Citation: Rui TIAN, Duo LI, Yuan REN, Jiamin CHAI, Xuehua SUN, Haoyu LI, Yuecheng ZHANG. Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389 shu

Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection

  • Corresponding author: Rui TIAN, tianrui100@163.com
  • Received Date: 30 October 2024
    Revised Date: 9 April 2025

Figures(6)

  • Bovine serum albumin (BSA) and glycine (Gly) dual-ligand-modified copper nanoclusters (BSA-Gly CuNCs) with high fluorescence intensity were synthesized by a one-pot strategy. Based on the competitive fluorescence quenching and dynamic quenching effects of ornidazole (ONZ) on BSA-Gly CuNCs, a simple and sensitive detection method for ONZ was successfully developed. The experimental results demonstrate that the addition of the small molecule Gly can more effectively protect CuNCs, and thus enhance its fluorescence intensity and stability. The proposed assay allowed for the detection of ONZ in a linear range of 0.28 to 52.60 μmol·L-1 and a detection limit of 0.069 μmol·L-1. Compared with the single-ligand-modified CuNCs, dual-ligand-modified BSA-Gly CuNCs had higher fluorescence intensity, stability, and sensing ability and were successfully applied to evaluate ONZ in actual ONZ tablets.
  • 加载中
    1. [1]

      DU R B, BA K, YANG Y X, ZHAO Y Y, LIN Y P. Efficacy of ornidazole for pericoronitis: A meta-analysis and systematic review[J]. Arch. Med. Sci., 2024,20(1):189-195. doi: 10.5114/aoms/171907

    2. [2]

      LI S C, CAO M, ZHOU Y, SHU C, WANG Y. Ornidazole transfer into colostrum and assessment of exposure risk for breastfeeding infant: A population pharmacokinetic analysis. pharmaceutics[J]. Pharmaceutics, 2023,15(11)2524. doi: 10.3390/pharmaceutics15112524

    3. [3]

      HARIKA S C, KUMAR Y S, RAO Y M, SRIRAM P, SHANKAR U. Design and evaluation of sustained release of ornidazole by dental inserts[J]. Curr. Drug Metab., 2021,22(7):572-580. doi: 10.2174/1389200222666210222152940

    4. [4]

      GÓMEZ-MUÑOZ M T, GÓMEZ-MOLINERO M Á, GONZÁLEZ F, AZAMI-CONESA I, BAILÉN M, GARCÍA PIQUERAS M. Avian oropharyngeal trichomonosis: Treatment, failures and alternatives, a systematic review[J]. Microorganisms, 2022,10(11)2297. doi: 10.3390/microorganisms10112297

    5. [5]

      ETTADILI F E, AZRIOUIL M, MATROUF M, TAHIRI ALAOUI O, LAGHRIB F, FARAHI A. Materials framework based biosensors for the detection of ornidazole and metronidazol antibiotics in environment and foodstuffs[J]. Inorg. Chem. Commun., 2022,140109416. doi: 10.1016/j.inoche.2022.109416

    6. [6]

      MANCIU F S, GUERRERO J, PENCE B C, MARTINEZ LOPEZ L V. Assessment of drug activities against giardia using hyperspectral Raman microscopy[J]. Pathogens, 2024,13(5)358. doi: 10.3390/pathogens13050358

    7. [7]

      MEMIŞ A C, ALCAN S Y, TEMIZ S G, BAŞAR F, ARSLAN K. Managing unpredictable challenge of a liver injury in ornidazole use: A case report[J]. Med. Rep., 2024,6100097.

    8. [8]

      ZHANG L Y, ZHANG Z J, WU K. In vivo and real time determination of ornidazole and tinidazole and pharmacokinetic study by capillary electrophoresis with microdialysis[J]. J. Pharm. Biomed. Anal., 2006,41(4):1453-1457. doi: 10.1016/j.jpba.2006.03.016

    9. [9]

      SEE K L, ELBASHIR A A, SAAD B, ALI A S M, ABOUL-ENEIN H Y. Simultaneous determination of ofloxacin and ornidazole in pharmaceutical preparations by capillary zone electrophoresis[J]. Biomed. Chromatogr., 2009,23(12):1283-1290. doi: 10.1002/bmc.1251

    10. [10]

      BABU N R D. Development and validation of stability indicating RP-HPLC method for quantitative estimation of ornidazole and its impurities in ornidazole injection[J]. Res. J. Pharm. Technol., 2022,25(2):82-88.

