Citation: Xiaofang DONG, Yue YANG, Shen WANG, Xiaofang HAO, Yuxia WANG, Peng CHENG. Research progress of conductive metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388 shu

Research progress of conductive metal-organic frameworks

Figures(15)

  • Metal-organic frameworks are porous crystalline materials with a high specific surface area. The poor electrical conductivity of the traditional metal-organic frameworks limits their applications on electrical devices. Recent studies have shown that metal-organic framework materials with high electrical conductivity can be prepared by utilizing design strategies such as ligands containing specific conjugated structures, and further to expand their applications. Herein, the design strategies, characterization methods, the latest research progress, and applications of conductive metal-organic frameworks have been summarized, and the existing problems and potential tendencies are looked ahead to in this article as well.
  • 加载中
    1. [1]

      JI Z, WANG H Z, CANOSSA S, WUTTKE S, YAGHI O M. Pore chemistry of metal-organic Frameworks[J]. Adv. Funct. Mater., 2020, 30(41): 2000238  doi: 10.1002/adfm.202000238

    2. [2]

      VALENTE C, CHOI E, BELOWICH M E, DOONAN C J, LI Q W, GASA T B, BOTROS Y Y, YAGHI O M, STODDART J F. Metal‑ organic frameworks with designed chiral recognition sites[J]. Chem. Commun., 2010, 46(27): 4911-4913  doi: 10.1039/c0cc00997k

    3. [3]

      ROWSELL J L C, YAGHI O M. Strategies for hydrogen storage in metal-organic frameworks[J]. Angew. Chem. ‒Int. Edit., 2005, 44(30): 4670-4679  doi: 10.1002/anie.200462786

    4. [4]

      ROSI N L, ECKERT J, EDDAOUDI M, VODAK D T, KIM J, O′KEEFFE M, YAGHI O M. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129  doi: 10.1126/science.1083440

    5. [5]

      CHEN B L, LIANG C D, YANG J, CONTRERAS D S, CLANCY Y L, LOBKOVSKY E B, YAGHI O M, DAI S. A microporous metal-organic framework for gas-chromatographic separation of alkanes[J]. Angew. Chem. ‒Int. Edit., 2006, 45(9): 1390-1393  doi: 10.1002/anie.200502844

    6. [6]

      ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chem. Rev., 2012, 112(2): 673-674  doi: 10.1021/cr300014x

    7. [7]

      MU X Y, WANG W K, SUN C C, WANG J L, WANG C B, KNEZ M. Recent progress on conductive metal-organic framework films[J]. Adv. Mater. Interfaces, 2021, 8(9): 2002151  doi: 10.1002/admi.202002151

    8. [8]

      SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal-organic frameworks[J]. Angew. Chem. ‒Int. Edit., 2016, 55(11): 3566-3579  doi: 10.1002/anie.201506219

    9. [9]

      ZHU R M, LIU L M, ZHANG G X, ZHANG Y, JIANG Y X, PANG H. Advances in electrochemistry of intrinsic conductive metal-organic frameworks and their composites: Mechanisms, synthesis and applications[J]. Nano Energy, 2024, 122: 109333  doi: 10.1016/j.nanoen.2024.109333

    10. [10]

      XU G Y, ZHU C Y, GAO G. Recent progress of advanced conductive metal-organic frameworks: Precise synthesis, electrochemical energy storage applications, and future challenges[J]. Small, 2022, 18(44): 2203140  doi: 10.1002/smll.202203140

    11. [11]

      RUBIO-GIMÉNEZ V, TATAY S, MARTÍ-GASTALDO C. Electrical conductivity and magnetic bistability in metal-organic frameworks and coordination polymers: Charge transport and spin crossover at the nanoscale[J]. Chem. Soc. Rev., 2020, 49(15): 5601-5638  doi: 10.1039/C9CS00594C

    12. [12]

      PIERRET R F. Advanced semiconductor fundamentals[M]. 2nd ed. Boston: Addison-Wesley Longman, 1987: 51-81

    13. [13]

      GRUNDMANN M. The physics of semiconductors[M]. Translated by JI Y. Hefei: Press of University of Science and Technology of China, 2002: 209-213

    14. [14]

      SHANG S C, DU C S, LIU Y X, LIU M H, WANG X Y, GAO W Q, ZOU Y, DONG J C, LIU Y Q, CHEN J Y. A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers[J]. Nat. Commun., 2022, 13: 7599  doi: 10.1038/s41467-022-35315-0

