Citation: Zhihao HE, Jiafu DING, Yunjie WANG, Xin SU. First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb)[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390 shu

First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb)

  • Corresponding author: Xin SU, suxin_phy@sina.com
  • Received Date: 3 September 2024
    Revised Date: 25 March 2025

Figures(6)

  • This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors (AlX, X=N, P, As, Sb) and indium-based semiconductors (InX, X=N, P, As, Sb) as potential materials for optical devices. Band structure calculations reveal that, except for InSb, all other compounds are direct bandgap semiconductors, with AlN exhibiting a bandgap of 3.245 eV. The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X. In contrast, the conduction band minimum is influenced by all orbitals, with a predominant contribution from the p-orbitals. The static dielectric constant increased with the expansion of the unit cell volume. Compared to AlX and InX with larger X atoms, AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance. Regarding mechanical properties, AlN and InN displayed greater shear and bulk modulus than the other compounds. Moreover, among these eight crystal types, a higher modulus was associated with a lower light loss function value, indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.
  • 加载中
    1. [1]

      MORKOÇ H, STRITE S, GAO G B, LIN M E, SVERDLOV B, BURNS M. Large band gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. J. Appl. Phys., 1994,76(3):1363-1398. doi: 10.1063/1.358463

    2. [2]

      MURANAKA T, KIKUCHI Y, YOSHIZAWA T, SHIRAKAWA N, AKIMITSU J. Superconductivity in carrier-doped silicon carbide[J]. Sci. Technol. Adv. Mater., 2009,9(4)044204.

    3. [3]

      ZHANG W Y, RISTEIN J, LEY L. Hydrogen-terminated diamond electrodes. Ⅱ. Redox activity[J]. Phys. Rev. E, 2008,78(4)041603. doi: 10.1103/PhysRevE.78.041603

    4. [4]

      COLLINS A T. The optical and electronic properties of semiconducting diamond[J]. Philos. Trans. R. Soc. A, 1993,342(1664):233-244.

    5. [5]

      ZHANG Z R, CHAI C C, ZHANG W, SONG Y X, KONG L C, YANG Y T. First-principles study on Ⅲ-nitride polymorphs: AlN/GaN/InN in the Pmn21 phase[J]. Materials, 2020,13(14)3212. doi: 10.3390/ma13143212

    6. [6]

      YU J D, WANG L, HAO Z B, LUO Y, SUN C Z, WANG J, HAN Y J, XIONG B, LI H T. Van der Waals epitaxy of Ⅲ-nitride semiconductors based on 2D materials for flexible applications[J]. Adv. Mater., 2020,32(15)1903407. doi: 10.1002/adma.201903407

    7. [7]

      MIKHAILOVA M P, MOISEEV K D, YAKOVLEV Y P. Discovery of Ⅲ-Ⅴ semiconductors: Physical properties and application[J]. Semiconductors, 2019,53:273-290. doi: 10.1134/S1063782619030126

    8. [8]

      PARAMESHWARAN V, XU X, CLEMENS B. Crystallinity, surface morphology, and photoelectrochemical effects in conical InP and InN nanowires grown on silicon[J]. ACS Appl. Mater. Interfaces, 2016,8(33):21454-21464. doi: 10.1021/acsami.6b05749

    9. [9]

      XU L F, BU W. Mechanical and thermodynamic properties of AlX (X=N, P, As) compounds[J]. Int. J. Mod. Phys. B, 2017,31(23)1750167. doi: 10.1142/S0217979217501673

    10. [10]

      KNEISSL M, KOLBE T, CHUA C, KUELLER V, LOBO N, STELLMACH J, KNAUER A, RODRIGUEZ H, EINFELDT S, YANG Z. Advances in group Ⅲ-nitride-based deep UV light-emitting diode technology[J]. Semicond. Sci. Technol., 2010,26(1)014036.

