Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection
- Corresponding author: Rui TIAN, tianrui100@163.com
Citation:
Rui TIAN, Duo LI, Yuan REN, Jiamin CHAI, Xuehua SUN, Haoyu LI, Yuecheng ZHANG. Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(6): 1245-1255.
doi:
10.11862/CJIC.20240389
DU R B, BA K, YANG Y X, ZHAO Y Y, LIN Y P. Efficacy of ornidazole for pericoronitis: A meta-analysis and systematic review[J]. Arch. Med. Sci., 2024,20(1):189-195. doi: 10.5114/aoms/171907
LI S C, CAO M, ZHOU Y, SHU C, WANG Y. Ornidazole transfer into colostrum and assessment of exposure risk for breastfeeding infant: A population pharmacokinetic analysis. pharmaceutics[J]. Pharmaceutics, 2023,15(11)2524. doi: 10.3390/pharmaceutics15112524
HARIKA S C, KUMAR Y S, RAO Y M, SRIRAM P, SHANKAR U. Design and evaluation of sustained release of ornidazole by dental inserts[J]. Curr. Drug Metab., 2021,22(7):572-580. doi: 10.2174/1389200222666210222152940
GÓMEZ-MUÑOZ M T, GÓMEZ-MOLINERO M Á, GONZÁLEZ F, AZAMI-CONESA I, BAILÉN M, GARCÍA PIQUERAS M. Avian oropharyngeal trichomonosis: Treatment, failures and alternatives, a systematic review[J]. Microorganisms, 2022,10(11)2297. doi: 10.3390/microorganisms10112297
ETTADILI F E, AZRIOUIL M, MATROUF M, TAHIRI ALAOUI O, LAGHRIB F, FARAHI A. Materials framework based biosensors for the detection of ornidazole and metronidazol antibiotics in environment and foodstuffs[J]. Inorg. Chem. Commun., 2022,140109416. doi: 10.1016/j.inoche.2022.109416
MANCIU F S, GUERRERO J, PENCE B C, MARTINEZ LOPEZ L V. Assessment of drug activities against giardia using hyperspectral Raman microscopy[J]. Pathogens, 2024,13(5)358. doi: 10.3390/pathogens13050358
MEMIŞ A C, ALCAN S Y, TEMIZ S G, BAŞAR F, ARSLAN K. Managing unpredictable challenge of a liver injury in ornidazole use: A case report[J]. Med. Rep., 2024,6100097.
ZHANG L Y, ZHANG Z J, WU K. In vivo and real time determination of ornidazole and tinidazole and pharmacokinetic study by capillary electrophoresis with microdialysis[J]. J. Pharm. Biomed. Anal., 2006,41(4):1453-1457. doi: 10.1016/j.jpba.2006.03.016
SEE K L, ELBASHIR A A, SAAD B, ALI A S M, ABOUL-ENEIN H Y. Simultaneous determination of ofloxacin and ornidazole in pharmaceutical preparations by capillary zone electrophoresis[J]. Biomed. Chromatogr., 2009,23(12):1283-1290. doi: 10.1002/bmc.1251
BABU N R D. Development and validation of stability indicating RP-HPLC method for quantitative estimation of ornidazole and its impurities in ornidazole injection[J]. Res. J. Pharm. Technol., 2022,25(2):82-88.
