Citation: Jiming XI, Yukang TENG, Rui ZHANG, Zhenzhong LU. Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367 shu

Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands

  • Corresponding author: Rui ZHANG, chemzr@126.com
  • Received Date: 13 October 2024
    Revised Date: 31 March 2025

Figures(8)

  • We report five coordination polymers (CPs) based on fluorescent ligands [1, 6-di(1H-imidazol-1-yl)pyrene (dip), 9, 10-di(1H-imidazol-1-yl)anthracene (dia)] and anionic ligands [cyclohexane-1, 4-dicarboxylic acid (H2cda), camphoric acid (H2cpa)]. In [Cd(dip)(cda)]·4H2O}n (1), the Cd2+ ions, acting as tetrahedral nodes, are linked by dip and cda2- ligands with four Cd2+ ions into five-fold interpenetrating network array of topology of dia. In {[Cd(dip) (cpa)]·4H2O}n (2), the Cd2+ ions, acting as a 4-connector, are linked by cpa2- and dip ligands into a 3D framework of cds topology. In {[Ni(dia)2Cl2]·DMF}n (3), the Ni2+ ion is linked by four dia ligands into a layer structure, and 1D channels of a cross-section of 1.35 nm×0.96 nm are formed. In {[Cd(dia)2(H2O)2](NO3)2·2DMSO}n (4), the dia ligands connected Cd2+ ions into a 2D layer, and 1D channels are formed between adjacent layers with a cross-section of 0.87 nm×0.43 nm. In [Zn(dip)Cl2]n (5), the Zn2+ ion is linked by dip ligands into an infinite 1D chain. The infrared, thermal gravimetric, and fluorescent emission data were collected and analyzed for these coordination polymers.
  • 加载中
    1. [1]

      LUSTING W P, MUKHERJEE S, RUDD N D, DESAI A V, LI J, GHOSH S K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications[J]. Chem. Soc. Rev., 2017,46:3242-3285. doi: 10.1039/C6CS00930A

    2. [2]

      XIAO C, TIAN J D, CHEN Q H, HONG M C. Water-stable metal-organic frameworks (MOFs): Rational construction and carbon dioxide capture[J]. Chem. Sci., 2024,15:1570-1610. doi: 10.1039/D3SC06076D

    3. [3]

      LIU J W, CHEN L F, CUI H, ZHANG J Y, ZHANG L, SU C Y. Appli-cations of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chem. Soc. Rev., 2014,43:6011-6061. doi: 10.1039/C4CS00094C

    4. [4]

      YOU L X, REN B Y, HE Y K, WANG S J, SUN Y G, DRAGUTAN V, XIONG G, DING F. Structural features of lanthanide coordination polymers with catalytic properties[J]. J. Mol. Struct., 2024,1304137687. doi: 10.1016/j.molstruc.2024.137687

    5. [5]

      ZHANG X J, WANG W J, HU Z J, WANG G N, UVDAL K. Coordina-tion polymers for energy transfer: Preparations, properties, sensing applications, and perspectives[J]. Coord. Chem. Rev., 2015,284:206-235. doi: 10.1016/j.ccr.2014.10.006

    6. [6]

      LIN R B, LIU S Y, YE J W, LI X Y, ZHANG J P. Photoluminescent metal-organic frameworks for gas sensing[J]. Adv. Sci., 2016,31500434. doi: 10.1002/advs.201500434

    7. [7]

      FIGYEIRA-DUARTE T M, MULLEN K. Pyrene-based materials for organic electronics[J]. Chem. Rev., 2011,111(11):7260-7314. doi: 10.1021/cr100428a

    8. [8]

      WU N, BO C M, GUO S W. Luminescent Ln-MOFs for chemical sens-ing application on biomolecules[J]. ACS Sens., 2024,9(9):4402-4424. doi: 10.1021/acssensors.4c00614

    9. [9]

      WANG H S. Metal-organic frameworks for biosensing and bioimaging applications[J]. Coord. Chem. Rev., 2017,349:139-155. doi: 10.1016/j.ccr.2017.08.015