    11. [11]

      MORKOÇ H. Potential applications of Ⅲ-Ⅴ nitride semiconductors[J]. Mater. Sci. Eng. B, 1997,43(1/2/3):137-146.

    12. [12]

      TING D Z, SOIBEL A, KHOSHAKHLAGH A, KEO S A, RAFOL S B, FISHER A M, PEPPER B J, LUONG E M, HILL C J, GUNAPALA S D. Advances in Ⅲ-Ⅴ semiconductor infrared absorbers and detectors[J]. Infrared Phys. Technol., 2019,97:210-216. doi: 10.1016/j.infrared.2018.12.034

    13. [13]

      GUHA B, MARIANI S, LEMAÎTRE A, COMBRIÉ S, LEO G, FAVERO L. High frequency optomechanical disk resonators in Ⅲ-Ⅴ ternary semiconductors[J]. Opt. Express, 2017,25(20):24639-24649. doi: 10.1364/OE.25.024639

    14. [14]

      KULTAYEVA S, KIM Y W. Mechanical, thermal, and electrical properties of pressureless sintered SiC-AlN ceramics[J]. Ceram. Int., 2020,46(11):19264-19273. doi: 10.1016/j.ceramint.2020.04.266

    15. [15]

      PLOOG K, DÖHLER G H. Compositional and doped superlattices in Ⅲ-Ⅴ semiconductors[J]. Adv. Phys., 1983,32(3):285-359. doi: 10.1080/00018738300101561

    16. [16]

      DONG Y C, GUO Z Y, BI Y J, LIN Z. First principles calculations of the electronic structure of Mg, Cd doped AlN[J]. Journal of South China Normal University (Natural Science Edition), 2009,41(3):55-59.

    17. [17]

      NABI S, ANWAR A W, WAZIR Z, ASLAM M, HAQ N U, MOIN M, TAYYAB M, ALI A, GHANI M U, NABI K. First principle computation of pure and (Sc, P, Bi)-doped AlSb for optoelectronic and photonic applications[J]. J. Inorg. Organomet. Polym. Mater., 2024,34(4):1808-1821. doi: 10.1007/s10904-023-02922-3

    18. [18]

      WANG S Y, FAN X L, AN Y R. Room-temperature ferromagnetism in alkaline-earth-metal doped AlP: First-principle calculations[J]. Comput. Mater. Sci., 2018,142:338-345. doi: 10.1016/j.commatsci.2017.10.041

    19. [19]

      LI J T, ZHOU X L. The structural, electronic, and optical properties of a novel multilayer heterostructure ZnSe/AlAs/GaAs: First-principles study[J]. Phys. Status Solidi B-Basic Solid State Phys., 2021,258(6)2100034. doi: 10.1002/pssb.202100034

    20. [20]

      SARMAZDEH M M, MENDI R T, ZELATI A, BOOCHANI A, NOFELI F. First-principles study of optical properties of InN nanosheet[J]. Int. J. Mod. Phys. B, 2016,30(19)1650117. doi: 10.1142/S0217979216501174

    21. [21]

      ALI M S, PARVIN R. Investigation of pressure effect on structural, mechanical, electrical and optical properties of AlAs for optoelectronic applications[J]. Physica B, 2024,673415491. doi: 10.1016/j.physb.2023.415491

    22. [22]

      JALIL A, AGATHOPOULOS S, KHAN N Z, KHAN S A, KIANI M, KHAN K, ZHU L. New physical insight in structural and electronic properties of InSb nano-sheet being rolled up into single-wall nanotubes[J]. Appl. Surf. Sci., 2019,487:550-557. doi: 10.1016/j.apsusc.2019.05.143

    23. [23]

      BAFEKRY A, FARAJI M, FADLALLAH M M, JAPPOR H R, KARBASIZADEH S, GHERGHEREHCHI M, SARSARI A I, ZIABARI A A. Novel two-dimensional AlSb and InSb monolayers with a double-layer honeycomb structure: A first-principles study[J]. Phys. Chem. Chem. Phys., 2021,23(34):18752-18759. doi: 10.1039/D1CP02590B