AGRAWAL G P, MAHESHWARI R K, MISHRA P. Validation of ultra performance liquid chromatography-tandem mass spectrometry coupled with electrospray ionization method for quantitative determination of ornidazole in solid dispersion[J]. Curr. Pharm. Anal., 2020,16(5):487-493. doi: 10.2174/1573412914666181024145937
KELANI K M, GAD A G, FAYEZ Y M, MAHMOUD A M, ABDEL-RAOOF A M. Three developed spectrophotometric methods for determination of a mixture of ofloxacin and ornidazole; Application of greenness assessment tools[J]. BMC Chem., 2023,17(1)16. doi: 10.1186/s13065-023-00932-3
KUMAR VASHISTHA V, BALA R, VSR PULLABHOTLA R. Derivatizing agents for spectrophotometric and spectrofluorimetric determination of pharmaceuticals: A review[J]. J. Taibah Univ. Sci., 2023,17(1)2206363. doi: 10.1080/16583655.2023.2206363
EL HAYAOUI W, TAJAT N, RADAA C, BOUGDOUR N, ZOUBIR J, IDELAHCEN A. In situ preparation of eggshell@Ag nanocomposite electrode for highly sensitive detection of antibiotic drug ornidazole in water sample[J]. Nanotechnol. Environ. Eng., 2022,7(3):635-646. doi: 10.1007/s41204-022-00272-y
WANG H X, BO X J, ZHOU M, GUO L P. DUT-67 and tubular polypyrrole formed a cross-linked network for electrochemical detection of nitrofurazone and ornidazole[J]. Anal. Chim. Acta, 2020,1109:1-8. doi: 10.1016/j.aca.2020.03.002
ZHAO L, LI J Y, LI Y, WANG T G, JIN X L, WANG K, RAHMAN E, XING Y, JI B P, ZHOU F. Preparation of monoclonal antibody and development of an indirect competitive enzyme-linked immunosorbent assay for ornidazole detection[J]. Food Chem., 2017,229:439-444. doi: 10.1016/j.foodchem.2017.02.100
RAWAT A, KANZARIYA D B, LAMA P, PAL T K. A Zn2+ coordination polymer as a dual sensor for ppb level detection of antibiotics and organo-toxins in a green solvent[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2023,295122579. doi: 10.1016/j.saa.2023.122579
MAGDY G, ABOELKASSIM E, EL-DOMANY R A, BELAL F. Green synthesis, characterization, and antimicrobial applications of silver nanoparticles as fluorescent nanoprobes for the spectrofluori-metric determination of ornidazole and miconazole[J]. Sci. Rep., 2022,12(1)21395.
SONG X M, HOU X F, DANG M X, ZHAO Q X, LIU S, MA Z H, REN Y X. Design and preparation of a multi-responsive Cd-based fluorescent coordination polymer for smart sensing of nitrobenzene and ornidazole[J]. Spectroc. Acta Pt. A ‒ Molec. Biomolec. Spectr., 2024,320124656.
BAO H L, LIU Y H, LI H, QI W X, SUN K Y. Luminescence of carbon quantum dots and their application in biochemistry[J]. Heliyon, 2023,9(10)e20317.
LEONG C Y, WAHAB R A, LEE S L, PONNUSAMY V K, CHEN Y H. Current perspectives of metal-based nanomaterials as photocatalytic antimicrobial agents and their therapeutic modes of action: A review[J]. Environ. Res., 2023,227115578.
PEI G X, ZHANG L L, SUN X Y. Recent advances of bimetallic nanoclusters with atomic precision for catalytic applications[J]. Coord. Chem. Rev., 2024,506215692.
KAWAWAKI T, EBINA A, HOSOKAWA Y, OZAKI S, SUZUKI D, HOSSAIN S. Thiolate-protected metal nanoclusters: Recent development in synthesis, understanding of reaction, and application in energy and environmental field[J]. Small, 2021,17(27)2005328.
MATUS M F, HÄKKINEN H. Understanding ligand-protected noble metal nanoclusters at work[J]. Nat. Rev. Mater., 2023,8(6):372-389.
BURRATTI L, CIOTTA E, BOLLI E, KACIULIS S, CASALBONI M, DE MATTEIS F, GARZON-MANJON A, SCHEU C, PIZZOFERRATO R, PROSPOSITO P. Fluorescence enhancement induced by the interaction of silver nanoclusters with lead ions in water[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2019,579123634.
