24. [24]

      CHANDRAN A, GIRISH K K. Folic acid capped bimetallic nanopar-ticle based fluorescence sensor for the nanomolar determination of bilirubin[J]. J. Photochem. Photobiol. A-Chem., 2024,448115287. doi: 10.1016/j.jphotochem.2023.115287

    25. [25]

      ZHANG S, NIE X, REN Y, GUO Y Y. One-pot facile synthesis of fluorescent copper nanoclusters for highly selective and sensitive detection of tetracycline[J]. Spectroc. Acta Pt. A -Molec. Biomolec. Spectr., 2024,315124301. doi: 10.1016/j.saa.2024.124301

    26. [26]

      BARUAH D, YADAV R N S, YADAV A, DAS A M. Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicro-bial and photocatalytic activities[J]. J. Photochem. Photobiol. B-Biol., 2019,201111649. doi: 10.1016/j.jphotobiol.2019.111649

    27. [27]

      ZHANG Z H, SONG Y, WANG J, LIN Y L, MENG J M, CUI W B, LIU X X. Vanadium oxides with amorphous-crystalline heterointer-face network for aqueous zinc-ion batteries[J]. Angew. Chem. -Int. Edit., 2023,62(13)e202216290. doi: 10.1002/anie.202216290

    28. [28]

      ZHOU B X, MAHMOOD K I, DING X W, NIAZI S, ZHANG Y, WANG Z P. Fluorescent DNA-silver nanoclusters in food safety detection: From synthesis to application[J]. Talanta, 2024,273125834. doi: 10.1016/j.talanta.2024.125834

    29. [29]

      LI Y Y, LU X L, LIU X Y, ZHANG L, JING S. Red-emitting selenium-doped carbon dots for versatile applications in biosensing and anti-bacterial activities[J]. Chinese J. Inorg. Chem., 2024,40(1):173-181.

    30. [30]

      YUAN Y N, WANG Z X, WANG C Y, SONG Y Y, WANG Q L, YANG C. Zinc(Ⅱ) and cadmium(Ⅱ) complexes derived from 4'-(2-pyr-idyl)-2, 2': 6', 2″-terpyridine: Crystal structures and fluorescence property[J]. Chinese J. Inorg. Chem., 2022,38(9):1878-1886.

    31. [31]

      WANG M J, LUO X J, JIANG M H, ZHANG L Y, ZHOU Q, WU C J, HE Y. Ratio-fluorescence sensor based on carbon dots and PtRu/CN nanozyme for efficient detection of melatonin in tablet[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,321124699. doi: 10.1016/j.saa.2024.124699

    32. [32]

      SYIEMLIEH C, NARAYANAN M, VELUSAMY M, KATHIRAVAN A. Pyrene based AIE-active probe for selective detection of picric acid through the inner filter effect channel in aqueous medium[J]. J. Mol. Liq., 2024,407125125. doi: 10.1016/j.molliq.2024.125125

    33. [33]

      ZHANG J, NAN D Y, PAN S, LIU H, YANG H, HU X L. N, S co-doped carbon dots as a dual-functional fluorescent sensor for sensi-tive detection of baicalein and temperature[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2019,221117161. doi: 10.1016/j.saa.2019.117161

    34. [34]

      YANG S, ZHU H M, CAI S H, CHEN Z F, LIANG X, LI Z, PENG N N, YANG Y, WANG J M, WANG Y Z. Dual-emission carbon dots for ratiometric fluorescence sensing of thiabendazole in fruits[J]. Talanta, 2024,270125555. doi: 10.1016/j.talanta.2023.125555

    35. [35]

      ZHOU C Q, HE X X, YA D M, ZHONG J, DENG B Y. One step hydrothermal synthesis of nitrogen-doped graphitic quantum dots as a fluorescent sensing strategy for highly sensitive detection of meta-cycline in mice plasma[J]. Sensor. Actuat. B-Chem., 2017,249:256-264. doi: 10.1016/j.snb.2017.04.092

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    4. [4]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    5. [5]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    6. [6]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    7. [7]

      Zhoupeng ZhengShengyi GongQianhua LiShiya ZhangGuoqiang Feng . Lipid droplets and gallbladder targeted fluorescence probe for ratiometric NO imaging in gallstones disease models. Chinese Chemical Letters, 2025, 36(5): 110191-. doi: 10.1016/j.cclet.2024.110191

    8. [8]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    9. [9]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    12. [12]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    13. [13]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    14. [14]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    15. [15]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    16. [16]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    17. [17]

      Tengteng WangYiming JuYao ChengHaiyang WangDejin Zang . Recent advances in polyoxometalates based strategies for green synthesis of drugs. Chinese Chemical Letters, 2025, 36(5): 109871-. doi: 10.1016/j.cclet.2024.109871

    18. [18]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    19. [19]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    20. [20]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

Metrics
  • PDF Downloads(1)
  • Abstract views(82)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return