Research progress of conductive metal-organic frameworks
- Corresponding author: Yuxia WANG, wangyuxiank@163.com Peng CHENG, pcheng@nankai.edu.cn
Citation:
Xiaofang DONG, Yue YANG, Shen WANG, Xiaofang HAO, Yuxia WANG, Peng CHENG. Research progress of conductive metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 14-34.
doi:
10.11862/CJIC.20240388
JI Z, WANG H Z, CANOSSA S, WUTTKE S, YAGHI O M. Pore chemistry of metal-organic Frameworks[J]. Adv. Funct. Mater., 2020, 30(41): 2000238
doi: 10.1002/adfm.202000238
VALENTE C, CHOI E, BELOWICH M E, DOONAN C J, LI Q W, GASA T B, BOTROS Y Y, YAGHI O M, STODDART J F. Metal‑ organic frameworks with designed chiral recognition sites[J]. Chem. Commun., 2010, 46(27): 4911-4913
doi: 10.1039/c0cc00997k
ROWSELL J L C, YAGHI O M. Strategies for hydrogen storage in metal-organic frameworks[J]. Angew. Chem. ‒Int. Edit., 2005, 44(30): 4670-4679
doi: 10.1002/anie.200462786
ROSI N L, ECKERT J, EDDAOUDI M, VODAK D T, KIM J, O′KEEFFE M, YAGHI O M. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129
doi: 10.1126/science.1083440
CHEN B L, LIANG C D, YANG J, CONTRERAS D S, CLANCY Y L, LOBKOVSKY E B, YAGHI O M, DAI S. A microporous metal-organic framework for gas-chromatographic separation of alkanes[J]. Angew. Chem. ‒Int. Edit., 2006, 45(9): 1390-1393
doi: 10.1002/anie.200502844
ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chem. Rev., 2012, 112(2): 673-674
doi: 10.1021/cr300014x
MU X Y, WANG W K, SUN C C, WANG J L, WANG C B, KNEZ M. Recent progress on conductive metal-organic framework films[J]. Adv. Mater. Interfaces, 2021, 8(9): 2002151
doi: 10.1002/admi.202002151
SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal-organic frameworks[J]. Angew. Chem. ‒Int. Edit., 2016, 55(11): 3566-3579
doi: 10.1002/anie.201506219
ZHU R M, LIU L M, ZHANG G X, ZHANG Y, JIANG Y X, PANG H. Advances in electrochemistry of intrinsic conductive metal-organic frameworks and their composites: Mechanisms, synthesis and applications[J]. Nano Energy, 2024, 122: 109333
doi: 10.1016/j.nanoen.2024.109333
XU G Y, ZHU C Y, GAO G. Recent progress of advanced conductive metal-organic frameworks: Precise synthesis, electrochemical energy storage applications, and future challenges[J]. Small, 2022, 18(44): 2203140
doi: 10.1002/smll.202203140
RUBIO-GIMÉNEZ V, TATAY S, MARTÍ-GASTALDO C. Electrical conductivity and magnetic bistability in metal-organic frameworks and coordination polymers: Charge transport and spin crossover at the nanoscale[J]. Chem. Soc. Rev., 2020, 49(15): 5601-5638
doi: 10.1039/C9CS00594C
PIERRET R F. Advanced semiconductor fundamentals[M]. 2nd ed. Boston: Addison-Wesley Longman, 1987: 51-81
GRUNDMANN M. The physics of semiconductors[M]. Translated by JI Y. Hefei: Press of University of Science and Technology of China, 2002: 209-213
SHANG S C, DU C S, LIU Y X, LIU M H, WANG X Y, GAO W Q, ZOU Y, DONG J C, LIU Y Q, CHEN J Y. A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers[J]. Nat. Commun., 2022, 13: 7599
doi: 10.1038/s41467-022-35315-0