XUE R, GENG X, LIANG F, LIU Y, YANG W, HUANG Z. Natural plant compounds in synthesis and luminescence modulation of metal nanoclusters: Toward sustainable nanoprobes for sensing and bioimaging[J]. Mater. Today Adv., 2022,16100279. doi: 10.1016/j.mtadv.2022.100279
ZOU X J, KANG X, ZHU M Z. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters[J]. Chem. Soc. Rev., 2023,52(17):5892-5967. doi: 10.1039/D2CS00876A
YANG J, YANG F, ZHANG C S, HE X B, JIN R C. Metal nanoclusters as biomaterials for bioapplications: Atomic precision as the next goal[J]. ACS Mater. Lett., 2022,4(7):1279-1296. doi: 10.1021/acsmaterialslett.2c00237
NIE Y M, TAO X L, ZHANG H W, CHAI Y Q, YUAN R. Self-assembly of gold nanoclusters into a metal-organic framework with efficient electrochemiluminescence and their application for sensitive detection of rutin[J]. Anal. Chem., 2021,93(7):3445-3451. doi: 10.1021/acs.analchem.0c04682
XIE B, DING B S, MAO P, WANG Y, LIU Y N, CHEN M R, ZHOU C J, WEN H M, XIA S J, HAN M, PALMER R E, WANG G G, HU J. Metal nanocluster-metal organic framework-polymer hybrid nanomaterials for improved hydrogen detection[J]. Small, 2022,18(23)2200634. doi: 10.1002/smll.202200634
XU J, LI J M, ZHONG W C, WANG M Y, SUKHUROROKOV G, LI S. The density of surface ligands regulates the luminescence of thiolated gold nanoclusters and their metal ion response[J]. Chin. Chem. Lett., 2021,32(8):2390-2394. doi: 10.1016/j.cclet.2021.02.037
JIANG M Z, XU X Y, LIU S, LIU L L, WANG X M, JIANG H. Enhancement of nanozyme activity by second ligand modification on glutathione protected gold nanoclusters for regulation of intracellular oxidative stress[J]. Inorg. Chem. Commun., 2024,161112115. doi: 10.1016/j.inoche.2024.112115
ZHAO P, XU L J, LI B H, ZHAO Y F, ZHAO Y S, LU Y, CAO M H, LI G Q, WENG T C, WANG H, ZHENG Y J. Non-equilibrium assembly of atomically-precise copper nanoclusters[J]. Adv. Mater., 2024,36(28)2311818. doi: 10.1002/adma.202311818
ZHANG L L, WONG W Y. Atomically precise copper nanoclusters as ultrasmall molecular aggregates: Appealing compositions, structures, properties, and applications[J]. Aggregate, 2023,4(1)e266. doi: 10.1002/agt2.266
OUYANG X Y, WANG M F, GUO L J, CUI C J, LIU T, REN Y G, ZHAO Y, GUO X N, XIE G, LI J, FAN C H, WANG L H. DNA nanoribbon-templated self-assembly of ultrasmall fluorescent copper nanoclusters with enhanced luminescence[J]. Angew. Chem.‒Int. Edit., 2020,59(29):11836-11844. doi: 10.1002/anie.202003905
BARNWAL N H, NANDI N, SARKAR P, SAHU K. White light emission from Zn2+ and DMSO-induced copper nanocluster assembly[J]. Chem.‒Asian J., 2024,9(9)e202400633.
HUANG X, ZHAO H N, QIU W, WANG J, GUO L H, LIN Z Y, PAN W, WU Y, QIU B. A fluorescence signal amplification strategy for modification-free ratiometric determination of tyrosinase in situ based on the use of dual-templated copper nanoclusters[J]. Microchim. Acta, 2020,240(4)240.
PU S, XIA C Y, WU L, XU K L. CuNCs modified with dual-ligand to achieve fluorescence visualization detection of Tin (Ⅳ)[J]. Microchem. J., 2022,183(20)108086.