    11. [11]

      AGRAWAL G P, MAHESHWARI R K, MISHRA P. Validation of ultra performance liquid chromatography-tandem mass spectrometry coupled with electrospray ionization method for quantitative determination of ornidazole in solid dispersion[J]. Curr. Pharm. Anal., 2020,16(5):487-493. doi: 10.2174/1573412914666181024145937

    12. [12]

      KELANI K M, GAD A G, FAYEZ Y M, MAHMOUD A M, ABDEL-RAOOF A M. Three developed spectrophotometric methods for determination of a mixture of ofloxacin and ornidazole; Application of greenness assessment tools[J]. BMC Chem., 2023,17(1)16. doi: 10.1186/s13065-023-00932-3

    13. [13]

      KUMAR VASHISTHA V, BALA R, VSR PULLABHOTLA R. Derivatizing agents for spectrophotometric and spectrofluorimetric determination of pharmaceuticals: A review[J]. J. Taibah Univ. Sci., 2023,17(1)2206363. doi: 10.1080/16583655.2023.2206363

    14. [14]

      EL HAYAOUI W, TAJAT N, RADAA C, BOUGDOUR N, ZOUBIR J, IDELAHCEN A. In situ preparation of eggshell@Ag nanocomposite electrode for highly sensitive detection of antibiotic drug ornidazole in water sample[J]. Nanotechnol. Environ. Eng., 2022,7(3):635-646. doi: 10.1007/s41204-022-00272-y

    15. [15]

      WANG H X, BO X J, ZHOU M, GUO L P. DUT-67 and tubular polypyrrole formed a cross-linked network for electrochemical detection of nitrofurazone and ornidazole[J]. Anal. Chim. Acta, 2020,1109:1-8. doi: 10.1016/j.aca.2020.03.002

    16. [16]

      ZHAO L, LI J Y, LI Y, WANG T G, JIN X L, WANG K, RAHMAN E, XING Y, JI B P, ZHOU F. Preparation of monoclonal antibody and development of an indirect competitive enzyme-linked immunosorbent assay for ornidazole detection[J]. Food Chem., 2017,229:439-444. doi: 10.1016/j.foodchem.2017.02.100

    17. [17]

      RAWAT A, KANZARIYA D B, LAMA P, PAL T K. A Zn2+ coordination polymer as a dual sensor for ppb level detection of antibiotics and organo-toxins in a green solvent[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2023,295122579. doi: 10.1016/j.saa.2023.122579

    18. [18]

      MAGDY G, ABOELKASSIM E, EL-DOMANY R A, BELAL F. Green synthesis, characterization, and antimicrobial applications of silver nanoparticles as fluorescent nanoprobes for the spectrofluori-metric determination of ornidazole and miconazole[J]. Sci. Rep., 2022,12(1)21395.

    19. [19]

      SONG X M, HOU X F, DANG M X, ZHAO Q X, LIU S, MA Z H, REN Y X. Design and preparation of a multi-responsive Cd-based fluorescent coordination polymer for smart sensing of nitrobenzene and ornidazole[J]. Spectroc. Acta Pt. A ‒ Molec. Biomolec. Spectr., 2024,320124656.

    20. [20]

      BAO H L, LIU Y H, LI H, QI W X, SUN K Y. Luminescence of carbon quantum dots and their application in biochemistry[J]. Heliyon, 2023,9(10)e20317.

    21. [21]

      LEONG C Y, WAHAB R A, LEE S L, PONNUSAMY V K, CHEN Y H. Current perspectives of metal-based nanomaterials as photocatalytic antimicrobial agents and their therapeutic modes of action: A review[J]. Environ. Res., 2023,227115578.

