Citation: Xi YANG, Chunxiang CHANG, Yingpeng XIE, Yang LI, Yuhui CHEN, Borao WANG, Ludong YI, Zhonghao HAN. Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371 shu

Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting

  • Corresponding author: Yingpeng XIE, ypxie@syuct.edu.cn
  • Received Date: 15 October 2024
    Revised Date: 12 January 2025

Figures(8)

  • Al-doped SrTiO3 (Al-SrTiO3) was prepared by the molten salt method, and then the Ni3N cocatalyst was loaded closely on the Al-SrTiO3 to obtain Ni3N /Al-SrTiO3 material by hydrothermal and gas phase nitrization method. Through fluorescence, impedance, surface photovoltage testing as well as density functional theory calculations, it is found that the photogenerated electrons on Al-SrTiO3 can quickly transfer to Ni3N under the effect of Fermi energy difference, effectively promoting the separation of photogenerated carriers on Al-SrTiO3 and improving the performance hydrogen evolution from water splitting. The photocatalytic hydrogen evolution test results showed that 7%Ni3N /Al-SrTiO3 with a loading amount (a mass ratio of Ni to Al-SrTiO3) of 7% had the highest hydrogen evolution rate, which was 82 times higher than that of Al-SrTiO3.
  • 加载中
    1. [1]

      HASSAN A E, ELEWA A M, HUSSIN M S A, AHMED F M, MEKHEMER I M A, YAHIA I S, MOHAMED T A, CHOU H H, WEEN Z H. Designing of covalent organic framework/2D g-C3N4 heterostructure using a simple method for enhanced photocatalytic hydrogen production[J]. J. Colloid. Interface Sci., 2024,653:1650-1661. doi: 10.1016/j.jcis.2023.10.010

    2. [2]

      ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015,44:5148-5180. doi: 10.1039/C4CS00448E

    3. [3]

      NGUYE C C, NGUYEN D T, DO T O. A novel route to synthesize C/ Pt/TiO2 phase tunable anatase-rutile TiO2 for efficient sunlight-driven photocatalytic applications[J]. Appl. Catal. B-Environ., 2018,2264652.

    4. [4]

      WU X Y, WANG X Y, LI J, ZHANG G K. Boosting molecular oxygen activation of SrTiO3 by engineering exposed facets for highly efficient photocatalytic oxidation[J]. J. Mater. Chem. A, 2017,5(45)2382223830.

    5. [5]

      HUERTA F A M, CHEN J C, TORRES M M, ITO A, MOCTEZUM E, GOTO T. Laser assisted chemical vapor deposition of nanostructured NaTaO3 and SrTiO3 thin films for efficient photocatalytic hydrogen evolution[J]. Fuel, 2017,197:174-185. doi: 10.1016/j.fuel.2017.02.016

    6. [6]

      QIU P P, PARK B, CHOI J, CUI M C, KIM J, KHIM J. BiVO4/Bi2O3 heterojunction deposited on graphene for an enhanced visible light photocatalytic activity[J]. J. Alloy. Compd., 2017,706:7-15. doi: 10.1016/j.jallcom.2017.02.232

    7. [7]

      LI S J, SHEN X F, LIU J S, ZHANG L S. Synthesis of Ta3N5/Bi2MoO6 core-shell fiber shaped heterojunctions as efficient and easily recyclable photocatalysts[J]. Environ. Sci. Nano, 2017,4:1155-1167. doi: 10.1039/C6EN00706F

    8. [8]

      ZHU H K, FANG M H, HUANG Z H, LIU Y G, CHEN K, TANG C, WANG M, ZHANG L N, WU X W. Novel carbon-incorporated porous ZnFe2O4 nanospheres for enhanced photocatalytic hydrogen generation under visible light irradiation[J]. RSC Adv., 2016,6(61)5606956076.

    9. [9]

      DONG S Y, DING X H, GUO T, YUE X P, HAN X, SUN J H. Selfassembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants[J]. Chem. Eng. J., 2017,316:778-789. doi: 10.1016/j.cej.2017.02.017

    10. [10]

      XIE Y P, WANG G S, ZHANG E L, ZHANG X. Photocatalytic hydrogen evolution from water splitting using semiconductors: Advance, challenge and prospects[J]. Chinese J. Inorg. Chem., 2017,33(2):177-209. doi: 10.11862/CJIC.2017.030

    11. [11]

      DOMEN K, NAITO S, SOMA M, ONISHI T, TAMARU K. Photocatalytic decomposition of watervapor on an NiO-SrTiO3 catalyst[J]. J. Chem. Soc., Chem. Commun., 1980,12:543-544.