XIE L S, SKORUPSKII G, DINCĂ M. Electrically conductive metal-organic frameworks[J]. Chem. Rev., 2020, 120(16): 8536-8580
doi: 10.1021/acs.chemrev.9b00766
TAKAISHI S, HOSODA M, KAJIWARA T, MIYASAKA H, YAMASHITA M, NAKANISHI Y, KITAGAWA Y, YAMAGUCHI K, KOBAYASHI A, KITAGAWA H. Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units[J]. Inorg. Chem., 2009, 48(19): 9048-9050
doi: 10.1021/ic802117q
SUN L, HENDON C H, MINIER M A, WALSH A, DINCĂ M. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E=S, O)[J]. J. Am. Chem. Soc., 2015, 137(19): 6164-6167
doi: 10.1021/jacs.5b02897
PARK J G, AUBREY M L, OKTAWIEC J, CHAKARAWET K, DARAGO L E, GRANDJEAN F, LONG G J, LONG J R. Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic framework Fe(1, 2, 3-triazolate)2(BF4)x[J]. J. Am. Chem. Soc., 2018, 140(27): 8526-8534
doi: 10.1021/jacs.8b03696
NARAYAN T C, MIYAKAI T, SEKI S, DINCĂ M. High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework[J]. J. Am. Chem. Soc., 2012, 134(31): 12932-12935
doi: 10.1021/ja3059827
PARK S S, HONTZ E R, SUN L, HENDON C H, WALSH A, VOORHIS T V, DINCĂ M. Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks[J]. J. Am. Chem. Soc., 2015, 137(5): 1774-1777
doi: 10.1021/ja512437u
CHEN C L, WANG C, ZHENG X Y, ZHANG R H, XU Y L, ZHUANG G L, LONG L S, ZHENG L S, KONG X J, CAO Y. Conductive lanthanide metal-organic frameworks with exceptionally high stability[J]. J. Am. Chem. Soc., 2023, 145(31): 16983-16987
doi: 10.1021/jacs.3c05336
XIE L S, ALEXANDROV E V, SKORUPSKII G, PROSERPIO D M, DINCĂ M. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks[J]. Chem. Sci., 2019, 10(37): 8558-8565
doi: 10.1039/C9SC03348C
LI W H, DENG W H, WANG G E, XU G. Conductive MOFs[J]. EnergyChem, 2020, 2(2): 100029
doi: 10.1016/j.enchem.2020.100029
SHEBERLA D, SUN L, BLOOD-FORSYTHE M A, ER S, WADE C R, BROZEK C K, ASPURU-GUZIK A, DINCĂ M. High electrical conductivity in Ni3(2, 3, 6, 7, 10, 11-hexaiminotriphenylene)2, A semiconducting metal-organic graphene analogue[J]. J. Am. Chem. Soc., 2014, 136(25): 8859-8862
doi: 10.1021/ja502765n
HUANG X, ZHANG S, LIU L Y, YU L, CHEN G F, XU W, ZHU D B. Superconductivity in a copper-based coordination polymer with perfect kagome structure[J]. Angew. Chem. ‒Int. Edit., 2018, 57(1): 146-150
doi: 10.1002/anie.201707568
TALIN A A, CENTRONE A, FORD A C, FOSTER M E, STAVILA V, HANEY P, KINNEY R A, SZALAI V, GABALY F E, YOON H P, LÉONARD F, ALLENDORF M D. Tunable electrical conductivity in metal-organic framework thin-film devices[J]. Science, 2013, 343(6166): 66-69
WU J L, WANG K, YE S, ZHOU Q L, LU S Q, LAIGAO Y Q, JIANG L, WEI L X, XIE A M, ZENG H B, LI W J. One-pot synthesis of conductive metal-organic framework@polypyrrole hybrids with enhanced electromagnetic wave absorption performance[J]. Small Struct., 2024, 5(10): 2400205
doi: 10.1002/sstr.202400205
PECH-CANUL M I, RAVINDRA N M. Semiconductors—Synthesis, properties and applications[M]. Newark: Springer, 2019: 98-99
GUO Z Y, PANDA D K, MAITY K, LINDSEY D, PARKER T G, ALBRECHT-SCHMITT T E, BARREDA-ESPARZA J L, XIONG P, ZHOU W, SAHA S. Modulating the electrical conductivity of metal-organic framework films with intercalated guest π-systems[J]. J. Mater. Chem. C, 2016, 4(5): 894-899