FAN Y, YU W H, LIAO Y W, JIANG X H, WANG Z H, CHENG Z J. Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2022,267120509. doi: 10.1016/j.saa.2021.120509
BİLKAY M, KARA H. Fluorometric determination of ornidazole by using BSA coated copper nanoclusters as a novel turn off sensor[J]. Turk. J. Chem., 2022,46(2):475-486. doi: 10.55730/1300-0527.3321
NAWARA K, WALUK J. Improved method of fluorescence quantum yield determination[J]. Anal. Chem., 2017,89(17):8650-8655. doi: 10.1021/acs.analchem.7b02013
KALIA A, KAUR G. Biosynthesis of nanoparticles using mushrooms[M]//SINGH B, LALLAWMSANGA, PASSARI A. Biology of Macrofungi. Fungal Biology. [S. l.]: Springer, Cham, 2018.
BARTH A. Infrared spectroscopy of proteins[J]. Biochim. Biophys. Acta, 2007,1767(9):1073-1101. doi: 10.1016/j.bbabio.2007.06.004
DING C F, XU Y J, ZHAO Y N, ZHONG H, LUO X L. Fabrication of BSA@AuNC-based nanostructures for cell fluoresce imaging and target drug delivery[J]. ACS Appl. Mater. Interfaces, 2018,10(10):8947-8954. doi: 10.1021/acsami.7b18493
LE GUÉVEL X, HÖTZER B, JUNG G, HOLLEMEYER K, TROUILLET V, SCHNEIDER M. Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy[J]. J. Phys. Chem. C, 2011,115(22):10955-10963. doi: 10.1021/jp111820b
WANG L, MIAO H, ZHONG D, YANG X M. Synthesis of dopamine-mediated Cu nanoclusters for sensing and fluorescent coding[J]. Anal. Methods, 2016,8(1):40-44. doi: 10.1039/C5AY02494C
VILAR-VIDAL N, BLANCO M C, LOPEZ-QUINTELA M A. Electrochemical synthesis of very stable photoluminescent copper cluster[J]. J. Phys. Chem. B, 2010,114(38):15924-15930.
HAN A, YANG Y, ZHANG Q, TU Q, FANG G, LIU J, WANG S, LI R. Electrochemistry and electrochemiluminescence of copper metal cluster[J]. J. Electroanal. Chem., 2017,795:116-122. doi: 10.1016/j.jelechem.2017.04.058
YANG B, YANG F Z, HUANG L, XU S K, YAO G H, ZHOU S M. Study on the role of 2, 2-bipyridine in chemical copper plating[J]. Electrochemistry, 2007,13(4):425-430.
ZHAO M, CHEN A Y, HUANG D, ZHUO Y, CHAI Y Q, YUAN R. Cu nanoclusters: Novel electrochemiluminescence emitters for bioanalysis[J]. Anal. Chem., 2016,88:11527-11532. doi: 10.1021/acs.analchem.6b02770
BALOGH L, VALLUZZI R, LAVERDURE K S, GIDO S P, HAGNAUER G L, TOMALIA D A. Poly (amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters[J]. J. Am. Chem. Soc., 1998,120(29):7355-7356. doi: 10.1021/ja980861w
PAN Y, WEI X L. A novel FRET immunosensor for rapid and sensitive detection of dicofol based on bimetallic nanoclusters[J]. Anal. Chim. Acta, 2022,1224340235. doi: 10.1016/j.aca.2022.340235
MATOSSI F. Theory of dynamic quenching of photoconductivity and luminescence[J]. J. Electrochem. Soc., 1956,103(12):662-667. doi: 10.1149/1.2430187
XU Y L, SHERWOOD J, QIN Y, CROWLEY D, BONIZZONI M, BAO Y. The role of protein characteristics in the formation and fluorescence of Au nanoclusters[J]. Nanoscale, 2014,6(3):1515-1524. doi: 10.1039/C3NR06040C
ANDREWS B, TORRIE B H, POWELL B M. Intermolecular potentials for alpha-glycine from Raman and infrared scattering measurements[J]. Biophys. J., 1983,41(3):293-298. doi: 10.1016/S0006-3495(83)84441-5
