Advances in modulation of the excited states of photofunctional iron complexes
- Corresponding author: Yuwu ZHONG, zhongyuwu@iccas.ac.cn
Citation:
Qingjun PAN, Zhongliang GONG, Yuwu ZHONG. Advances in modulation of the excited states of photofunctional iron complexes[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 45-58.
doi:
10.11862/CJIC.20240365
DILUZIO S, CONNELL T U, MDLULI V, KOWALEWSK J F, BERNHARD S. Understanding Ir(Ⅲ) photocatalyst structure-activity relationships: A highly parallelized study of light-driven metal reduction processes[J]. J. Am. Chem. Soc., 2022, 144(10): 1431-1444
DING C Y, ZHANG R Y, ZHONG Y W, YAO J. Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission[J]. Chin. J. Struct. Chem., 2024, 43(10): 100393
doi: 10.1016/j.cjsc.2024.100393
ARIASROTONDO D M. The fruit fly of photophysics[J]. Nat. Chem., 2022, 14(6): 716-716
doi: 10.1038/s41557-022-00955-8
LI Z Q, GONG Z L, LIANG T, BERNHARD S, ZHONG Y W, YAO J. Circularly polarized phosphorescence and photon transport of micro/nanocrystals of ruthenium and iridium complexes with chiral anions[J]. Sci. China Chem., 2023, 66(10): 2892-2902
doi: 10.1007/s11426-023-1723-7
KNOPF K M, MURPHY B L, MACMILLAN S N, BASKIN J M, BARR M P, BOROS E, WILSON J J. In vitro anticancer activity and in vivo biodistribution of rhenium(Ⅰ) tricarbonyl aqua complexes[J]. J. Am. Chem. Soc., 2017, 139(40): 14302-14314
doi: 10.1021/jacs.7b08640
VITTARDI S B, MAGAR R T, BREEN D J, RACK J J. A future perspective on phototriggered isomerizations of transition metal sulfoxides and related complexes[J]. J. Am. Chem. Soc., 2021, 143(2): 526-537
doi: 10.1021/jacs.0c08820
GONG Z L, DAN T X, CHEN J C, LI Z Q, YAO J, ZHONG Y W. Boost the circularly polarized phosphorescence of chiral organometallic platinum complexes by hierarchical assembly into fibrillar networks[J]. Angew. Chem. ‒Int. Edit., 2024, 63(25): e202402882
doi: 10.1002/anie.202402882
CHEN J C, GONG Z L, LI Z Q, ZHAO Y Y, TANG K, MA D X, XU F F, ZHONG Y W. Vaporchromic domino transformation and polarized photonic heterojunctions of organoplatinum microrods[J]. Angew. Chem. ‒Int. Edit., 2024: e202412651
GONG Z L, ZHANG H J, CHEN Y, LIU J X, AI Y H, LI Y Q, FENG Z H, ZHANG Q, GONG S L, CHEN Y, YAO C J, ZHU Y Y, XU L J, ZHONG Y W. Recent progress on photoactive nonprecious transition-metal complexe[J]. Sci. China. Chem., 2024, DOI:https://doi.org/10.1007/s11426-024-2345-0
doi: 10.1007/s11426-024-2345-0
HOCKIN B M, LI C, ROBERTSON N, ZYSMAN C E. Photoredox catalysts based on earth-abundant metal complexes[J]. Catal Sci Technol., 2019, 9(4): 889-915
doi: 10.1039/C8CY02336K
SINHA N, WENGER O S. Photoactive metal-to-ligand charge transfer excited states in 3d6 complexes with Cr(0), Mn(Ⅰ), Fe(Ⅱ), and Co(Ⅲ)[J]. J. Am. Chem. Soc., 2023, 145(9): 4903-4920