    12. [12]

      LYU H, HISATOMI T, GOTO Y, YOSHIDA M, HIGASHI T, KATAYAMA M, TAKATA T, MINEGISHI T, NISHIYAMA H, YAMADA T, SAKATA Y, ASAKURA K, DOMEN K. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination[J]. Chem. Sci., 2019,10(11):3196-3201. doi: 10.1039/C8SC05757E

    13. [13]

      TAKATA T, JIANG J Z, SAKATA Y, NAKABAYASHI M, SHIBATA N, NANDAL V, SEKI K, HISATOMI T, DOMEN K. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 2020,581(7809):411-414. doi: 10.1038/s41586-020-2278-9

    14. [14]

      ALOK K S, MEENAKSHI P, DEBARUN B, THOMAS E R, SREEDEVI U. An indirect Zscheme heterostructure of nanogold layer immobilized Cu-Al-doped SrTiO3 and CoOx-WO3 for photocatalytic CO2 reduction[J]. Chem. Eng. J., 2024,487150716. doi: 10.1016/j.cej.2024.150716

    15. [15]

      DENG W, HAO X Q, WANG Y M. Construction of NiS/MnCdS Sscheme heterojunction for efficient photocatalytic overall water splitting: Regulation of surface sulfur vacancy and energy band structure[J]. Fuel, 2024,363(1)130964.

    16. [16]

      FAN X Y, MA Y B, WANG X, CAO Y H, CHEN W, BAI Y. In-situ construction of CoS on porous g C3N4 for fluent charge transfer in photocatalytic hydrogen production[J]. Appl. Surf. Sci., 2024,660160018. doi: 10.1016/j.apsusc.2024.160018

    17. [17]

      GE J H, LIU Y J, JIANG D H, ZHANG L, DU P W. Integrating nonprecious-metal cocatalyst Ni3N with g-C3N4 for enhanced photocatalytic H2 production in water under visible-light irradiation[J]. Chin. J. Catal., 2019,40(2):160-167. doi: 10.1016/S1872-2067(19)63283-3

    18. [18]

      LI Y, LI Y, YANG C, YU C P, GAN L H. CoO/g-C3N4 p-n heterojunction catalyst in-situ loading CoP for enhanced photocatalytic H2 evolution[J]. Appl. Surf. Sci., 2023,639158180. doi: 10.1016/j.apsusc.2023.158180

    19. [19]

      WANG Q Y, XIAO L, LIU X, SUN X H, WANG J, DU H. Special Zscheme Cu3P/TiO2 hetero-junction for efficient photocatalytic hydrogen evolution from water[J]. J. Alloy. Compd., 2022,894(15)162331.

    20. [20]

      CHENG X, LIU B, ZHAO H, ZHANG H G, WANG J, LI Z K, LI B, CHEN Z X, HU J G. Interfacial effect between Ni2P/CdS for simultaneously heightening photocatalytic hydrogen production and lignocellulosic biomass photorefining[J]. J. Colloid Interface Sci., 2024,655:943-952. doi: 10.1016/j.jcis.2023.11.031

    21. [21]

      SUN Z J, CHEN H L, ZHANG L, LU D P, DU P W. Enhanced photocatalytic H2 production on cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst[J]. J. Mater. Chem. A, 2016,4(34):13289-13295. doi: 10.1039/C6TA04696G

    22. [22]

      CHEN L, HUANG H J, ZHENG Y H, SUN W H, ZHAO Y, PAUL S F, WANG X X. Noble-metal-free Ni3N/g-C3N4 photocatalysts with enhanced hydrogen production under visible light irradiation[J]. Dalton Trans., 2018,47(35):12188-12196. doi: 10.1039/C8DT02456A

    23. [23]

      LI L, YI J J, ZHU X W, ZHOU M, ZHANG S, SHE X J, CHEN Z G, LI H M, XU H. Nitriding nickel based cocatalyst: A strategy to maneuver hydrogen evolution capacity for enhanced photocatalysis[J]. ACS Sustain. Chem. Eng., 2020,8(2):884-892. doi: 10.1021/acssuschemeng.9b05248

    24. [24]

      LIU Y B, ZHENG D B, ZHAO Y, SHEN P, DU Y X, XIAO W P, DU Y M, FU Y L, WU Z X, WANG L. Ru-doped 3D porous Ni3N sphere as efficient bifunctional electrocatalysts toward urea assisted watersplitting[J]. Int. J. Hydrog. Energy, 2022,47:25081-25089. doi: 10.1016/j.ijhydene.2022.05.268

    25. [25]

      KRESSE G, FURTHMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996,6(1):15-50. doi: 10.1016/0927-0256(96)00008-0

    26. [26]

      KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59(3)17581775.