    15. [15]

      XIE L S, SKORUPSKII G, DINCĂ M. Electrically conductive metal-organic frameworks[J]. Chem. Rev., 2020, 120(16): 8536-8580  doi: 10.1021/acs.chemrev.9b00766

    16. [16]

      TAKAISHI S, HOSODA M, KAJIWARA T, MIYASAKA H, YAMASHITA M, NAKANISHI Y, KITAGAWA Y, YAMAGUCHI K, KOBAYASHI A, KITAGAWA H. Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units[J]. Inorg. Chem., 2009, 48(19): 9048-9050  doi: 10.1021/ic802117q

    17. [17]

      SUN L, HENDON C H, MINIER M A, WALSH A, DINCĂ M. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E=S, O)[J]. J. Am. Chem. Soc., 2015, 137(19): 6164-6167  doi: 10.1021/jacs.5b02897

    18. [18]

      PARK J G, AUBREY M L, OKTAWIEC J, CHAKARAWET K, DARAGO L E, GRANDJEAN F, LONG G J, LONG J R. Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic framework Fe(1, 2, 3-triazolate)2(BF4)x[J]. J. Am. Chem. Soc., 2018, 140(27): 8526-8534  doi: 10.1021/jacs.8b03696

    19. [19]

      NARAYAN T C, MIYAKAI T, SEKI S, DINCĂ M. High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework[J]. J. Am. Chem. Soc., 2012, 134(31): 12932-12935  doi: 10.1021/ja3059827

    20. [20]

      PARK S S, HONTZ E R, SUN L, HENDON C H, WALSH A, VOORHIS T V, DINCĂ M. Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks[J]. J. Am. Chem. Soc., 2015, 137(5): 1774-1777  doi: 10.1021/ja512437u

    21. [21]

      CHEN C L, WANG C, ZHENG X Y, ZHANG R H, XU Y L, ZHUANG G L, LONG L S, ZHENG L S, KONG X J, CAO Y. Conductive lanthanide metal-organic frameworks with exceptionally high stability[J]. J. Am. Chem. Soc., 2023, 145(31): 16983-16987  doi: 10.1021/jacs.3c05336

    22. [22]

      XIE L S, ALEXANDROV E V, SKORUPSKII G, PROSERPIO D M, DINCĂ M. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks[J]. Chem. Sci., 2019, 10(37): 8558-8565  doi: 10.1039/C9SC03348C

    23. [23]

      LI W H, DENG W H, WANG G E, XU G. Conductive MOFs[J]. EnergyChem, 2020, 2(2): 100029  doi: 10.1016/j.enchem.2020.100029

    24. [24]

      SHEBERLA D, SUN L, BLOOD-FORSYTHE M A, ER S, WADE C R, BROZEK C K, ASPURU-GUZIK A, DINCĂ M. High electrical conductivity in Ni3(2, 3, 6, 7, 10, 11-hexaiminotriphenylene)2, A semiconducting metal-organic graphene analogue[J]. J. Am. Chem. Soc., 2014, 136(25): 8859-8862  doi: 10.1021/ja502765n

    25. [25]

      HUANG X, ZHANG S, LIU L Y, YU L, CHEN G F, XU W, ZHU D B. Superconductivity in a copper􀃭-based coordination polymer with perfect kagome structure[J]. Angew. Chem. ‒Int. Edit., 2018, 57(1): 146-150  doi: 10.1002/anie.201707568

    26. [26]

      TALIN A A, CENTRONE A, FORD A C, FOSTER M E, STAVILA V, HANEY P, KINNEY R A, SZALAI V, GABALY F E, YOON H P, LÉONARD F, ALLENDORF M D. Tunable electrical conductivity in metal-organic framework thin-film devices[J]. Science, 2013, 343(6166): 66-69

    27. [27]

      WU J L, WANG K, YE S, ZHOU Q L, LU S Q, LAIGAO Y Q, JIANG L, WEI L X, XIE A M, ZENG H B, LI W J. One-pot synthesis of conductive metal-organic framework@polypyrrole hybrids with enhanced electromagnetic wave absorption performance[J]. Small Struct., 2024, 5(10): 2400205  doi: 10.1002/sstr.202400205

    28. [28]

      PECH-CANUL M I, RAVINDRA N M. Semiconductors—Synthesis, properties and applications[M]. Newark: Springer, 2019: 98-99

    29. [29]