    24. [24]

      SALMI L, MERADJI H, GHEMID S, OUMELAZ F, KHENATA R. Phase stability, pressure-induced phase transition and electronic properties of AlX (X=P, As and Sb) compounds from first principle calculations[J]. Phase Transit., 2020,93(9):843-855. doi: 10.1080/01411594.2020.1795858

    25. [25]

      VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. J. Appl. Phys., 2001,89(11):5815-5875. doi: 10.1063/1.1368156

    26. [26]

      KABITA K, MAIBAM J, SHARMA B I, THAPA R K, SINGH R K B. First principle study on pressure-induced electronic structure and elastic properties of indium phosphide (InP)[J]. Indian J. Phys., 2015,89:1265-1271. doi: 10.1007/s12648-015-0701-0

    27. [27]

      DÍAZ J G, BRYANT G W, JASKÓLSKI W, ZIELIŃSKI M. Theory of InP nanocrystals under pressure[J]. Phys. Rev. B, 2007,75(24)245433. doi: 10.1103/PhysRevB.75.245433

    28. [28]

      MAMINDLA R, NIRANJAN M K. Influence of temperature on bandgap shifts, optical properties and photovoltaic parameters of GaAs/AlAs and GaAs/AlSb p-n heterojunctions: Insights from ab-initio DFT+NEGF studies[J]. J. Phys.-Condens. Matter, 2024,36(20)205504. doi: 10.1088/1361-648X/ad2793

    29. [29]

      BUCKERIDGE J, VEAL T D, CATLOW C R A, SCANLON D O. Intrinsic point defects and the n- and p-type dopability of the narrow gap semiconductors GaSb and InSb[J]. Phys. Rev. B, 2019,100(3)035207. doi: 10.1103/PhysRevB.100.035207

    30. [30]

      WANG Y, YIN H T, CAO R G, ZAHID F, ZHU Y, LIU L, WANG J, GUO H. Electronic structure of Ⅲ-Ⅴ zinc-blende semiconductors from first principles[J]. Phys. Rev. B, 2013,87(23)235203. doi: 10.1103/PhysRevB.87.235203

    31. [31]

      SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. J. Phys.-Condens. Matter, 2002,14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301

    32. [32]

      MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    33. [33]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    34. [34]

      CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method[J]. Phys. Rev. Lett., 1980,45(7):566-569. doi: 10.1103/PhysRevLett.45.566

    35. [35]

      HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. J. Chem. Phys., 2003,118(18):8207-8215. doi: 10.1063/1.1564060

    36. [36]

      HAMANN D R, SCHLÜTER M, CHIANG C. Norm-conserving pseudopotentials[J]. Phys. Rev. Lett., 1979,43(20):1494-1497. doi: 10.1103/PhysRevLett.43.1494

    37. [37]

      JI J, YU G, XU C, XIANG H J. Fractional quantum ferroelectricity[J]. Nat. Commun., 2024,15(1)135. doi: 10.1038/s41467-023-44453-y

    38. [38]

      ZHANG J H, DU Y H, MA L S, LI R Y. Structural properties, electronic structure and bonding of Ba10(PO4)6X2 (X=F, Cl and Br)[J]. J. Alloy. Compd., 2016,680:121-128. doi: 10.1016/j.jallcom.2016.04.114

    39. [39]

      HEYD J, PERALTA J E, SCUSERIA G E, MARTIN R L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional[J]. J. Chem. Phys., 2005,123(17)174101. doi: 10.1063/1.2085170

    40. [40]

      GUO Q X, YOSHIDA A. Temperature dependence of band gap change in InN and AlN[J]. Jpn. J. Appl. Phys., 1994,33(5):2453-2456.