    27. [27]

      PERDEW J. P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1997, 78(7): 38653868

    28. [28]

      LI X J, CHANG L J, CHEN Q, WANG Y, WANG C X, WANG J, ZHANG Y W, MA H G, JIA X P. Synthesis and characterization of non-stoichiometric SrTiO2. 8 thermoelectric materials at high temperature and high pressure[J]. Ceram Int., 2021,47(12):17627-17632. doi: 10.1016/j.ceramint.2021.03.081

    29. [29]

      LIU Y X, XU X J, ZHENG S F, LV S C, LI H W, SI Z C, WU X D, RAN R, WENG D, KANG F Y. Ni single atoms anchored on nitrogendoped graphene as H2 evolution cocatalyst of SrTiO3(Al)/CoOx for photocatalytic overall water splitting[J]. Carbon, 2021,183:763-773. doi: 10.1016/j.carbon.2021.07.064

    30. [30]

      YAO D S, ZHOU X Y, Ge S H. Raman scattering and room temperature ferromagnetism in Co doped SrTiO3 particles[J]. Appl. Surf. Sci., 2011,257(22):9233-9236. doi: 10.1016/j.apsusc.2011.04.039

    31. [31]

      TSUGUHITO N, YU M, KOHJI A, SHOICHIRO S, KENJI A, AKIRA A. Raman spectroscopic study of ferroelectric Sn doped SrTiO3[J]. Ferroelectrics, 2014,464(1):72-79. doi: 10.1080/00150193.2014.892816

    32. [32]

      LI Y, WANG X Y, GONG J, XIE Y H, WU X Y, ZHANG G K. Graphene based nanocomposites for efficient photocatalytic hydrogen evolution: Insight into the interface toward separation of photogenerated charges[J]. ACS Appl. Mater. Interfaces, 2018,10(50):43760-43767. doi: 10.1021/acsami.8b17580

    33. [33]

      LI R H, TAKATA T, ZHANG B B, FENG C, WU Q B, CUI C H, ZHANG Z M, DOMEN K, LI Y B. Criteria for efficient photocatalytic water splitting revealed by studying carrier dynamics in a model Al doped SrTiO3 photocatalyst[J]. Angew. Chem.-Int. Edit., 2023,62(49)202313537. doi: 10.1002/anie.202313537

    34. [34]

      GAO K J, LI K, PAN J K, WANG C X, ZHANG L H, WANG W Y, XI X G, DONG P Y. Fabrication of a dual p-n heterojunction consisted of NiCo2O4/NiO/Al-doped SrTiO3 for boosted photocatalytic overall water splitting[J]. Appl. Surf. Sci., 2024,644158794. doi: 10.1016/j.apsusc.2023.158794

    35. [35]

      KIM Y, WATANABE M, MATSUDA J, SONG J T, TAKAGAKI A, STAYKOV A, ISHIHARA T. Tensile strain for band engineering of SrTiO3 for increasing photocatalytic activity to water splitting[J]. Appl. Catal. B-Environ., 2020,278119292. doi: 10.1016/j.apcatb.2020.119292

    36. [36]

      HE B W, BIE C B, FEI X, FEI X G, CHENG B, YU J G, HO W K, AHMED A, WAGEH S. Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts[J]. Appl. Catal. B-Environ., 2021,288119994. doi: 10.1016/j.apcatb.2021.119994

    37. [37]

      SHANG Y Y, CHEN X, LIU W W, TAN P F, CHEN H Y, WU L D, MA C, XIONG X, PAN J. Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion assisted co precipitation method[J]. Appl. Catal. B - Environ., 2017,204:78-88. doi: 10.1016/j.apcatb.2016.11.025

    38. [38]

      ZHU Y, SALVADOR P A, ROHRER G S. Controlling the termination and photochemical reactivity of the SrTiO3(110) surface[J]. Phys. Chem. Chem. Phys., 2017,19(11):7910-7918. doi: 10.1039/C6CP08608J

    39. [39]

      ZHANG G Q, JIANG W S, HUA S X, ZHAO H F, ZHANG L G, SUN Z C. Constructing bulk defective perovskite SrTiO3 nanocubes for high performance photocatalysts[J]. Nanoscale, 2016,8(38)1696316968.