      GUO Z Y, PANDA D K, MAITY K, LINDSEY D, PARKER T G, ALBRECHT-SCHMITT T E, BARREDA-ESPARZA J L, XIONG P, ZHOU W, SAHA S. Modulating the electrical conductivity of metal-organic framework films with intercalated guest π-systems[J]. J. Mater. Chem. C, 2016, 4(5): 894-899  doi: 10.1039/C5TC02232K

    30. [30]

      VAN DER PAUW L J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape[J]. Philips Res. Rep., 1958, 13: 1-9

    31. [31]

      VAN DER PAUW L J. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape[J]. Philips Tech. Rev., 1958, 20: 220-224

    32. [32]

      SUN L, PARK S S, SHEBERLA D, DINCĂ M. Measuring and reporting electrical conductivity in metal-organic frameworks: Cd2(TTFTB) as a case study[J]. J. Am. Chem. Soc., 2016, 138(144): 14772-14782

    33. [33]

      WANG D G, LIANG Z B, GAO S, QU C, ZOU R Q. Metal-organic framework-based materials for hybrid supercapacitor application[J]. Coord. Chem. Rev., 2020, 404: 213093  doi: 10.1016/j.ccr.2019.213093

    34. [34]

      WANG S, HUANG F Y, ZHANG Z F, CAI W B, JIE Y L, WANG S Y, YAN P F, JIAO S H, CAO R G. Conductive metal-organic frameworks promoting polysulfides transformation in lithium-sulfur batteries[J]. J. Energy Chem., 2021, 63: 336-343  doi: 10.1016/j.jechem.2021.08.037

    35. [35]

      SHEBERLA D, BACHMAN J C, ELIAS J S, SUN C J, SHAO-HORN Y, DINCĂ M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nat. Mater., 2017, 16: 220-224  doi: 10.1038/nmat4766

    36. [36]

      LIU L M, ZHANG Y, SONG Y Z, GU Y J, PANG H, ZHU R M. Successful in situ growth of conductive MOFs on 2D cobalt-based compounds and their electrochemical performance[J]. Inorg. Chem., 2024, 63: 10324-10334  doi: 10.1021/acs.inorgchem.4c01168

    37. [37]

      GUO J C, ZHAO L Z, KONG W Q, ZHU H Y, LI W R, LIU S, YU W H, HAN X, WEN Z S. Nanoflake Ni-MOF anchored octahedral nickel-porphyrins as a high-performance anode for lithium-ion batteries[J]. J. Electroanal. Chem., 2024, 966: 118397  doi: 10.1016/j.jelechem.2024.118397

    38. [38]

      YU W, SHEN L, LU X, HAN J M, GENG N K, LAI C Y, XU Q J, PENG Y T, MIN Y L, LU Y F. Novel composite separators based on heterometallic metal-organic frameworks improve the performance of lithium-ion batteries[J]. Adv. Energy Mater., 2023, 13(22): 2204055  doi: 10.1002/aenm.202204055

    39. [39]

      PARK J, LEE M, FENG D W, HUANG Z H, HINCKLEY A C, YAKOVENKO A, ZOU X D, CUI Y, BAO Z N. Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage[J]. J. Am. Chem. Soc., 2018, 140(32): 10315-10323  doi: 10.1021/jacs.8b06020

    40. [40]

      YANG M H, ZENG X, XIE M, WANG Y, XIAO J M, CHEN R H, YI Z J, HUANG Y F, BIN D S, LI D. Conductive metal-organic framework with superior redox activity as a stable high-capacity anode for high-temperature K‑ion batteries[J]. J. Am. Chem. Soc., 2024, 146(10): 6753-6762  doi: 10.1021/jacs.3c13113

    41. [41]

      YANG M H, ZHU N N, HUANG Y F, XIAO J M, FANG Y, YI Z J, BIN D S, LIU L, LI D. Conductive metal-organic frameworks with redox activity as electrode materials for rechargeable batteries[J]. Sci. China Mater., 2024, DOI:10.1007/s40843-024-3109-5  doi: 10.1007/s40843-024-3109-5

    42. [42]

      WADA K, SAKAUSHI K, SASAKI S, NISHIHARA H. Multielectron-transfer-based rechargeable energy storage of two-dimensional coordination frameworks with non-innocent ligands[J]. Angew. Chem. ‒Int. Edit., 2018, 57(29): 8886-8890  doi: 10.1002/anie.201802521

    43. [43]