    10. [10]

      FENG X, WANG X H, REDSHAW C, TANG B Z. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application[J]. Chem. Soc. Rev., 2023,52:6715-6753. doi: 10.1039/D3CS00251A

    11. [11]

      HALDER R, PRASAD K, SAMANTA P K, SWAPAN P, MAJI T K. Luminescent metal-organic complexes of pyrene or anthracene chro-mophores: Energy transfer assisted amplified exciplex emission and Al3+ sensing[J]. Cryst. Growth Des., 2016,16(1):82-91. doi: 10.1021/acs.cgd.5b01448

    12. [12]

      LUO J W, ZHAO B, ZHANG S L, JIA Y F, LIU J. Detection of Fe3+and Cu2+by fluorescence probe of pyrazoline derivatives with 9-anthralaldehyde as fluorescent group[J]. Chinese J. Inorg. Chem., 2021,37(3):421-430.

    13. [13]

      MA X F, MI P F, BAO S S, ZHENG L M. Effect of doping on the photodimerization reaction and the modulation of magneto-optical properties of erbium-and neodymium-anthracene complexes[J]. Chinese J. Inorg. Chem., 2024,40(1):270-280.

    14. [14]

      NIE H X, ZHANG B, LIU Y M, YU M H, CHANG Z. Subtle structural engineering of a coordination polymer host for the fluorescence mod-ulation of host-guest donor-acceptor systems[J]. Inorg. Chem. Front., 2023,106229. doi: 10.1039/D3QI01417G

    15. [15]

      JENA R, RAHIMI F A, KARMAKAR S, DEY A, KALITA D, DAS T N, MAJI T K. Electron rich guest regulated enhanced CO2 reduction in a multivariate porous coordination polymer[J]. Adv. Funct. Mater., 2024,34(46)2407721. doi: 10.1002/adfm.202407721

    16. [16]

      HUANG Z W, HU K Q, LI X B, BIN Z N, WU Q Y, ZHANG Z H, GUO Z J, WU W S, CHAI Z F, MEI L, SHI W Q. Thermally induced orderly alignment of porphyrin photoactive motifs in metal-organic frameworks for boosting photocatalytic CO2 reduction[J]. J. Am. Chem. Soc., 2023,145(32):18148-18159. doi: 10.1021/jacs.3c07047

    17. [17]

      AYYAVOO K, VWLUSAMY P. Pyrene based materials as fluores-cent probes in chemical and biological fields[J]. New J. Chem., 2021,45:10997-11017. doi: 10.1039/D1NJ00158B

    18. [18]

      VASYLEVAKYI S I, REGET K, RUGGI A, PETOUD S, PIGUET C, FROMM K M. cis-and trans-9, 10-di(1H-imidazol-1-yl)-anthracene based coordination polymers of ZnⅡ and CdⅡ: Synthesis, crystal structures and luminescence properties[J]. Dalton Trans., 2018,47:596-607. doi: 10.1039/C7DT03758A

    19. [19]

      LIU T F, LV J, GUO Z G, PROSERPIO D M, CAO R. New metal-organic framework with uninodal 4-connected topology displaying interpenetration, self-catenation, and second-order nonlinear optical response[J]. Cryst. Growth Des., 2010,10(4):1489-1491. doi: 10.1021/cg100174h

    20. [20]

      WANG Y, GAO N N, HU J Q. Multi-responsive luminescent probe with bis-imidazolyl biphenyl and aromatic polycarboxylic acids ligands for sensing Fe3+, Cr2O72-and CrO42- in aqueous solution[J]. ChemistrySelect, 2023,8e202204549. doi: 10.1002/slct.202204549

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    3. [3]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    8. [8]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    9. [9]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    12. [12]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    13. [13]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    14. [14]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    15. [15]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    18. [18]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    19. [19]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    20. [20]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

Metrics
  • PDF Downloads(0)
  • Abstract views(71)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return