    40. [40]

      BASHIRI R, IRFAN M S, MOHAMED N M, SUFIAN S, LING L Y, SUHAIMI N A, SAMSUDIN M F R. Hierarchically SrTiO3@ TiO2@Fe2O3 nanorod heterostructures for enhanced photoelectro-chemical water splitting[J]. Int. J. Hydrog. Energy, 2021,46(48):24607-24619. doi: 10.1016/j.ijhydene.2020.02.106

    41. [41]

      ZHANG Y, SAVARA A, MULLINS D R. Ambient pressure XPS studies of reaction of alcohols on SrTiO3[J]. J. Phys. Chem. C, 2017,121(42):23436-23445. doi: 10.1021/acs.jpcc.7b06319

    42. [42]

      DONG P Y, GAO K J, LI K, WANG H Y, XI X G, FENG P Y. Metalorganic framework derived terephthalate ligand decorated TiO2 with various morphologies for efficient photocatalytic H2 evolution[J]. Chem.-Eur. J., 2023,29(21)202203917.

    43. [43]

      ZHOU M, MEI S W, LI C Z, LIU M Y, YAO X J, ZHANG X Y, LU F, ZENG X H. Precisely tuning the Ni3N/Pt interface to boost the catalytic activity of alkaline hydrogen evolution reaction[J]. Appl. Surf. Sci., 2024,653159391.

    44. [44]

      YAO N, LI P, ZHOU Z R, ZHAO Y M, CHENG G Z, CHEN S L, LUO W. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis[J]. Adv. Energy Mater., 2019,9(41)1902449.

    45. [45]

      LEE Y S, LIM J, KIM E Y, BU S D. Effect of the gamma-ray irradiation on the electric and optical properties of SrTiO3 single crystals[J]. J. Korean Phys. Soc., 2018,73(10):1566-1570.

    46. [46]

      DENG H, LI Z, WANG L, YUAN L Y, LAN J H, CHANG Z Y, CHAI Z F, SHI W Q. Nanolayered Ti3C2 and SrTiO3 composites for photocatalytic reduction and removal of uranium (Ⅵ)[J]. ACS Appl. Nano Mater., 2019,2(4):2283-2294.

    47. [47]

      LIM J, LEE Y S, BU S D. Surface-direction dependence of the oxygen vacancy formation in SrTiO3 single crystals[J]. Ceram Int., 2018,44(1):S93-S95.

    48. [48]

      SEO I W, LEE Y S, LEE S A, WOO S C. Optical investigation of oxygen defect states in SrTiO3 epitaxial thin films[J]. Curr. Appl. Phys., 2017,17(8):1148-1151.

    49. [49]

      LI N, CHEN Y P, WU T T, LI X J, ZHANG S T, CHANG W J, TURKEVYCH V, WANG L. Pore walls as high way for efficient bulk charge transfer in porous SrTiO3 single crystals boosting photocatalytic overall water splitting[J]. J. Colloid Interface Sci., 2024,668:484-491.

    50. [50]

      LI C Q, YI S S, LIU Y, NIU Z L, YUE X Z, LIU Z Y. In-situ constructing S-scheme/Schottky junction and oxygen vacancy on SrTiO3 to steer charge transfer for boosted photocatalytic H2 evolution[J]. Chem. Eng. J., 2021,417129231.

    51. [51]

      ZHANG L P, RAN J R, QIAO S Z, JARONIEC M. Characterization of semiconductor photocatalysts[J]. Chem. Soc. Rev., 2019,48(20)5814.

    52. [52]

      ZHOU Y Z, ZHANG Y C, LI Z L, HAO C T, WANG Y, LI Y, DANG Y, SUN X Q, HAN G P, FU Y L. Oxygen reduction reaction electrocatalysis inducing Fenton-like processes with enhanced electrocatalytic performance based on mesoporous ZnO/CuO cathodes: Treatment of organic wastewater and catalytic principle[J]. Chemosphere, 2020,259127463.

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    20. [20]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(4)
  • Abstract views(229)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return