      YIN J C, LIAN X, LI Z G, CHENG M R, LIU M, XU J, LI W, XU Y H, LI N, BU X H. Triazacoronene-based 2D conductive metal-organic framework for high-capacity lithium storage[J]. Adv. Funct. Mater., 2024, 34(41): 2403656  doi: 10.1002/adfm.202403656

    44. [44]

      CAMPBELL M G, SHEBERLA D, LIU S F, SWAGER T M, DINCĂ M. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing[J]. Angew. Chem. ‒Int. Edit., 2015, 54(14): 4349-4352  doi: 10.1002/anie.201411854

    45. [45]

      CHEN X, DONG J J, CHI K, WANG L J, XIAO F, WANG S, ZHAO Y, LIU Y Q. Electrically conductive metal-organic framework thin film-based on-chip micro-biosensor: A platform to unravel surface morphology-dependent biosensing[J]. Adv. Funct. Mater., 2021, 31(51): 2102855  doi: 10.1002/adfm.202102855

    46. [46]

      WANG C P, LIN Y X, CUI L, ZHU J, BU X H. 2D metal-organic frameworks as competent electrocatalysts for water splitting[J]. Small, 2023, 19(15): 2207342  doi: 10.1002/smll.202207342

    47. [47]

      LIANG Z Z, WANG H Y, ZHENG H Q, ZHANG W, CAO R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide[J]. Chem. Soc. Rev., 2021, 50(4): 2540-2581  doi: 10.1039/D0CS01482F

    48. [48]

      HUANG H, ZHAO Y, BAI Y M, LI F M, ZHANG Y, CHEN Y. Conductive metal-organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Adv. Sci., 2020, 7(9): 2000012  doi: 10.1002/advs.202000012

    49. [49]

      YI J D, SI D H, XIE R K, YIN Q, ZHANG M D, WU Q, CHAI G L, HUANG Y B, CAO R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2[J]. Angew. Chem. ‒Int. Edit., 2021, 60(31): 17108-17114  doi: 10.1002/anie.202104564

    50. [50]

      MAJIDI L, AHMADIPARIDARI A, SHAN N N, MISAL S N, KUMAR K, HUANG Z H, RASTEGAR S, HEMMAT Z, ZOU X D, ZAPOL P, CABANA J, CURTISS L A, SALEHI-KHOJIN A. 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials[J]. Adv. Mater., 2021, 33(10): 2004393  doi: 10.1002/adma.202004393

    51. [51]

      LV J N, LI W R, LI J N, ZHU Z J J, DONG A W, LV H X, LI P F, WANG B. A Triptycene-based 2D MOF with vertically extended structure for improving the electrocatalytic performance of CO2 to methane[J]. Angew. Chem. ‒Int. Edit., 2023, 62(11): e202217958  doi: 10.1002/anie.202217958

    52. [52]

      WANG K C, LI Y P, XIE L H, LI X Y, LI J R. Construction and application of base-stable MOFs: A critical review[J]. Chem. Soc. Rev., 2022, 51(15): 6417-6441  doi: 10.1039/D1CS00891A

    53. [53]

      YUE T, DOUKA A I, QI K, QIU Y B, GUO X P, XIA B Y. Flexible and hollow polypyrrole foam with high loading of metal-organic framework nanowires for wearable supercapacitors[J]. J. Mater. Chem. A, 2021, 9(38): 21799-21806  doi: 10.1039/D1TA05330B

    54. [54]

      YANG X, YI J Q, WANG T, FENG Y N, WANG J W, YU J, ZHANG F L, JIANG Z, LV Z S, LI H C, HUANG T, SI D H, WANG X S, CAO R, CHEN X D. Wet-adhesive on-skin sensors based on metal-organic frameworks for wireless monitoring of metabolites in sweat[J]. Adv. Mater., 2022, 34(44): 2201768  doi: 10.1002/adma.202201768

    55. [55]

      WU X H, TIAN X, ZHANG W L, PENG X Y, ZHOU S Y, BUENCONSEJO P J S, LI Y, XIAO S, TAO J F, ZHANG M M, YUAN H Y. Solution-processable MOF-on-MOF system constructed via template-assisted growth for ultratrace H2S detection[J]. Angew. Chem. ‒Int. Edit., 2024, 63(49): e202410411  doi: 10.1002/anie.202410411

    56. [56]

      XIE L S, PARK S S, CHMIELEWSKI M J, LIU H Y, KHAROD R A, YANG L M, CAMPBELL M G, DINCĂ M. Isoreticular linker substitution in conductive metal-organic frameworks with through-space transport pathways[J]. Angew. Chem. ‒Int. Edit., 2020, 59(44): 19623-19626  doi: 10.1002/anie.202004697