doi: 10.1039/C5TC02232K
VAN DER PAUW L J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape[J]. Philips Res. Rep., 1958, 13: 1-9
VAN DER PAUW L J. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape[J]. Philips Tech. Rev., 1958, 20: 220-224
SUN L, PARK S S, SHEBERLA D, DINCĂ M. Measuring and reporting electrical conductivity in metal-organic frameworks: Cd2(TTFTB) as a case study[J]. J. Am. Chem. Soc., 2016, 138(144): 14772-14782
WANG D G, LIANG Z B, GAO S, QU C, ZOU R Q. Metal-organic framework-based materials for hybrid supercapacitor application[J]. Coord. Chem. Rev., 2020, 404: 213093
doi: 10.1016/j.ccr.2019.213093
WANG S, HUANG F Y, ZHANG Z F, CAI W B, JIE Y L, WANG S Y, YAN P F, JIAO S H, CAO R G. Conductive metal-organic frameworks promoting polysulfides transformation in lithium-sulfur batteries[J]. J. Energy Chem., 2021, 63: 336-343
doi: 10.1016/j.jechem.2021.08.037
SHEBERLA D, BACHMAN J C, ELIAS J S, SUN C J, SHAO-HORN Y, DINCĂ M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nat. Mater., 2017, 16: 220-224
doi: 10.1038/nmat4766
LIU L M, ZHANG Y, SONG Y Z, GU Y J, PANG H, ZHU R M. Successful in situ growth of conductive MOFs on 2D cobalt-based compounds and their electrochemical performance[J]. Inorg. Chem., 2024, 63: 10324-10334
doi: 10.1021/acs.inorgchem.4c01168
GUO J C, ZHAO L Z, KONG W Q, ZHU H Y, LI W R, LIU S, YU W H, HAN X, WEN Z S. Nanoflake Ni-MOF anchored octahedral nickel-porphyrins as a high-performance anode for lithium-ion batteries[J]. J. Electroanal. Chem., 2024, 966: 118397
doi: 10.1016/j.jelechem.2024.118397
YU W, SHEN L, LU X, HAN J M, GENG N K, LAI C Y, XU Q J, PENG Y T, MIN Y L, LU Y F. Novel composite separators based on heterometallic metal-organic frameworks improve the performance of lithium-ion batteries[J]. Adv. Energy Mater., 2023, 13(22): 2204055
doi: 10.1002/aenm.202204055
PARK J, LEE M, FENG D W, HUANG Z H, HINCKLEY A C, YAKOVENKO A, ZOU X D, CUI Y, BAO Z N. Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage[J]. J. Am. Chem. Soc., 2018, 140(32): 10315-10323
doi: 10.1021/jacs.8b06020
YANG M H, ZENG X, XIE M, WANG Y, XIAO J M, CHEN R H, YI Z J, HUANG Y F, BIN D S, LI D. Conductive metal-organic framework with superior redox activity as a stable high-capacity anode for high-temperature K‑ion batteries[J]. J. Am. Chem. Soc., 2024, 146(10): 6753-6762
doi: 10.1021/jacs.3c13113
YANG M H, ZHU N N, HUANG Y F, XIAO J M, FANG Y, YI Z J, BIN D S, LIU L, LI D. Conductive metal-organic frameworks with redox activity as electrode materials for rechargeable batteries[J]. Sci. China Mater., 2024, DOI:10.1007/s40843-024-3109-5
doi: 10.1007/s40843-024-3109-5
WADA K, SAKAUSHI K, SASAKI S, NISHIHARA H. Multielectron-transfer-based rechargeable energy storage of two-dimensional coordination frameworks with non-innocent ligands[J]. Angew. Chem. ‒Int. Edit., 2018, 57(29): 8886-8890
doi: 10.1002/anie.201802521