doi: 10.1021/jacs.2c13432
BÜLDT L A, GUO X, VOGEL R, PRESCIMONE A, WENGER O S. A tris(diisocyanide)chromium(0) complex is a luminescent analog of Fe[2, 2′-Bipyridine]32+[J]. J. Am. Chem. Soc., 2017, 139(2): 985-992
doi: 10.1021/jacs.6b11803
HAMZE R, PELTIER J L, SYLVINSON D, JUNG M, CARDENAS J, HAIGES R, SOLEILHAVOUP M, JAZZAR R, DJUROVICH P I, BERTRAND G, THOMPSON M E. Eliminating nonradiative decay in Cu(Ⅰ) emitters: > 99% quantum efficiency and microsecond lifetime[J]. Science, 2019, 363(6427): 601-606
doi: 10.1126/science.aav2865
HOSSAIN A, BHATTACHARYYA A, REISER O. Copper′s rapid ascent in visible-light photoredox catalysis[J]. Science, 2019, 364(6439): eaav9713
doi: 10.1126/science.aav9713
SHEN W T, SUN S X, FENG Y T, ZHANG F Q, LU T T, YANG Y S. Research progress of coordination‑driven assembly of single-component white light emission metal-organic complex materials[J]. Chinese J. Inorg. Chem., 2024, 40(1): 33-53
doi: 10.11862/CJIC.20230380
MOU W L, SUN Z Z, FAN S J, HOU C B, LI Z F, HAN H L, WANG G, YANG Y P, JIN Q H. Luminescence properties of Cu(Ⅰ) complexes with single-crystal-to-single-crystal conversion[J]. Chinese J. Inorg. Chem., 2024, 40(1): 99-110
doi: 10.11862/CJIC.20230303
OTTO S, GRABOLLE M, FORSTER C, KREITNER C, RESCH G U, HEINZE K. [Cr(ddpd)2]3+: A molecular, water-soluble, highly nir-emissive ruby analogue[J]. Angew. Chem. ‒Int. Edit., 2015, 54(39): 11572-11576
doi: 10.1002/anie.201504894
KITZMANN W R, HEINZE K. Charge-transfer and spin-flip states: Thriving as complements[J]. Angew. Chem. ‒Int. Edit., 2023, 62(15): e202213207
doi: 10.1002/anie.202213207
PAN Q J, GONG Z L, LI Z Q, ZHONG Y W. Molecular design and properties of near-infrared emitting Cr(Ⅲ) complexes[J]. Sci. Sin. Chim., 2023, 53(3): 464-473
HERR P, KERZIG C, LARSEN C B, HÄUSSINGER D, WENGER O S. Manganese(Ⅰ) complexes with metal-to-ligand charge transfer luminescence and photoreactivity[J]. Nat. Chem., 2021, 13(10): 956-962
doi: 10.1038/s41557-021-00744-9
DIERKS P, VUKADINOVIC Y, BAUER M. Photoactiveiron complexes: More sustainable, but still a challenge[J]. Inorg. Chem. Front., 2022, 9(2): 206-220
doi: 10.1039/D1QI01112J
MCCUSKER J K. Electronic structure in the transition metal block and its implications for light harvesting[J]. Science, 2019, 363(6426): 484-488
doi: 10.1126/science.aav9104
ZHANG W, KJÆR K S, ALONSO M R, BERGMANN U, CHOLLET M, FREDIN L A, HADT R G, HARTSOCK R W, HARLANG T, KROLL T, KUBIČEK K, LEMKE H T, LIANG H W, LIU Y, NIELSEN M M, PERSSON P, ROBINSON J S, SOLOMON E I, SUN Z, SOKARAS D, VAN DRIEL T B, WENG T C, ZHU D, WÄRNMARK K, SUNDSTRÖM V, GAFFNEY K J. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution[J]. Chem. Sci., 2017, 8(1): 515-523
doi: 10.1039/C6SC03070J