    22. [22]

      PEI G X, ZHANG L L, SUN X Y. Recent advances of bimetallic nanoclusters with atomic precision for catalytic applications[J]. Coord. Chem. Rev., 2024,506215692.

    23. [23]

      KAWAWAKI T, EBINA A, HOSOKAWA Y, OZAKI S, SUZUKI D, HOSSAIN S. Thiolate-protected metal nanoclusters: Recent development in synthesis, understanding of reaction, and application in energy and environmental field[J]. Small, 2021,17(27)2005328.

    24. [24]

      MATUS M F, HÄKKINEN H. Understanding ligand-protected noble metal nanoclusters at work[J]. Nat. Rev. Mater., 2023,8(6):372-389.

    25. [25]

      BURRATTI L, CIOTTA E, BOLLI E, KACIULIS S, CASALBONI M, DE MATTEIS F, GARZON-MANJON A, SCHEU C, PIZZOFERRATO R, PROSPOSITO P. Fluorescence enhancement induced by the interaction of silver nanoclusters with lead ions in water[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2019,579123634.

    26. [26]

      XUE R, GENG X, LIANG F, LIU Y, YANG W, HUANG Z. Natural plant compounds in synthesis and luminescence modulation of metal nanoclusters: Toward sustainable nanoprobes for sensing and bioimaging[J]. Mater. Today Adv., 2022,16100279. doi: 10.1016/j.mtadv.2022.100279

    27. [27]

      ZOU X J, KANG X, ZHU M Z. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters[J]. Chem. Soc. Rev., 2023,52(17):5892-5967. doi: 10.1039/D2CS00876A

    28. [28]

      YANG J, YANG F, ZHANG C S, HE X B, JIN R C. Metal nanoclusters as biomaterials for bioapplications: Atomic precision as the next goal[J]. ACS Mater. Lett., 2022,4(7):1279-1296. doi: 10.1021/acsmaterialslett.2c00237

    29. [29]

      NIE Y M, TAO X L, ZHANG H W, CHAI Y Q, YUAN R. Self-assembly of gold nanoclusters into a metal-organic framework with efficient electrochemiluminescence and their application for sensitive detection of rutin[J]. Anal. Chem., 2021,93(7):3445-3451. doi: 10.1021/acs.analchem.0c04682

    30. [30]

      XIE B, DING B S, MAO P, WANG Y, LIU Y N, CHEN M R, ZHOU C J, WEN H M, XIA S J, HAN M, PALMER R E, WANG G G, HU J. Metal nanocluster-metal organic framework-polymer hybrid nanomaterials for improved hydrogen detection[J]. Small, 2022,18(23)2200634. doi: 10.1002/smll.202200634

    31. [31]

      XU J, LI J M, ZHONG W C, WANG M Y, SUKHUROROKOV G, LI S. The density of surface ligands regulates the luminescence of thiolated gold nanoclusters and their metal ion response[J]. Chin. Chem. Lett., 2021,32(8):2390-2394. doi: 10.1016/j.cclet.2021.02.037

    32. [32]

      JIANG M Z, XU X Y, LIU S, LIU L L, WANG X M, JIANG H. Enhancement of nanozyme activity by second ligand modification on glutathione protected gold nanoclusters for regulation of intracellular oxidative stress[J]. Inorg. Chem. Commun., 2024,161112115. doi: 10.1016/j.inoche.2024.112115

    33. [33]

      ZHAO P, XU L J, LI B H, ZHAO Y F, ZHAO Y S, LU Y, CAO M H, LI G Q, WENG T C, WANG H, ZHENG Y J. Non-equilibrium assembly of atomically-precise copper nanoclusters[J]. Adv. Mater., 2024,36(28)2311818. doi: 10.1002/adma.202311818

    34. [34]

      ZHANG L L, WONG W Y. Atomically precise copper nanoclusters as ultrasmall molecular aggregates: Appealing compositions, structures, properties, and applications[J]. Aggregate, 2023,4(1)e266. doi: 10.1002/agt2.266

    35. [35]

      OUYANG X Y, WANG M F, GUO L J, CUI C J, LIU T, REN Y G, ZHAO Y, GUO X N, XIE G, LI J, FAN C H, WANG L H. DNA nanoribbon-templated self-assembly of ultrasmall fluorescent copper nanoclusters with enhanced luminescence[J]. Angew. Chem.‒Int. Edit., 2020,59(29):11836-11844. doi: 10.1002/anie.202003905

    36. [36]

      BARNWAL N H, NANDI N, SARKAR P, SAHU K. White light emission from Zn2+ and DMSO-induced copper nanocluster assembly[J]. Chem.‒Asian J., 2024,9(9)e202400633.