TIAN L, LI Y F, REN T T, TONG Y L, YANG B S, LI Y Q. Novel bimetallic gold-silver nanoclusters with "Synergy"-enhanced fluorescence for cyanide sensing, cell imaging and temperature sensing[J]. Talanta, 2017,170:530-539. doi: 10.1016/j.talanta.2017.03.107
THULKAR J, KRIPLANI A, AGARWAL N. A comparative study of oral single dose of metronidazole, tinidazole, secnidazole and ornidazole in bacterial vaginosis[J]. Indian J. Pharmacol., 2012,44(2):243-245. doi: 10.4103/0253-7613.93859
KURT Ö, GIRGINKARDESLER N, BALCIOGLU I C, ÖZBILGIN A, OK Ü Z. A comparison of metronidazole and single-dose ornidazole for the treatment of dientamoebiasis[J]. Clin. Microb. Infect., 2008,14(6):601-604. doi: 10.1111/j.1469-0691.2008.02002.x
LEI M Y, WANG X H, ZHANG T J, SHI Y, WEN J H, ZHANG Q F. Homochiral Eu3+@MOF composite for the enantioselective detection and separation of (R/S)-ornidazole[J]. Inorg. Chem., 2022,61(18):6764-6772. doi: 10.1021/acs.inorgchem.1c03695
CARTER D C, HO J X. Structure of serum albumin[J]. Adv. Protein Chem., 1994,45:153-203.
CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
Lei ZHANG , Cheng HE , Yang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Yanting HUANG , Hua XIANG , Mei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Shu Tian , Wenxin Huang , Junrui Hu , Huiling Wang , Zhipeng Zhang , Liying Xu , Junrong Li , Yao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336
Ren Shen , Yanmei Fang , Chunxiao Yang , Quande Wei , Pui-In Mak , Rui P. Martins , Yanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
Tiancong Shi , Xi Chen , Xiao Zhou , Hongyi Zhang , Fuping Han , Lihan Cai , Wen Sun , Jianjun Du , Jiangli Fan , Xiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
Hejie Zheng , Zhili Wang , Guizhen Luo , Cuicui Du , Xiaohua Zhang , Jinhua Chen . A novel PEC-EC dual-mode biosensing platform for dual target detection of miRNA-133a and cTnI. Chinese Chemical Letters, 2025, 36(4): 110131-. doi: 10.1016/j.cclet.2024.110131
Xu Qu , Pengzhao Wu , Kaixuan Duan , Guangwei Wang , Liang-Liang Gao , Yuan Guo , Jianjian Zhang , Donglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681
Yu BAI , Jijiang WANG , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Bo Liu , Shuaiqiang Shao , Junjie Cai , Zijian Zhang , Feng Tian , Kun Yang , Fan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814
The green circular area represents the green fluorescence emitted by the CuNCs.
Ex: excitation; Em: emission; Inset in d: particle size distribution histogram with Gaussian fit from TEM analysis.
Inset in a: atomic fractions (%) of elements identified by XPS analysis.
Inset in a: quenching efficiencies of BSA-Gly CuNCs and BSA CuNCs to ONZ under the same conditions; The concentrations from A to F of ONZ in b were 0, 0.277, 1.64, 5.53, 11.0, and 21.7 μmol·L-1.
The bar chart from 1 to 7 was Barbitone sodium-HCl, H2O, PBS, Na2HPO4-CA, Na2HPO4-NaH2PO4, Na2HPO4-KH2PO4, and KH2PO4-NaOH, respectively.
The concentrations of ONZ were from 0, 2.33, 7.32, 12.50, 16.70, 23.65, 31.87, 37.36, 41.45, 48.76, to 52.60 μmol·L-1.