LIU Y, PERSSON P, SUNDSTRÖM V, WÄRNMARK K. Fe N‑ heterocyclic carbene complexes as promising photosensitizers[J]. Acc. Chem. Res., 2016, 49(8): 1477-1485
doi: 10.1021/acs.accounts.6b00186
CHÁBERA P, LINDH L, ROSEMANN N W, PRAKASH O, UHLIG J, YARTSEV A, WÄRNMARK K, SUNDSTRÖM V, PERSSON P. Photofunctionality of iron(Ⅲ) N-heterocyclic carbenes and related d5 transition metal complexes[J]. Coord. Chem. Rev., 2021, 426: 213517
doi: 10.1016/j.ccr.2020.213517
CHÁBERA P, LIU Y Z, PRAKASH O, THYRHAUG E, NAHHAS A, HONARFAR A, ESSÉN S, FREDIN L A, HARLANG T C B, KJÆR K S, HANDRUP K, ERICSON F, TATSUNO H, MORGAN K, SCHNADT J, HÄGGSTRÖM L, ERICSSON T, SOBKOWIAK A, LIDIN S, HUANG P, STYRING S, UHLIG J, BENDIX J, LOMOTH R, SUNDSTRÖM V, PERSSON P, WÄRNMARK K. A low-spin Fe(Ⅲ) complex with 100-ps ligand-to-metal charge transfer photoluminescence[J]. Nature, 2017, 543(7647): 695-699
doi: 10.1038/nature21430
CHEN X H, SHU M, LI F, ZHANG R, LIU J. Synthesis and properties of electrochromic materials based on terpyridine-Fe(Ⅱ) coordination polymers[J]. Chinese J. Inorg. Chem., 2024, 39(12): 2279-2286
doi: 10.11862/CJIC.2023.196
BRESSLER C, MILNE C, PHAM V T, ELNAHHAS A, VAN DER VEEN R M, GAWELDA W, JOHNSON S, BEAUD P, GROLIMUND D, KAISER M, BORCA C N, INGOLD G, ABELA R, CHERGU M. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(Ⅱ) complex[J]. Science, 2009, 323(5913): 489-492
doi: 10.1126/science.1165733
AUBÖCK G, CHERGUI M. Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+[J]. Nat. Chem., 2015, 7(8): 629-633
doi: 10.1038/nchem.2305
JAMULA L L, BROWN A M, GUO D, MCCUSKER J K. Synthesis and characterization of a high-symmetry ferrous polypyridyl complex: Approaching the 5T2/3T1 crossing point for Fe(Ⅱ)[J]. Inorg. Chem., 2014, 53(1): 15-17
doi: 10.1021/ic402407k
HAN D, YANG L, HUANG H, CHAKRABORTY P, DIGHE S U, HUANG K W. Combinations of electron and proton donors in transition-metal complex mediated nitrogen reduction reactions[J]. Sci. China Chem., 2024, 67(7): 2136-2154
doi: 10.1007/s11426-023-1991-1
MENGEL A K C, FÖRSTER C, BREIVOGEL A, MACK K, OCHSMANN J R, LAQUAI F, KSENOFONTOV V, HEINZE K. A heteroleptic push-pull substituted iron(Ⅱ) bis(tridentate) complex with low-energy charge-transfer states[J]. Chem. ‒Eur. J., 2015, 21(2): 704-714
doi: 10.1002/chem.201404955
DARARI M, FRANCÉS M A, MAREKHA B, DOUDOUH A, WENGER E, MONARI A, HAACKE S, GROS P C. Towards iron(Ⅱ) complexes with octahedral geometry: Synthesis, structure and photophysical properties[J]. Molecules, 2020, 25(24): 5991
doi: 10.3390/molecules25245991
PAULUS B C, ADELMAN S L, JAMULA L L, MCCUSKER J K. Leveraging excited-state coherence for synthetic control of ultrafast dynamics[J]. Nature, 2020, 582(7811): 214-218
doi: 10.1038/s41586-020-2353-2