    37. [37]

      HUANG X, ZHAO H N, QIU W, WANG J, GUO L H, LIN Z Y, PAN W, WU Y, QIU B. A fluorescence signal amplification strategy for modification-free ratiometric determination of tyrosinase in situ based on the use of dual-templated copper nanoclusters[J]. Microchim. Acta, 2020,240(4)240.

    38. [38]

      PU S, XIA C Y, WU L, XU K L. CuNCs modified with dual-ligand to achieve fluorescence visualization detection of Tin (Ⅳ)[J]. Microchem. J., 2022,183(20)108086.

    39. [39]

      FAN Y, YU W H, LIAO Y W, JIANG X H, WANG Z H, CHENG Z J. Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2022,267120509. doi: 10.1016/j.saa.2021.120509

    40. [40]

      BİLKAY M, KARA H. Fluorometric determination of ornidazole by using BSA coated copper nanoclusters as a novel turn off sensor[J]. Turk. J. Chem., 2022,46(2):475-486. doi: 10.55730/1300-0527.3321

    41. [41]

      NAWARA K, WALUK J. Improved method of fluorescence quantum yield determination[J]. Anal. Chem., 2017,89(17):8650-8655. doi: 10.1021/acs.analchem.7b02013

    42. [42]

      KALIA A, KAUR G. Biosynthesis of nanoparticles using mushrooms[M]//SINGH B, LALLAWMSANGA, PASSARI A. Biology of Macrofungi. Fungal Biology. [S. l.]: Springer, Cham, 2018.

    43. [43]

      BARTH A. Infrared spectroscopy of proteins[J]. Biochim. Biophys. Acta, 2007,1767(9):1073-1101. doi: 10.1016/j.bbabio.2007.06.004

    44. [44]

      DING C F, XU Y J, ZHAO Y N, ZHONG H, LUO X L. Fabrication of BSA@AuNC-based nanostructures for cell fluoresce imaging and target drug delivery[J]. ACS Appl. Mater. Interfaces, 2018,10(10):8947-8954. doi: 10.1021/acsami.7b18493

    45. [45]

      LE GUÉVEL X, HÖTZER B, JUNG G, HOLLEMEYER K, TROUILLET V, SCHNEIDER M. Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy[J]. J. Phys. Chem. C, 2011,115(22):10955-10963. doi: 10.1021/jp111820b

    46. [46]

      WANG L, MIAO H, ZHONG D, YANG X M. Synthesis of dopamine-mediated Cu nanoclusters for sensing and fluorescent coding[J]. Anal. Methods, 2016,8(1):40-44. doi: 10.1039/C5AY02494C

    47. [47]

      VILAR-VIDAL N, BLANCO M C, LOPEZ-QUINTELA M A. Electrochemical synthesis of very stable photoluminescent copper cluster[J]. J. Phys. Chem. B, 2010,114(38):15924-15930.

    48. [48]

      HAN A, YANG Y, ZHANG Q, TU Q, FANG G, LIU J, WANG S, LI R. Electrochemistry and electrochemiluminescence of copper metal cluster[J]. J. Electroanal. Chem., 2017,795:116-122. doi: 10.1016/j.jelechem.2017.04.058

    49. [49]

      YANG B, YANG F Z, HUANG L, XU S K, YAO G H, ZHOU S M. Study on the role of 2, 2-bipyridine in chemical copper plating[J]. Electrochemistry, 2007,13(4):425-430.