YIN J C, LIAN X, LI Z G, CHENG M R, LIU M, XU J, LI W, XU Y H, LI N, BU X H. Triazacoronene-based 2D conductive metal-organic framework for high-capacity lithium storage[J]. Adv. Funct. Mater., 2024, 34(41): 2403656
doi: 10.1002/adfm.202403656
CAMPBELL M G, SHEBERLA D, LIU S F, SWAGER T M, DINCĂ M. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing[J]. Angew. Chem. ‒Int. Edit., 2015, 54(14): 4349-4352
doi: 10.1002/anie.201411854
CHEN X, DONG J J, CHI K, WANG L J, XIAO F, WANG S, ZHAO Y, LIU Y Q. Electrically conductive metal-organic framework thin film-based on-chip micro-biosensor: A platform to unravel surface morphology-dependent biosensing[J]. Adv. Funct. Mater., 2021, 31(51): 2102855
doi: 10.1002/adfm.202102855
WANG C P, LIN Y X, CUI L, ZHU J, BU X H. 2D metal-organic frameworks as competent electrocatalysts for water splitting[J]. Small, 2023, 19(15): 2207342
doi: 10.1002/smll.202207342
LIANG Z Z, WANG H Y, ZHENG H Q, ZHANG W, CAO R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide[J]. Chem. Soc. Rev., 2021, 50(4): 2540-2581
doi: 10.1039/D0CS01482F
HUANG H, ZHAO Y, BAI Y M, LI F M, ZHANG Y, CHEN Y. Conductive metal-organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Adv. Sci., 2020, 7(9): 2000012
doi: 10.1002/advs.202000012
YI J D, SI D H, XIE R K, YIN Q, ZHANG M D, WU Q, CHAI G L, HUANG Y B, CAO R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2[J]. Angew. Chem. ‒Int. Edit., 2021, 60(31): 17108-17114
doi: 10.1002/anie.202104564
MAJIDI L, AHMADIPARIDARI A, SHAN N N, MISAL S N, KUMAR K, HUANG Z H, RASTEGAR S, HEMMAT Z, ZOU X D, ZAPOL P, CABANA J, CURTISS L A, SALEHI-KHOJIN A. 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials[J]. Adv. Mater., 2021, 33(10): 2004393
doi: 10.1002/adma.202004393
LV J N, LI W R, LI J N, ZHU Z J J, DONG A W, LV H X, LI P F, WANG B. A Triptycene-based 2D MOF with vertically extended structure for improving the electrocatalytic performance of CO2 to methane[J]. Angew. Chem. ‒Int. Edit., 2023, 62(11): e202217958
doi: 10.1002/anie.202217958
WANG K C, LI Y P, XIE L H, LI X Y, LI J R. Construction and application of base-stable MOFs: A critical review[J]. Chem. Soc. Rev., 2022, 51(15): 6417-6441
doi: 10.1039/D1CS00891A
YUE T, DOUKA A I, QI K, QIU Y B, GUO X P, XIA B Y. Flexible and hollow polypyrrole foam with high loading of metal-organic framework nanowires for wearable supercapacitors[J]. J. Mater. Chem. A, 2021, 9(38): 21799-21806
doi: 10.1039/D1TA05330B
YANG X, YI J Q, WANG T, FENG Y N, WANG J W, YU J, ZHANG F L, JIANG Z, LV Z S, LI H C, HUANG T, SI D H, WANG X S, CAO R, CHEN X D. Wet-adhesive on-skin sensors based on metal-organic frameworks for wireless monitoring of metabolites in sweat[J]. Adv. Mater., 2022, 34(44): 2201768
doi: 10.1002/adma.202201768
WU X H, TIAN X, ZHANG W L, PENG X Y, ZHOU S Y, BUENCONSEJO P J S, LI Y, XIAO S, TAO J F, ZHANG M M, YUAN H Y. Solution-processable MOF-on-MOF system constructed via template-assisted growth for ultratrace H2S detection[J]. Angew. Chem. ‒Int. Edit., 2024, 63(49): e202410411
doi: 10.1002/anie.202410411