FATUR S M, SHEPARD S G, HIGGINS R F, SHORES M P, DAMRAUER N H. A synthetically tunable system to control MLCT excited-state lifetimes and spin states in iron(Ⅱ) polypyridines[J]. J. Am. Chem. Soc., 2017, 139(12): 4493-4505
doi: 10.1021/jacs.7b00700
SHEPARD S G, FATUR S M, RAPPÉ A K, DAMRAUER N H. Highly strained iron(Ⅱ) polypyridines: Exploiting the quintet manifold to extend the lifetime of MLCT excited states[J]. J. Am. Chem. Soc., 2016, 138(9): 2949-2952
doi: 10.1021/jacs.5b13524
WÄCHTLER M, KÜBEL J, BARTHELMES K, WINTER A, SCHMIEDEL A, PASCHER T, LAMBERT C, SCHUBERT U S, DIETZEK B. Energy transfer and formation of long-lived 3MLCT states in multimetallic complexes with extended highly conjugated bis-terpyridyl ligands[J]. Phys. Chem. Chem. Phys., 2016, 18(4): 2350-2360
doi: 10.1039/C5CP04447B
VITTARDI S B, MAGAR R T, SCHRAGE B R, ZIEGLER C J, JAKUBIKOVA E, RACK J J. Evidence for a lowest energy 3MLCT excited state in [Fe(tpy)(CN)3]-[J]. Chem. Commun., 2021, 57(38): 4658-4661
doi: 10.1039/D1CC01090E
WINKLER J R, CREUTZ C, SUTIN N. Solvent tuning of the excited-state properties of [2, 2′-bipyridine]tetracyanoferrate(Ⅱ): Direct observation of a metal-to-ligand charge-transfer excited state of iron(Ⅱ)[J]. J. Am. Chem. Soc., 1987, 109(11): 3470-3471
doi: 10.1021/ja00245a053
ZEDERKOF D B, MØLLER K B, NIELSEN M M, HALDRUP K, GONZÁLEZ L, MAI S. Resolving femtosecond solvent reorganization dynamics in an iron complex by nonadiabatic dynamics simulations[J]. J. Am. Chem. Soc., 2022, 144(28): 12861-12873
doi: 10.1021/jacs.2c04505
SCHMID L, CHÁBERA P, RÜTER I, PRESCIMONE A, MEYER F, YARTSEV A, PERSSON P, WENGER O S. Borylation in the second coordination sphere of Fe(Ⅱ) cyanido complexes and its impact on their electronic structures and excited-state dynamics[J]. Inorg. Chem., 2022, 61(40): 15853-15863
doi: 10.1021/acs.inorgchem.2c01667
WEGEBERG C, HÄUSSINGER D, KUPFER S, WENGER O S. Controlling the photophysical properties of a series of isostructural d6 complexes based on Cr(0), Mn(Ⅰ), and Fe(Ⅱ)[J]. J. Am. Chem. Soc., 2024, 146(7): 4605-4619
doi: 10.1021/jacs.3c11580
LIU Y Z, HARLANG T, CANTON S E, CHÁBERA P, SUÁREZ-ALCÁNTARA K, FLECKHAUS A, VITHANAGE D A, GÖRANSSON E, CORANI A, LOMOTH R, SUNDSTRÖM V, WÄRNMARK K. Towards longer-lived metal-to-ligand charge transfer states of iron(Ⅱ) complexes: An N-heterocyclic carbene approach[J]. Chem. Commun., 2013, 49(57): 6412-6414
doi: 10.1039/c3cc43833c
HARLANG T C B, LIU Y Z, GORDIVSKA O, FREDIN L A, PONSECA C S, HUANG P, CHÁBERA P, KJAER K S, MATEOS H, UHLIG J, LOMOTH R, WALLENBERG R, STYRING S, PERSSON P, SUNDSTRÖM V, WÄRNMARK K. Iron sensitizer converts light to electrons with 92% yield[J]. Nat. Chem., 2015, 7(11): 883-889
doi: 10.1038/nchem.2365