    41. [41]

      MONEMAR B. Fundamental energy gaps of AlAs and AlP from photoluminescence excitation spectra[J]. Phys. Rev. B, 1973,8(12):5711-5718. doi: 10.1103/PhysRevB.8.5711

    42. [42]

      ZHU X, LOUIE S G. Quasiparticle band structure of thirteen semiconductors and insulators[J]. Phys. Rev. B, 1991,43(17):14142-14156. doi: 10.1103/PhysRevB.43.14142

    43. [43]

      LI H L, LI Y B, ZHU L, YE K. Experimental and first-principles studies of structural and optical properties of rare earth (RE=La, Er, Nd) doped ZnO[J]. J. Alloy. Compd., 2014,617:102-107. doi: 10.1016/j.jallcom.2014.08.019

    44. [44]

      ZHANG R L, LU S S, XIAO Q Q, XIE Q. A first-principles study of the electronic structure and optical properties of Lu-doped AlN[J]. Chinese J. Inorg. Chem., 2023,39(1):150-158.

    45. [45]

      AMBROSCH-DRAXL C, SOFO J O. Linear optical properties of solids within the full-potential linearized augmented planewave method[J]. Comput. Phys. Commun., 2006,175(1):1-14. doi: 10.1016/j.cpc.2006.03.005

    46. [46]

      BAI P, LI X H, YANG N, CHU W D, BAI X Q, HUANG S H, ZHANG Y H, SHEN W Z, FU Z L, SHAO D X, TAN Z Y, LI H, CAO J C, LI L H, LINFIELD E H, XIE Y, ZHAO Z R. Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector[J]. Sci. Adv., 2022,8(21)eabn2031. doi: 10.1126/sciadv.abn2031

    47. [47]

      SHEN X C. Spectroscopic and optical properties of semiconductors[M]. Beijing: Science Press, 2002

    48. [48]

      RADZWAN A, AHMED R, SHAARI A, LAWAL A. First-principles study of electronic and optical properties of antimony sulphide thin film[J]. Optik, 2020,202163631. doi: 10.1016/j.ijleo.2019.163631

    49. [49]

      LIU Q J, RAN Z, LIU F S, LIU Z T. Phase transitions and mechanical stability of TiO2 polymorphs under high pressure[J]. J. Alloy. Compd., 2015,631:192-201. doi: 10.1016/j.jallcom.2015.01.085

    50. [50]

      LV Z L, CUI H L, Wang H, LI X H, JI G F. Electronic and elastic properties of BaLiF3 with pressure effects: First-principles study[J]. Phys. Status Solidi B, 2016,253(9):1788-1794. doi: 10.1002/pssb.201600094

    51. [51]

      HUNTINGTON H B. The elastic constants of crystals[M]. New York: Academic Press, 1958: 213-351

    52. [52]

      AYDIN S, SIMSEK M. First-principles calculations of elemental crystalline boron phases under high pressure: Orthorhombic B28 and tetragonal B48[J]. J. Alloy. Compd., 2011,509(17):5219-5229. doi: 10.1016/j.jallcom.2011.02.070

    53. [53]

      RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index[J]. Phys. Rev. Lett., 2008,101(5)055504. doi: 10.1103/PhysRevLett.101.055504

    54. [54]

      LIU Y H, CHONG X Y, JIANG Y H, ZHOU R, FENG J. Mechanical properties and electronic structures of Fe-Al intermetallic[J]. Physica B, 2017,506:1-11. doi: 10.1016/j.physb.2016.10.032

    55. [55]

      CHONG D P. Computational study of polarizability anisotropies[J]. Can. J. Chem., 2018,96(10):934-938. doi: 10.1139/cjc-2018-0171

  • 加载中
    1. [1]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    2. [2]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    3. [3]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    4. [4]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    8. [8]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    9. [9]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    10. [10]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    11. [11]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    12. [12]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    13. [13]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    14. [14]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    15. [15]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    16. [16]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    17. [17]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    18. [18]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    19. [19]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    20. [20]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

Metrics
  • PDF Downloads(0)
  • Abstract views(132)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return