XIE L S, PARK S S, CHMIELEWSKI M J, LIU H Y, KHAROD R A, YANG L M, CAMPBELL M G, DINCĂ M. Isoreticular linker substitution in conductive metal-organic frameworks with through-space transport pathways[J]. Angew. Chem. ‒Int. Edit., 2020, 59(44): 19623-19626
doi: 10.1002/anie.202004697
CHEN Z J, CUI Y T, JIN Y G, LIU L Y, YAN J, SUN Y, ZOU Y, SUN Y M, XU W, ZHU D B. Nanorods of a novel highly conductive 2D metal-organic framework based on perthiolated coronene for thermoelectric conversion[J]. J. Mater. Chem. C, 2020, 8(24): 8199-8205
doi: 10.1039/D0TC01778G
CHEN Z J, CUI Y T, YE C H, LIU L Y, WU X Y, SUN Y M, XU W, ZHU D B. Highly conductive cobalt perthiolated coronene complex for efficient hydrogen evolution[J]. Chem. ‒Eur. J., 2020, 26(56): 12868-12873
doi: 10.1002/chem.202001792
FENG D W, LEI T, LUKATSKAYA M R, PARK J, HUANG Z H, LEE M, SHAW L, CHEN S C, YAKOVENKO A A, KULKARNI A, XIAO J P, FREDRICKSON K, TOK J B, ZOU X D, CUI Y, BAO Z N. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance[J]. Nat. Energy, 2018, 3: 30-36
doi: 10.1038/s41560-017-0044-5
CHOI J Y, PARK J. Enhancing electrical conductivity of semiconducting MOFs via defect healing[J]. ACS Appl. Electron. Mater., 2021, 3(9): 4197-4202
doi: 10.1021/acsaelm.1c00635
PARK J, HINCKLEY A C, HUANG Z H, CHEN G, YAKOVENKO A A, ZOU X D, BAO Z N. High thermopower in a Zn-based 3D semiconductive metal-organic framework[J]. J. Am. Chem. Soc., 2020, 142(49): 20531-20535
doi: 10.1021/jacs.0c09573
XIAO C, XIE Y. The expanding energy prospects of metal organic frameworks[J]. Joule, 2017, 1(1): 25-28
doi: 10.1016/j.joule.2017.08.014
IQBAL R, SULTAN M Q, HUSSAIN S, HAMZA M, TARIQ A, AKBAR M B, MA Y J, ZHI L J. The different roles of cobalt and manganese in metal-organic frameworks for supercapacitors[J]. Adv. Mater. Technol., 2021, 6(3): 2000941
doi: 10.1002/admt.202000941
HUANG X, SHENG P, TU Z Y, ZHANG F J, WANG J H, GENG H, ZOU Y, DI C A, YI Y P, SUN Y M, XU W, ZHU D B. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour[J]. Nat. Commun., 2015, 6: 7408
doi: 10.1038/ncomms8408
CHEN I F, LU C F, SU W F. Highly conductive 2D metal-organic framework thin film fabricated by liquid-liquid interfacial reaction using one-pot-synthesized benzenehexathiol[J]. Langmuir, 2018, 34(51): 15754-15762
doi: 10.1021/acs.langmuir.8b03938
PARK J, HINCKLEY A C, HUANG Z H, FENG D W, YAKOVENKO A A, LEE M, CHEN S C, ZOU X D, BAO Z N. Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal‑organic framework[J]. J. Am. Chem. Soc., 2018, 140(44): 14533-14537
doi: 10.1021/jacs.8b06666
RUBIO-GIMENEZ V, GALBIATI M, CASTELLS-GIL J, ALMORA-BARRIOS N, NAVARRO-SANCHEZ J, ESCORCIA‑ARIZA G, MATTERA M, ARNOLD T, RAWLE J, TATAY S, CORONADO E, MARTI-GASTALDO C. Bottom-up fabrication of semiconductive metal-organic framework ultrathin films[J]. Adv. Mater., 2018, 30(10): 1704291
doi: 10.1002/adma.201704291
YAO M S, LV X J, FU Z H, LI W H, DENG W H, WU G D, XU G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angew. Chem. ‒Int. Edit., 2017, 56(52): 16510-16514
doi: 10.1002/anie.201709558
SKORUPSKII G, TRUMP B A, KASEL T W, BROWN C M, HENDON C H, DINCĂ M. Efficient and tunable one-dimensional charge transport in layered lanthanide metal-organic frameworks[J]. Nat. Chem., 2020, 12: 131-136