DUCHANOIS T, ETIENNE T, CEBRIÁN C, LIU L, MONARI A, BELEY M, ASSFELD X, HAACKE S, GROS P C. An iron-based photosensitizer with extended excited-state lifetime: Photophysical and photovoltaic properties[J]. Eur. J. Inorg. Chem., 2015(14), 2469-2477
LIU L, DUCHANOIS T, ETIENNE T, MONARI A, BELEY M, ASSFELD X, HAACKE S, GROS P C. A new record excited state 3MLCT lifetime for metalorganic iron(Ⅱ) complexes[J]. Phys. Chem. Chem. Phys., 2016, 18(18): 12550-12556
doi: 10.1039/C6CP01418F
REUTER T, KRUSE A, SCHOCH R, LOCHBRUNNER S, BAUER M, HEINZE K. Higher MLCT lifetime of carbene iron(Ⅱ) complexes by chelate ring expansion[J]. Chem. Commun., 2021, 57(61): 7541-7544
doi: 10.1039/D1CC02173G
DIERKS P, PÄPCKE A, BOKAREVA O S, ALTENBURGER B, REUTER T, HEINZE K, KÜHN O, LOCHBRUNNER S, BAUER M. Ground- and excited-state properties of iron(Ⅱ) complexes linked to organic chromophores[J]. Inorg. Chem., 2020, 59(20): 14746-14761
doi: 10.1021/acs.inorgchem.0c02039
DARARI M, DOMENICHINI E, FRANCÉS‑MONERRIS A, CEBRIÁN C, MAGRA K, BELEY M, PASTORE M, MONARI A, ASSFELD X, HAACKE S, GROS P C. Iron(Ⅱ) complexes with diazinyl-NHC ligands: Impact of π-deficiency of the azine core on photophysical properties[J]. Dalton Trans., 2019, 48(29): 10915-10926
doi: 10.1039/C9DT01731C
JIANG T, BAI Y S, ZHANG P, HAN Q W, MITZI D B, THERIEN M J. Electronic structure and photophysics of a supermolecular iron complex having a long MLCT-state lifetime and panchromatic absorption[J]. Proc. Natl. Acad. Sci., 2020, 117(34): 20430-20437
doi: 10.1073/pnas.2009996117
WITAS K, NAIR S S, MAISURADZE T, ZEDLER L, SCHMIDT H, GARCIAP P, REIN A S J, BOLTER T, RAU S, KUPFER S, DIETZEK-IVANSIC B, SORSCHE D U. Beyond the first coordination sphere-manipulating the excited-state landscape in iron(Ⅱ) chromophores with protons[J]. J. Am. Chem. Soc., 2024, 146(29): 19710-19719
doi: 10.1021/jacs.4c00552
CHÁBERA P, KJAER K S, PRAKASH O, HONARFAR A, LIU Y, FREDIN L A, HARLANG T C B, LIDIN S, UHLIG J, SUNDSTRÖM V, LOMOTH R, PERSSON P, WÄRNMARK K. Fe(Ⅱ) hexa N-heterocyclic carbene complex with a 528 ps metal-to-ligand charge-transfer excited-state lifetime[J]. J. Phys. Chem. Lett., 2018, 9(3): 459-463
doi: 10.1021/acs.jpclett.7b02962
LIU Y, KJÆR K S, FREDIN L A, CHÁBERA P, HARLANG T, CANTON S E, LIDIN S, ZHANG J, LOMOTH R, BERGQUIST K E, PERSSON P, WÄRNMARK K, SUNDSTRÖM V. A heteroleptic ferrous complex with mesoionic bis[1, 2, 3-triazol-5-ylidene] ligands: taming the MLCT excited state of iron(Ⅱ)[J]. Chem. ‒Eur. J., 2015, 21(9): 3628-3639
doi: 10.1002/chem.201405184
TATSUNO H, KJÆR K S, KUNNUS K, HARLANG T C B, TIMM C, GUO M, CHÀBERA P, FREDIN L A, HARTSOCK R W, REINHARD M E, KOROIDOV S, LI L, CORDONES A A, GORDIVSKA O, PRAKASH O, LIU Y, LAURSEN M G, BIASIN E, HANSEN F B, VESTER P, CHRISTENSEN M, HALDRUP K, NÉMETH Z, SZEMES D S, BAJNÓCZI É, VANKÓ G, VAN DRIEL T B, ALONSO-MORI R, GLOWNIA J M, NELSON S, SIKORSKI M, LEMKE H T, SOKARAS D, CANTON S E, DOHN A O, MØLLER K B, NIELSEN M M, GAFFNEY K J, WÄRNMARK K, SUNDSTRÖM V, PERSSON P, UHLIG J. Hot branching dynamics in a light-harvesting iron carbene complex revealed by ultrafast X-ray emission spectroscopy[J]. Angew. Chem. ‒Int. Edit., 2020, 59(1): 364-372