    57. [57]

      CHEN Z J, CUI Y T, JIN Y G, LIU L Y, YAN J, SUN Y, ZOU Y, SUN Y M, XU W, ZHU D B. Nanorods of a novel highly conductive 2D metal-organic framework based on perthiolated coronene for thermoelectric conversion[J]. J. Mater. Chem. C, 2020, 8(24): 8199-8205  doi: 10.1039/D0TC01778G

    58. [58]

      CHEN Z J, CUI Y T, YE C H, LIU L Y, WU X Y, SUN Y M, XU W, ZHU D B. Highly conductive cobalt perthiolated coronene complex for efficient hydrogen evolution[J]. Chem. ‒Eur. J., 2020, 26(56): 12868-12873  doi: 10.1002/chem.202001792

    59. [59]

      FENG D W, LEI T, LUKATSKAYA M R, PARK J, HUANG Z H, LEE M, SHAW L, CHEN S C, YAKOVENKO A A, KULKARNI A, XIAO J P, FREDRICKSON K, TOK J B, ZOU X D, CUI Y, BAO Z N. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance[J]. Nat. Energy, 2018, 3: 30-36  doi: 10.1038/s41560-017-0044-5

    60. [60]

      CHOI J Y, PARK J. Enhancing electrical conductivity of semiconducting MOFs via defect healing[J]. ACS Appl. Electron. Mater., 2021, 3(9): 4197-4202  doi: 10.1021/acsaelm.1c00635

    61. [61]

      PARK J, HINCKLEY A C, HUANG Z H, CHEN G, YAKOVENKO A A, ZOU X D, BAO Z N. High thermopower in a Zn-based 3D semiconductive metal-organic framework[J]. J. Am. Chem. Soc., 2020, 142(49): 20531-20535  doi: 10.1021/jacs.0c09573

    62. [62]

      XIAO C, XIE Y. The expanding energy prospects of metal organic frameworks[J]. Joule, 2017, 1(1): 25-28  doi: 10.1016/j.joule.2017.08.014

    63. [63]

      IQBAL R, SULTAN M Q, HUSSAIN S, HAMZA M, TARIQ A, AKBAR M B, MA Y J, ZHI L J. The different roles of cobalt and manganese in metal-organic frameworks for supercapacitors[J]. Adv. Mater. Technol., 2021, 6(3): 2000941  doi: 10.1002/admt.202000941

    64. [64]

      HUANG X, SHENG P, TU Z Y, ZHANG F J, WANG J H, GENG H, ZOU Y, DI C A, YI Y P, SUN Y M, XU W, ZHU D B. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour[J]. Nat. Commun., 2015, 6: 7408  doi: 10.1038/ncomms8408

    65. [65]

      CHEN I F, LU C F, SU W F. Highly conductive 2D metal-organic framework thin film fabricated by liquid-liquid interfacial reaction using one-pot-synthesized benzenehexathiol[J]. Langmuir, 2018, 34(51): 15754-15762  doi: 10.1021/acs.langmuir.8b03938

    66. [66]

      PARK J, HINCKLEY A C, HUANG Z H, FENG D W, YAKOVENKO A A, LEE M, CHEN S C, ZOU X D, BAO Z N. Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal‑organic framework[J]. J. Am. Chem. Soc., 2018, 140(44): 14533-14537  doi: 10.1021/jacs.8b06666

    67. [67]

      RUBIO-GIMENEZ V, GALBIATI M, CASTELLS-GIL J, ALMORA-BARRIOS N, NAVARRO-SANCHEZ J, ESCORCIA‑ARIZA G, MATTERA M, ARNOLD T, RAWLE J, TATAY S, CORONADO E, MARTI-GASTALDO C. Bottom-up fabrication of semiconductive metal-organic framework ultrathin films[J]. Adv. Mater., 2018, 30(10): 1704291  doi: 10.1002/adma.201704291

    68. [68]

      YAO M S, LV X J, FU Z H, LI W H, DENG W H, WU G D, XU G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angew. Chem. ‒Int. Edit., 2017, 56(52): 16510-16514  doi: 10.1002/anie.201709558

    69. [69]

      SKORUPSKII G, TRUMP B A, KASEL T W, BROWN C M, HENDON C H, DINCĂ M. Efficient and tunable one-dimensional charge transport in layered lanthanide metal-organic frameworks[J]. Nat. Chem., 2020, 12: 131-136  doi: 10.1038/s41557-019-0372-0