    50. [50]

      ZHAO M, CHEN A Y, HUANG D, ZHUO Y, CHAI Y Q, YUAN R. Cu nanoclusters: Novel electrochemiluminescence emitters for bioanalysis[J]. Anal. Chem., 2016,88:11527-11532. doi: 10.1021/acs.analchem.6b02770

    51. [51]

      BALOGH L, VALLUZZI R, LAVERDURE K S, GIDO S P, HAGNAUER G L, TOMALIA D A. Poly (amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters[J]. J. Am. Chem. Soc., 1998,120(29):7355-7356. doi: 10.1021/ja980861w

    52. [52]

      PAN Y, WEI X L. A novel FRET immunosensor for rapid and sensitive detection of dicofol based on bimetallic nanoclusters[J]. Anal. Chim. Acta, 2022,1224340235. doi: 10.1016/j.aca.2022.340235

    53. [53]

      MATOSSI F. Theory of dynamic quenching of photoconductivity and luminescence[J]. J. Electrochem. Soc., 1956,103(12):662-667. doi: 10.1149/1.2430187

    54. [54]

      XU Y L, SHERWOOD J, QIN Y, CROWLEY D, BONIZZONI M, BAO Y. The role of protein characteristics in the formation and fluorescence of Au nanoclusters[J]. Nanoscale, 2014,6(3):1515-1524. doi: 10.1039/C3NR06040C

    55. [55]

      ANDREWS B, TORRIE B H, POWELL B M. Intermolecular potentials for alpha-glycine from Raman and infrared scattering measurements[J]. Biophys. J., 1983,41(3):293-298. doi: 10.1016/S0006-3495(83)84441-5

    56. [56]

      TIAN L, LI Y F, REN T T, TONG Y L, YANG B S, LI Y Q. Novel bimetallic gold-silver nanoclusters with "Synergy"-enhanced fluorescence for cyanide sensing, cell imaging and temperature sensing[J]. Talanta, 2017,170:530-539. doi: 10.1016/j.talanta.2017.03.107

    57. [57]

      THULKAR J, KRIPLANI A, AGARWAL N. A comparative study of oral single dose of metronidazole, tinidazole, secnidazole and ornidazole in bacterial vaginosis[J]. Indian J. Pharmacol., 2012,44(2):243-245. doi: 10.4103/0253-7613.93859

    58. [58]

      KURT Ö, GIRGINKARDESLER N, BALCIOGLU I C, ÖZBILGIN A, OK Ü Z. A comparison of metronidazole and single-dose ornidazole for the treatment of dientamoebiasis[J]. Clin. Microb. Infect., 2008,14(6):601-604. doi: 10.1111/j.1469-0691.2008.02002.x

    59. [59]

      LEI M Y, WANG X H, ZHANG T J, SHI Y, WEN J H, ZHANG Q F. Homochiral Eu3+@MOF composite for the enantioselective detection and separation of (R/S)-ornidazole[J]. Inorg. Chem., 2022,61(18):6764-6772. doi: 10.1021/acs.inorgchem.1c03695

    60. [60]

      CARTER D C, HO J X. Structure of serum albumin[J]. Adv. Protein Chem., 1994,45:153-203.

    61. [61]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.

  • 加载中
    1. [1]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    2. [2]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    3. [3]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    4. [4]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    5. [5]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    6. [6]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    7. [7]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    10. [10]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    11. [11]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    12. [12]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    13. [13]

      Tiancong ShiXi ChenXiao ZhouHongyi ZhangFuping HanLihan CaiWen SunJianjun DuJiangli FanXiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408

    14. [14]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    15. [15]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    16. [16]

      Hejie ZhengZhili WangGuizhen LuoCuicui DuXiaohua ZhangJinhua Chen . A novel PEC-EC dual-mode biosensing platform for dual target detection of miRNA-133a and cTnI. Chinese Chemical Letters, 2025, 36(4): 110131-. doi: 10.1016/j.cclet.2024.110131

    17. [17]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    18. [18]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    19. [19]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    20. [20]

      Bo LiuShuaiqiang ShaoJunjie CaiZijian ZhangFeng TianKun YangFan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814

Metrics
  • PDF Downloads(0)
  • Abstract views(231)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return