doi: 10.1002/anie.201908065
DIERKS P, KRUSE A, BOKAREVA O S, ALMARRI M J, KALMBACH J, BALTRUN M, NEUBA A, SCHOCH R, HOHLOCH S, HEINZE K, SEITZ M, KÜHN O, LOCHBRUNNER S, MATTHIAS B. Distinct photodynamics of κ-N and κ-C pseudoisomeric iron(Ⅱ) complexes[J]. Chem. Commun., 2021, 57(54): 6640-6643
doi: 10.1039/D1CC01716K
BRAUN J D, LOZADA I B, KOLODZIEJ C, BURDA C, NEWMAN K M E, VAN LIEROP J, DAVIS R L, HERBERT D E. Iron(Ⅱ) coordination complexes with panchromatic absorption and nanosecond charge-transfer excited state lifetimes[J]. Nat. Chem., 2019, 11(12): 1144-1150
doi: 10.1038/s41557-019-0357-z
KJÆR K S, KAUL N, PRAKASH O, CHÁBERA P, ROSEMANN N W, HONARFAR A, GORDIVSKA O, FREDIN L A, BERGQUIST K E, HÄGGSTRÖM L, ERICSSON T, LINDH L, YARTSEV A, STYRING S, HUANG P, UHLIG J, BENDIX J, STRAND D, SUNDSTRÖM V, PRESSON P, LOMOTH R, WÄRNMARK K. Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime[J]. Science, 2019, 363(6424): 249-253
doi: 10.1126/science.aau7160
KAUL N, LOMOTH R. The carbene cannibal: Photoinduced symmetry-breaking charge separation in an Fe(Ⅲ) N-Heterocyclic Carbene[J]. J. Am. Chem. Soc., 2021, 143(29): 10816-10821
doi: 10.1021/jacs.1c03770
ZHANG M, JOHNSON C E, ILIC A, SCHWARZ J, JOHANSSON M B, LOMOTH R. High-efficiency photoinduced charge separation in Fe(Ⅲ) carbene thin films[J]. J. Am. Chem. Soc., 2023, 145(35): 19171-19176
doi: 10.1021/jacs.3c05404
AYDOGAN A, BANGLE R E, CADRANEL A, TURLINGTON M D, CONROY D T, CAUËT E, SINGLETON M L, MEYER G J, SAMPAIO R N, ELIAS B, TROIAN-GAUTIER L. Accessing photoredox transformations with an iron(Ⅲ) photosensitizer and green light[J]. J. Am. Chem. Soc., 2021, 143(38): 15661-15673
doi: 10.1021/jacs.1c06081
ILIC A, SCHWARZ J, JOHNSON C, GROOT L H M, KAUFHOLD S, LOMOTH R, WÄRNMARK K. Photoredox catalysis via consecutive 2LMCT- and 3MLCT-excitation of an Fe(Ⅲ)/Fe(Ⅱ)-N-heterocyclic carbene complex[J]. Chem. Sci., 2022, 13(32): 9165-9175
doi: 10.1039/D2SC02122F
GROOT L H M, ILIC A, SCHWARZ J, WÄRNMARK K. Iron photoredox catalysis—past, present, and future[J]. J. Am. Chem. Soc., 2023, 145(17): 9369-9388
doi: 10.1021/jacs.3c01000
YE Y, GARRIDO B P, WELLAUER J, CRUZ C M, LESCOUËZEC R, WENGER O S, HERRERA J, M JIMÉNEZ J R. Luminescence and excited-state reactivity in a heteroleptic tricyanido Fe(Ⅲ) complex[J]. J. Am. Chem. Soc., 2024, 146(1): 954-960
doi: 10.1021/jacs.3c11517