    70. [70]

      SKORUPSKII G, DINCĂ M. Electrical conductivity in a porous, cubic rare-earth catecholate[J]. J. Am. Chem. Soc., 2020, 142(15): 6920-6924  doi: 10.1021/jacs.0c01713

    71. [71]

      YAN J, CUI Y T, XIE M, YANG G Z, PROF. BIN D S, LI D. Immobilizing redox-active tricycloquinazoline into a 2D conductive metal-organic framework for lithium storage[J]. Angew. Chem. ‒Int. Edit., 2021, 60(46): 24467-24472  doi: 10.1002/anie.202110373

    72. [72]

      LIU J J, YANG D, ZHOU Y, ZHANG G, XING G L, LIU Y P, MA Y H, TERASAKI O, YANG S B, CHEN L. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction[J]. Angew. Chem. ‒Int. Edit., 2021, 60(26): 14473  doi: 10.1002/anie.202103398

    73. [73]

      DOU J H, ARGUILLA M Q, LUO Y, LI J, ZHANG W Z, SUN L, MANCUSO J L, YANG L M, CHEN T Y, PARENT L R, SKORUPSKII G, LIBRETTO N J, SUN C Y, YANG M C, DIP P V, BRIGNOLE E J, MILLER J T, KONG J, HENDON C H, SUN J L, DINCĂ M. Atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks[J]. Nat. Mater., 2021, 20: 222-228  doi: 10.1038/s41563-020-00847-7

    74. [74]

      MENG Z, MIRICA K A. Two-dimensional d-π conjugated metal- organic framework based on hexahydroxytrinaphthylene[J]. Nano Res., 2021, 14: 369-375  doi: 10.1007/s12274-020-2874-x

    75. [75]

      XIE L S, DINCĂ M. Novel topology in semiconducting tetrathiafulvalene lanthanide metal-organic frameworks[J]. Isr. J. Chem., 2018, 58(9/10): 1119-1122

    76. [76]

      CUI Y T, YAN J, CHEN Z J, XING W L, YE C H, LI X, ZOU Y, SUN Y M, LIU C M, XU W, ZHU D B. Synthetic route to a triphenylenehexaselenol-based metal organic framework with semi-conductive and glassy magnetic properties[J]. iScience, 2020, 23(1): 100812  doi: 10.1016/j.isci.2019.100812

    77. [77]

      ZHANG P P, WANG M C, LIU Y N, YANG S, WANG F X, LI Y, CHEN G B, LI Z C, WANG G, ZHU M S, DONG R H, YU M H, SCHMIDT O G, FENG X L. Dual-redox-sites enable two-dimensional conjugated metal-organic frameworks with large pseudocapacitance and wide potential window[J]. J. Am. Chem. Soc., 2021, 143(27): 10168-10176  doi: 10.1021/jacs.1c03039

    78. [78]

      DEGAYNER J A, JEON I R, SUN L, DINCĂ M, HARRIS T D. 2D conductive iron-quinoid magnets ordering up to TC=105 K via heterogenous redox chemistry[J]. J. Am. Chem. Soc., 2017, 139(11): 4175-4184  doi: 10.1021/jacs.7b00705

    79. [79]

      DONG H H, GAO H G, GENG J R, HOU X S, GAO S N, WANG S W, CHOU S L. Quinone-based conducting three-dimensional metal-organic framework as a cathode material for lithium-ion batteries[J]. J. Phys. Chem. C, 2021, 125(38): 20814-20820  doi: 10.1021/acs.jpcc.1c06870

    80. [80]

      PATHAK A, SHEN J W, USMAN M, WEI L F, MENDIRATTA S, CHANG Y S, SAINBILEG B, NGUE C M, CHEN R S, HAYASHI M, LUO T T, CHEN F R, CHEN K H, TSENG T W, CHEN L C, LU K L. Integration of a (—Cu—S—)n plane in a metal-organic framework affords high electrical conductivity[J]. Nat. Commun., 2019, 10: 1721  doi: 10.1038/s41467-019-09682-0

    81. [81]

      MENG Z, AYKANAT A, MIRICA K A. Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases[J]. J. Am. Chem. Soc., 2019, 141(5): 2046-2053  doi: 10.1021/jacs.8b11257

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    20. [20]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

Metrics
  • PDF Downloads(30)
  • Abstract views(1245)
  • HTML views(479)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return