doi: 10.1038/s41557-019-0372-0
SKORUPSKII G, DINCĂ M. Electrical conductivity in a porous, cubic rare-earth catecholate[J]. J. Am. Chem. Soc., 2020, 142(15): 6920-6924
doi: 10.1021/jacs.0c01713
YAN J, CUI Y T, XIE M, YANG G Z, PROF. BIN D S, LI D. Immobilizing redox-active tricycloquinazoline into a 2D conductive metal-organic framework for lithium storage[J]. Angew. Chem. ‒Int. Edit., 2021, 60(46): 24467-24472
doi: 10.1002/anie.202110373
LIU J J, YANG D, ZHOU Y, ZHANG G, XING G L, LIU Y P, MA Y H, TERASAKI O, YANG S B, CHEN L. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction[J]. Angew. Chem. ‒Int. Edit., 2021, 60(26): 14473
doi: 10.1002/anie.202103398
DOU J H, ARGUILLA M Q, LUO Y, LI J, ZHANG W Z, SUN L, MANCUSO J L, YANG L M, CHEN T Y, PARENT L R, SKORUPSKII G, LIBRETTO N J, SUN C Y, YANG M C, DIP P V, BRIGNOLE E J, MILLER J T, KONG J, HENDON C H, SUN J L, DINCĂ M. Atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks[J]. Nat. Mater., 2021, 20: 222-228
doi: 10.1038/s41563-020-00847-7
MENG Z, MIRICA K A. Two-dimensional d-π conjugated metal- organic framework based on hexahydroxytrinaphthylene[J]. Nano Res., 2021, 14: 369-375
doi: 10.1007/s12274-020-2874-x
XIE L S, DINCĂ M. Novel topology in semiconducting tetrathiafulvalene lanthanide metal-organic frameworks[J]. Isr. J. Chem., 2018, 58(9/10): 1119-1122
CUI Y T, YAN J, CHEN Z J, XING W L, YE C H, LI X, ZOU Y, SUN Y M, LIU C M, XU W, ZHU D B. Synthetic route to a triphenylenehexaselenol-based metal organic framework with semi-conductive and glassy magnetic properties[J]. iScience, 2020, 23(1): 100812
doi: 10.1016/j.isci.2019.100812
ZHANG P P, WANG M C, LIU Y N, YANG S, WANG F X, LI Y, CHEN G B, LI Z C, WANG G, ZHU M S, DONG R H, YU M H, SCHMIDT O G, FENG X L. Dual-redox-sites enable two-dimensional conjugated metal-organic frameworks with large pseudocapacitance and wide potential window[J]. J. Am. Chem. Soc., 2021, 143(27): 10168-10176
doi: 10.1021/jacs.1c03039
DEGAYNER J A, JEON I R, SUN L, DINCĂ M, HARRIS T D. 2D conductive iron-quinoid magnets ordering up to TC=105 K via heterogenous redox chemistry[J]. J. Am. Chem. Soc., 2017, 139(11): 4175-4184
doi: 10.1021/jacs.7b00705
DONG H H, GAO H G, GENG J R, HOU X S, GAO S N, WANG S W, CHOU S L. Quinone-based conducting three-dimensional metal-organic framework as a cathode material for lithium-ion batteries[J]. J. Phys. Chem. C, 2021, 125(38): 20814-20820
doi: 10.1021/acs.jpcc.1c06870
PATHAK A, SHEN J W, USMAN M, WEI L F, MENDIRATTA S, CHANG Y S, SAINBILEG B, NGUE C M, CHEN R S, HAYASHI M, LUO T T, CHEN F R, CHEN K H, TSENG T W, CHEN L C, LU K L. Integration of a (—Cu—S—)n plane in a metal-organic framework affords high electrical conductivity[J]. Nat. Commun., 2019, 10: 1721
doi: 10.1038/s41467-019-09682-0
MENG Z, AYKANAT A, MIRICA K A. Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases[J]. J. Am. Chem. Soc., 2019, 141(5): 2046-2053
doi: 10.1021/jacs.8b11257
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205