STEUBE J, KRUSE A, BOKAREVA O S, REUTER T, DEMESHKO S, SCHOCH R, ARGÜELLO C M A, KRISHNA A, HOHLOCH S, MEYER F, HEINZE K, KÜHN O, LOCHBRUNNER S, BAUER M. Janus-type emission from a cyclometalated iron(Ⅲ) complex[J]. Nat. Chem., 2023, 15(4): 468-474
doi: 10.1038/s41557-023-01137-w
WELLAUER J, ZIEREISEN F, SINHA N, PRESCIMONE A, VELIĆ A, MEYER F, WENGER O S. Iron(Ⅲ) carbene complexes with tunable excited state energies for photoredox and upconversion[J]. J. Am. Chem. Soc., 2024, 146: 11299-11318
GUALANDI A, MARCHINI M, MENGOZZI L, NATALI M, LUCARINI M, CERONI P, COZZI P G. Organocatalytic enantioselective alkylation of aldehydes with [Fe(bpy)3]Br2 catalyst and visible light[J]. ACS Catal., 2015, 5(10): 5927-5931
doi: 10.1021/acscatal.5b01573
PARISIEN-COLLETTE S, HERNANDEZ P A C, COLLINS S K. Photochemical synthesis of carbazoles using an[Fe(phen)3](NTf2)2/O2 catalyst system: Catalysis toward sustainability[J]. Org. Lett., 2016, 18(19): 4994-4997
doi: 10.1021/acs.orglett.6b02456
LINDROTH R, ONDREJKOVÁ A, WALLENTIN C J. Visible-light mediated oxidative fragmentation of ethers and acetals by means of Fe(Ⅲ) catalysis[J]. Org. Lett., 2022, 24(8): 1662-1667
doi: 10.1021/acs.orglett.2c00231
AYDOGEN A, BANGLE R E, CADRANEL A, TURLINGTON M D, CONROY D T, CAUËT, SINGLETON M L, MEYER G J, SAMPAIO R N, ELIAS B, TROIAN-GAUTIER L. Accessing photoredox transformations with an iron(Ⅲ) photosensitizer and green light[J]. J. Am. Chem. Soc., 2021, 143(38): 15661-15673
doi: 10.1021/jacs.1c06081
JANG Y J, AN H, CHOI S, HONG J, LEE S H, AHN K H, YOU Y, KANG E J. Green-light-driven Fe(Ⅲ)(btz)3 photocatalysis in the radical cationic[4+2] cycloaddition reaction[J]. Org. Lett., 2022, 24(24): 4479-4484
doi: 10.1021/acs.orglett.2c01779
REDDY M A, MARCHINI E, CABANES V D, ARGAZZI R, PASTORE M, CARAMORI S, GROS P C. Record power conversion efficiencies for iron(Ⅱ)-NHC-sensitized DSSCs from rational molecular engineering and electrolyte optimization[J]. J. Mater. Chem. A, 2021, 9(6): 3540-3554
doi: 10.1039/D0TA10841C
MARRI A R, MARCHINI E, CABANES V D, ARGAZZI R, PASTORE M, CARAMORI S, BIGNOZZI C A, GROS P C. A Series of iron(Ⅱ)-NHC sensitizers with remarkable power conversion efficiency in photoelectrochemical cells[J]. Chem. ‒Eur. J., 2021, 27(65): 16260-16269
doi: 10.1002/chem.202103178
LINDH L, GORDIVSKA O, PERSSON S, MICHAELS H, FAN H, CHÁBERA P, ROSEMANN N W, GUPTA A K, BENESPERI I, UHLIG J, PRAKASH O, SHEIBANI E, KJAER K S, BOSCHLOO G, YARTSEV A, FREITAG M, LOMOTH R, PERSSON P, WÄRNMARK K. Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionality[J]. Chem. Sci., 2021, 12(48): 16035-16053
doi: 10.1039/D1SC02963K
PASTORE M, CARAMORI S, GROS P C. Iron-sensitized solar cells (FeSSCs)[J]. Acc. Chem. Res., 2024, 57(4): 439-449
WANG C, REICHENAUER F, KITZMANN W R, KERZIG C, HEINZE K, RESCH G U. Efficient triplet-triplet annihilation upconversion sensitized by a chromium(Ⅲ) complex via an underexplored energy transfer mechanism[J]. Angew. Chem. ‒Int. Edit., 2022, 61(27): e202202238
doi: 10.1002/anie.202202238
WEI Y X, AN K B, XU X S, YE Z Y, YIN X J, CAO X S, YANG C L. Π-Radical photosensitizer for highly efficient and stable near-infrared photon upconversion[J]. Adv. Opt. Mater., 2024, 12(6): 2301134
doi: 10.1002/adom.202301134
WENGER O S. A bright future for photosensitizers[J]. Nat. Chem., 2020, 12(4): 323-324
doi: 10.1038/s41557-020-0448-x
JULIÁ F. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: An emerging tool for sustainable organic synthesis[J]. ChemCatChem, 2022, 14(19): e202200916
doi: 10.1002/cctc.202200916
SHI S Y, JUNG M C, COBURN C, TADLE A, SYLVINSON M R D, DJUROVICH P I, FORREST S R, THOMPSON M E. Highly efficient photo- and electroluminescence from two-coordinate Cu(Ⅰ) complexes featuring nonconventional n-heterocyclic carbenes[J]. J. Am. Chem. Soc., 2019, 141(8): 3576-3588
doi: 10.1021/jacs.8b12397
KÜBLER J A, PFUND B, WENGER O S. Zinc(Ⅱ) complexes with triplet charge-transfer excited states enabling energy-transfer catalysis, photoinduced electron transfer, and upconversion[J]. J. Am. Chem. Soc., 2022, 2(10): 2367-2380
KITZMANN W R, MOLL J, HEINZE K. Spin-flip luminescence[J]. Photochem. Photobio. Sci., 2022, 21(7): 1309-1331
doi: 10.1007/s43630-022-00186-3
YING A, AI Y H, YANG C L, GONG S L. Aggregation-dependent circularly polarized luminescence and thermally activated delayed fluorescence from chiral carbene-Cu(Ⅰ)-amide enantiomers[J]. Angew. Chem. ‒Int. Edit., 2022, 61(45): e202210490
doi: 10.1002/anie.202210490
MAO Y, CHEN Z H, SUN T K, CUI W Y, CHENG P, SHI W. Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite[J]. Chin. J. Struct. Chem., 2024, 43(9): 100353
doi: 10.1016/j.cjsc.2024.100353
D′ACCRISCIO F, BORJA P, SAFFON M N, FUSTIER B M, MÉZAILLES N, NEBRA N. C—H bond trifluoromethylation of arenes enabled by a robust, high-valent nickel complex[J]. Angew. Chem. ‒Int. Edit., 2017, 56(42): 12898-12902
doi: 10.1002/anie.201706237
Tongyu Zheng , Teng Li , Xiaoyu Han , Yupei Chai , Kexin Zhao , Quan Liu , Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Wenjing ZHANG , Xiaoqing WANG , Zhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
Wei Li , Ze Chang , Meihui Yu , Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Q is a nuclear coordinate, and E is relative energy.
Counter anions are PF6- unless otherwise noted; n.d.=not determined.
PPN+=bis(triphenylphosphine)iminium.
Counter anions are PF6-.
Counter anions are PF6-.
Counter anions and cations are PF6-; λem represents the maximum emission wavelength.
CFL indicates compact fluorescent lamp; HE is Hantzsch ester; TEA represents trimethylamine.
Counter anions are PF 6-.
TTA is triplet⁃triplet annihilation.